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Safety and Correctness in Robotics




What does it mean for a learning agent to be “safe’?

Formal safety: A self-driving car that will provably never crash if some model holds
Risk-sensitive safety: A stock market agent with bounded value-at-risk

Robust safety: An image classifier resistant to data poisoning or adversarial examples
Monotonic safety: An RL-based advertising policy that always improves with high probability

Safe exploration: A walking robot that can explore new gaits without falling over

More complete taxonomy: D.Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané.
"Concrete problems in Al safety."



A proposed definition of safety:
Safety = Correctness + Confidence

Correctness: Meeting or exceeding a measure of performance

Confidence: A (probabilistic) guarantee of correctness



A spectrum of safety

Guaranteed Probabilistic

e ———————————

Require perfect models Sample inefficient

Veritication / synthesis PAC-MDP methods
[Kress-Gazit et. al 2009] [Singh et. al 2002]
[Raman et.al 2015] [Fu and Topcu 2014]

Concentration inequalrties

[Thomas et. al 2015]
[Bottou et. al 201 3]
[Abbeel and Ng 2004]
[Syed and Schapire 2008]

Approximate

No guarantees

KL-divergence constraints

[Schulman et. al 201 5]
[Schulman et. al 2017]
[Peters et.al 2010]

Address bad assumptions!



Part |: Safe reinforcement learning



Background

State s,

[ :( Agent >

Reward r,

Actlon a,

|
:4 fies

_ : ( Environment )4—1
l

m Finite-horizon MDP.

m Agent selects actions with a stochastic policy,

m [ he policy and environment determine a distribution over
trajectories, H : 5q, Ao, Ry, 51, A1, Ry, ..., 5., AL, R,



Safe off-policy evaluation (OPE): “::' O O -

3 ‘"
Determ.ine a probabilistic lower bounFI on expecFed performance !’t\'ﬁ- ‘“‘ v d]
of a policy, given data generated by a different policy Sad" _}} e -

Safe policy improvement (Pl):

Ensure that expected performance improves monotonically at %
every learning step with high confidence

Time / Data —»



Policy Evaluation

Policy performance:

L
V(T('): D [Zytﬂ’t H ~
t=0

Given a target policy, 7., estimate V()

mlet m, = 7y,



Monte Carlo Policy Evaluation

Given a dataset D of trajectories where VH € D,
H ~ 7.:




Importance Sampling Policy Evaluation!

Given a dataset D of trajectories where VH,; € D,
H; is sampled from a behavior policy 7;:

1S Te At|5t L tR(i)
Z H mi(At|St) Zﬁy t

re-weighting factor

For convenience:

L

(A S)
IS(H, 7) := H” A:“"Stt ZVth

t=0 t=0

LPrecup, Sutton, and Singh (2000)



Confidence Intervals for Off-Policy Evaluation

Given:

m Irajectories generated by a behavior policy, mp,
{H, 7Tb} cD.

m An evaluation policy, ..

m 0 € [0,1] is a confidence level.

Determine a lower bound Vio(7e, D) such that V()
Vib(7e, D) with probability 1 — §.

>




Concentration Inequalities

Chernoff-Hoeffding Inequality
m Probabilistic bound on how a random variable deviates
from 1ts expectation
m No distributional assumptions
m \With probability at least 1-9:
> 150 X /B

m Can use with importance sampled returns to bound value
of a policy from off-policy samples

m Significantly tighter bounds exist under certain conditions
(Thomas et. al 2015)



Sample (in)efficiency (Thomas et. al 2015)
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Figure 3: 95% confidence lower bound (unnormalized) on
p(0) using trajectories generated using the simulator de-
scribed 1n the text. The behavior policy’s true expected re-



Bad assumption #1:

“When performing policy evaluation, it is better
to collect on-policy data than off-policy data”

J.P. Hanna, P.S. Thomas, P. Stone, and S. Niekum.

Data-Efficient Policy Evaluation Through Behavior Policy Search.
Proceedings of the 34th International Conference on Machine Learning (ICML), August 2017.



http://www.cs.utexas.edu/users/sniekum/pubs/HannaBPG.pdf

Optimal Behavior Policy

Claim: There exists an optimal behavior policy, mp«, If all returns
are positive and transitions are deterministic:



Optimal Behavior Policy

Claim: There exists an optimal behavior policy, mp«, If all returns
are positive and transitions are deterministic:

tl}) Tpx (A¢| St) 25((::)) tl}) Te(A¢|St)
_ g(H)
e (H) =E D (1)

/ero mean squared error with a single trajectory!|Such a policy

provably exists as a mixture over time-dependent deterministic
policies (i.e. weighted trajectories).



Optimal Behavior Policy

Unfortunately, the optimal behavior policy is unknown in practice.

