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Overview

A model-based reinforcement learning algorithm is presented
for stochastic games

It improves upon previous reinforcement learning algorithms

Optimality and convergence are discussed and proved

Simplified version of the proposed algorithm is given for
repeated games

No experimental results are presented
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Reinforcement learning

Agent interacts with unknown environment and tries to choose
actions that maximize its cumulative payoff
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Reinforcement learning algorithms

E 3 algorithm (Kearns and Singh, 1998)

- first provably near-optimal polynomial time algorithm for
learning in Markov decision processes (MDPs)

Agent learns by updating its environment’s model using
statistics it collects as long as it can be done efficiently

Then agent uses its learned model to compute the optimal
policy

E 3 handles exploration-exploitation trade-off explicitly

Therefore, it is difficult to generalize it to multi-agent settings
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Reinforcement learning algorithms

E 3 was extended to single controller stochastic games (SCSG)
- LSG algorithm (Brafman and Tennenholtz, 2000)

- one player controls the transition

E 3 was extended to structured MDPs (Kearns and Koller,
1999)

- MDPs whose transition model can be factored as a dynamic
Bayesian network (DBN)
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R-MAX algorithm: Summary

R-MAX generalizes E 3 to adversarial context

Agent using R-MAX always attempts to optimize its behavior
w.r.t. fictitious model

- it is always either optimal or it leads to efficient learning
- agent usually doesn’t know whether its optimizing or learning
→ it will exploit or explore efficiently

- polynomial number of parameters to learn
- if learning is done efficiently, can ensure that agent spends

polynomial number of steps exploring and the rest of the time
exploiting
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R-MAX algorithm: Summary

Exploration-exploitation trade-off is implicit

Converges in polynomial time to a near-optimal solution

R-MAX uses zero-sum stochastic game model → more
general than MDP

Approach is not new - “optimism in the face of uncertainty
heuristic”

- When faced with the choice between a known and unknown
reward, always try the unknown reward
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Stochastic Games (SGs)

2 player, fixed-sum (constant-sum) games

Person under our control - agent

The other player - adversary

Assume that the size of the action set of both agent and
adversary are the same
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Stochastic Games (SGs)

Players play a sequence of games from some given set of
games

After playing each game, the players receive the appropriate
payoff and move to a new game

The new game depends on the previous games and the
players’ actions in it

Payoffs are normalized between 0 and a constant Rmax

Number of actions is constant
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Stochastic Games (SGs)
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Stochastic Games: notation

Set of possible histories of length t is (S × A2 × R)t × S

The set of possible histories, H, is the union of the sets of
possible histories ∀t ≥ 0

Policy, π : (S × A2 × R)t × S → A

Value of the policy π is UM(s, π, ρ,T ) - expected average
reward if agents follows π for T steps

- M is SG, T is a natural number
- ρ is adversary’s policy

UM(s, π,T ) = minρ is a policyUM(s, π, ρ,T )

UM(s, π) = lim infT→∞UM(s, π,T )

UM(π) = mins∈SUM(s, π)
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Mixing time

Kearns and Singh (1998) defined ε-return mixing time of π as
the smallest value of T after which π guarantees an expected
payoff of at least U(π)− ε
Here, the authors adjust this definition slightly to account for
adversary

Policy π belongs to the set Π(ε,T ) with ε-return mixing time at
most T if for any starting state s, adversary policy ρ, and ∀t ≥ T ,
U(s, π, ρ,T ) ≥ U(π)− ε

Opt(Π(ε,T )) - optimal expected T -step undiscounted
average return among policies in Π(ε,T )
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Assumptions

1 Agent always knows what state it is in

2 Agent knows what actions were taken by its adversary and
what payoffs were obtained after each stage

3 Maximal possible reward, Rmax , is known apriori

4 ε-return mixing time of any policy is known
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The R-MAX Algorithm

Stochastic game M consists of a set S = {G1, ...,GN} of
stage games

R i - reward matrix for game i

R i
m,l - pair consisting of agent’s and adversary’s rewards after

playing actions am and al in game Gi respectively

PM(s, t, a, a′) - probability transition function

ε > 0

T (ε-return mixing time of the optimal policy) is known
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The R-MAX Algorithm

