Good Morning Colleagues

- Are there any questions?
Logistics

• Feedback on final project proposals given
Logistics

- Feedback on final project proposals given
- Midterm results
Logistics

- Feedback on final project proposals given
- Midterm results
- Forum for AI talk on GT Sophy - online
Logistics

• Feedback on final project proposals given

• Midterm results

• Forum for AI talk on GT Sophy - online

• Next step: literature surveys
Logistics

- Feedback on final project proposals given
- Midterm results
- Forum for AI talk on GT Sophy - online
- Next step: literature surveys
 - Build on proposal
Logistics

- Feedback on final project proposals given
- Midterm results
- Forum for AI talk on GT Sophy - online
- Next step: literature surveys
 - Build on proposal
- Next week’s readings
Logistics

- Feedback on final project proposals given
- Midterm results
- Forum for AI talk on GT Sophy - online
- Next step: literature surveys
 - Build on proposal
- Next week’s readings
 - Exploration and intrinsic motivation
Logistics

- Feedback on final project proposals given
- Midterm results
- Forum for AI talk on GT Sophy - online
- Next step: literature surveys
 - Build on proposal
- Next week’s readings
 - Exploration and intrinsic motivation
 - No longer a textbook
Abstraction

- What are the two types?
Abstraction

- What are the two types?
 - State abstraction
 - Temporal abstraction

- Week 0 task
Options

• Extension of RL to temporal abstraction
Options

- Extension of RL to temporal abstraction
- They don’t address what temporal abstraction to use — they just show how it can fit into the RL formalism
Options

- Extension of RL to temporal abstraction
- They don’t address what temporal abstraction to use — they just show how it can fit into the RL formalism
 - Why couldn’t it before?
Options

- Extension of RL to temporal abstraction
- They don’t address what temporal abstraction to use — they just show how it can fit into the RL formalism
 - Why couldn’t it before?
- Markov vs. Semi-markov:
 - states, actions
 - mapping from \((s, a)\) to expected discounted reward
 - well-defined distribution of next state, transit time
Options

- Extension of RL to temporal abstraction
- They don’t address **what** temporal abstraction to use — they just show how it can fit into the RL formalism
 - Why couldn’t it before?
- Markov vs. Semi-markov:
 - states, actions
 - mapping from \((s, a)\) to expected discounted reward
 - well-defined distribution of next state, transit time
- Options can be detrimental without good state abstractions (slides)
Common Questions

• Please discuss intra-option learning more
Common Questions

- Please discuss intra-option learning more

- What are the current challenges in abstraction? (From chapter 16 it doesn't look like people have widely adapted it.)

- What techniques exist to automate the abstraction selection process (discovery)?
 - bottleneck states
 - novelty
 - changed useful state abstractions (slides)
Other Common Questions

• How do you determine the proper degree of abstraction?

 – What is maximum allowable abstraction before it hurts agent? Can we quantify it?
Other Common Questions

• How do you determine the proper degree of abstraction?

 – What is maximum allowable abstraction before it hurts agent? Can we quantify it?
 – Global vs. hierarchical vs. recursive optimality (slides)
Other Common Questions

• How do you determine the proper degree of abstraction?
 - What is maximum allowable abstraction before it hurts agent? Can we quantify it?
 - Global vs. hierarchical vs. recursive optimality (slides)

• How is transfer learning typically performed in RL? (slides)

• What do positive and negative transfer mean?
- Daniel Almeraz: With infinite resources and time, would abstraction hinder an agent?
Other Interesting Questions

- Daniel Almeraz: With infinite resources and time, would abstraction hinder an agent?
- Oguzhan Akcin: Are function approximation methods (i.e., neural networks) a form of abstraction?
- Shwetha Ramachandran: What’s the difference between state abstraction and state aggregation?
Rishikumar Salem: Are most abstractions understandable to people, or are they often selected in a black-box manner by a machine learning model?
Other Interesting Questions

- Rishikumar Salem: Are most abstractions understandable to people, or are they often selected in a black-box manner by a machine learning model?

- Haroon Mushtaq: Can options be used to make RL systems safe?
Discussion Points

- What happens when initial value functions are optimistic? (slides)
Discussion Points

- What happens when initial value functions are optimistic? (slides)
MAXQ

- Defines how to learn given a task hierarchically
MAXQ

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
MAXQ

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for recursive optimality
• Defines how to learn given a task hierarchically

• Does not address how to construct the hierarchy

• Strives for **recursive optimality**—local optimality given subtask policies
MAXQ

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for recursive optimality—local optimality given subtask policies
 - Weaker or stronger than hierarchical optimality?
MAXQ

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for recursive optimality—local optimality given subtask policies
 - Weaker or stronger than hierarchical optimality?
- Enables reuse of subtasks
MAXQ

- Defines how to learn given a task hierarchically
- Does not address how to construct the hierarchy
- Strives for **recursive optimality**—local optimality given subtask policies
 - Weaker or stronger than hierarchical optimality?
- Enables reuse of subtasks
- Enables useful state abstraction (how?)
Some details

- a means both primitive actions and subtasks (options)
Some details

- a means both primitive actions and subtasks (options)
- Context-dependent vs. context-independent
Some details

• a means both primitive actions and subtasks (options)

• Context-dependent vs. context-independent

• Higher-level subtasks are essentially policies over options
 – But subtasks are learned too
 – And the values propagate correctly
Some details

- a means both primitive actions and subtasks (options)

- Context-dependent vs. context-independent

- Higher-level subtasks are essentially policies over options
 - But subtasks are learned too
 - And the values propagate correctly

- What does $C_i^\pi(s, a)$ mean?
Some details

- a means both primitive actions and subtasks (options)
- Context-dependent vs. context-independent
- Higher-level subtasks are essentially policies over options
 - But subtasks are learned too
 - And the values propagate correctly
- What does $C^\pi_i(s, a)$ mean? (Nick slides)
Some details

• a means both primitive actions and subtasks (options)

• Context-dependent vs. context-independent

• Higher-level subtasks are essentially policies over options
 – But subtasks are learned too
 – And the values propagate correctly

• What does $C_i^\pi(s, a)$ mean? (Nick slides)
Discussion Points

• What does MAXQ-Q buy you over flat?
Discussion Points

• What does MAXQ-Q buy you over flat?

• What does polling buy you over flat?