Maintain an internal model of the stochastic game

Calculate an optimal policy according to the model and follow
it

Update model based on observations

Calculate a new optimal policy and repeat
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The R-MAX Algorithm

Input

N - number of games

k - number of actions in each game

ε - the error bound

d - the probability of failure

Rmax - the maximum reward value

T - the ε-return mixing time of an optimal policy

K1 = max(d4NTRmax
ε

3e, d−6ln3( δ
6Nk2 )e) + 1
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The R-MAX Algorithm

Initializing the internal model

Create states {G1...Gn} to represent the stages in the
stochastic game

Create a fictitious game G0

Initialize all rewards to (Rmax , 0)

Set all transfer functions to point to G0

Associate a boolean known/unknown variable with each entry
in each game, initialized to unknown

Associate a list of states reached with each entry, which is
initially empty
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The R-MAX Algorithm

18 / 32



Introduction R-MAX: Summary Preliminaries R-MAX Algorithm Optimality and Convergence Conclusion

The R-MAX Algorithm
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The R-MAX Algorithm

Repetition

Compute an optimal policy for T steps based on the current
internal model

Execute that policy for T steps

After each step:

- If an entry was visited for the first time, update the rewards
based on observations

- Update the list of states reached from that entry
- If the list of states reached now contains K1 elements

mark that entry as known
update the transition function
compute a new policy
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Proof of Near-Optimality

Aim: prove that if the agent follows the R-MAX algorithm for T
steps, the average reward will be within ε of the optimum

Outline of the proof:

After T steps the agent either obtains near-optimum average
reward or learns something new

There are a polynomial number of parameters to learn → the
agent can completely learn its model in polynomial time

The adversary can block learning, but if it does so then the
agent will obtain near-optimum reward

Either way the agent wins!
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Optimality and Convergence
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Optimality and Convergence

Extension of the Simulation Lemma (by Kearns and Singh 1998)

If the agent’s model is a sufficiently close approximation of
the true game, then an optimal policy in the model will be
near-optimal in the game

R-MAX guarantees that the model is sufficiently close by
waiting until there are K1 samples before marking an entry
known
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Optimality and Convergence

Induced SG

RML −max : optimal policy for the induced SG ML

- M is a given stochastic game with a set of L unknown states
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Optimality and Convergence

Implicit explore or exploit lemma

The difference between the expected reward based on the
model and the actual reward will be less than the exploration
probability times Rmax

The value of exploration in the fictitious model is very hight
(probabilistic maximin)
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Optimality and Convergence

Main Theorem
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Main Theorem

Sketch of the proof: combining previous two lemmas

In unknown states the agent has an unrealistically high
expectation of reward (Rmax)

- According to the implicit explore or exploit lemma the
probability of exploration is high

In known states according to the simulation lemma agent will
obtain near-optimal reward

Agent will always be in either a known or unknown state

Therefore, agent will always explore with high probability or
obtain near-optimal reward

If agent explores for long enough then (almost) all states will
be known, and near-optimal reward is guaranteed
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Repeated Games

A repeated game is a stochastic game in which the set of
stage games contains a single game

Adaptive Competitive Decision Process is a class of repeated
games with incomplete information

- can observe adversary’s actions and payoffs
- value of Rmax is known

The mixing time of any policy is 1 (since one stage game)

Have the same guarantees as in SGs but with simpler
algorithm
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R-MAX algorithm for repeated games

Simplified R-MAX
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Other variations of the R-MAX algorithm

Remove assumption that we know the ε-return mixing time of
an optimal policy, T

Remove assumption that we know Rmax
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Issues

For complicated games N, k,T are all likely to be high, so
polynomial time will still not be computationally feasible

Do not consider how the agent’s behavior might impact the
adversary’s behavior
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Conclusion

R-Max is a model-based reinforcement learning algorithm that
is guaranteed to converge on the near-optimal average reward
in polynomial time

- zero-sum stochastic games, MDPs, and repeated games

Theoretical justification for optimism under uncertainty
heuristic are provided

- Guarantee that the agent either obtains near-optimal reward or
learns efficiently

32 / 32


	Introduction
	Related Work

	R-MAX: Summary
	Preliminaries
	Stochastic Games
	Assumptions, Complexity and Optimality

	R-MAX Algorithm
	Optimality and Convergence
	Repeated Games
	Other variations of R-Max

	Conclusion