L
) T melAdl o)

(7e) t=0

L
g
H T p* (At‘st) —
t=0 v

m Requires V(7. ) be known!
m Requires the reward function be known.

m Requires deterministic transitions.



Behavior Policy Gradient

Key ldea: Adapt the behavior policy parameters, 6, with
gradient descent on the mean squared error of
importance-sampling.

0
9,‘+1 — 9,‘ — Oéa—g MSE['S(H,, 9)]

m MSE[/IS(H, 0)] is not computable.

= -5 MSE[IS(H, 0)] is computable.



Behavior Policy Gradient Theorem

(,% MSE(IS(H,8)) = E, |—IS(H,0)> ) (% log (mg(Ae|St))

0

t



Variance

Variance reduction
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Mean Squared Error
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Improved sample efficiency
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—  Monte Carlo
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Better, but not good enough.

» Are “semi-safe”, consistent methods good enough?
(e.g. bootstrapping)

* Why only use model-free methods!?



Bootstrap Confidence Intervals

D

Sample with
replacement

Estimate

(v.)
! @

V(7e)




Model-Based Bootstrap

Sample with
replacement

Model-based

Estimate
'

O



Model-Based Bootstrap

Sample with
replacement

Model-based
Estimate

Biased! s

(D



Bad assumption #2:

“Biased models lead to biased estimators’

J.P. Hanna, P. Stone, and S. Niekum.

Bootstrapping with Models: Confidence Intervals for Off-Policy Evaluation.
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2017.



http://www.cs.utexas.edu/users/sniekum/pubs/AAMAS2017.pdf

Doubly Robust Estimator
[Jiang and Li 2016; Thomas and Brunskill 201 6]

DR(D) = PDIS(D) 5" wia(55 A) - wl_,57(5)
Unbiased estimator i=1 t=0

Zero In Expectation

T

mV"(S) = 43AN7T,5,Np(,|5,A) r(S,A) + 0(S)] Control variate
m State value function.

n 8]”(5, A) = I’(S, A) -+ “35/Np(.|57,4) [\7(5’)] '
m State-action value function. 2

m w; Is the importance weight of the first t time-steps.



Weighted Doubly Robust Bootstrap

Sample with
replacement

@ ' @
()

Weighted Doubly
Robust Estimate

Y
v




Weighted Doubly Robust Bootstrap

Sample with
replacement

@ ' @
()

Weighted Doubly
Robust Estimate I

Unbiased! -
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Similar ideas apply to safe policy improvement:

Loop:
|. Propose a policy (e.g. via an unsafe RL step)

2. Perform safe policy evaluation

3. Accept or reject



Part 2: Safe imitation learning



Imitation learning




Never trust a robot video!

ASM | FSA-basic | FSA-split
Fail Fail 1 0
. Fail Fail 1 2
Straight Fail Fail > >
Fail Fail 1 2
Fail Fail Fail 1
Far away Fail Fail Fail 1

Fail Fail Fail Fail

Fail Fail 2 1
Difficult angle Fail Fail 3 1
Fail Fail 3 2

successes / 0/— | 0/— | 771857

Avg assists

9/ 1.333

Video



Success Rate %
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Surely things are better in 2021?

0.6 - | |

0.5

Success rate

All tasks Button pressmg Graspmg P\Jshmg Pick and Place

Success Rate (%) 21.7 3.8 7.6
Average Step Completion (of 4) 2.4 1+ 1.13 2.21+0.95 1.78 = 1.0

Three sample robot imitation learning papers published 2019-202 |




Value Aligned Imitation Learning (VAIL):

Upper bound the policy loss of the robot vs. human demonstrator with
high confidence, without knowing the ground-truth reward function.

>
N
o
®
o)
O
| .
o

>

Reward Functions

With probability (1 — 0):
VE* . v}grobot S €




Background: Inverse reinforcement learning
(Abbeel and Ng 2004)

Given: demonstrations 71 ...7Tn
Assume: reward function is linear in features of state: R(s) = w - ¢(s)

Obijective: find w such that 71 ... 7n are optimal under w

Value of a policy: V™ = w - p(w)

where p(m) =E [ ,Z,7'o(s:)|m] “Feature expectations”

Standard approach: find a reward function whose
optimal policy matches expert’s feature expectations

If expert’s feature expectations are matched,
then expected return is also identical



Background: performance bounds for IRL
(Abbeel and Ng 2004, Syed and Schapire 2008)

Theorem 2. (Syed and Schapire 2008) To obtain a policy T such
that with probability (1 — 0)

e>|VF(R*) = V™ (RY) (26)

it suffices to have

m > 2 log % (27)

— (A=) 76

Worst-case bound that assumes an adversarial reward function



Standard assumption:

Worst-case reasoning is the best we can do if we don't
know the ground-truth reward function

!

It is much more efficient to consider the likelihood of
reward functions when assessing risk



Existing tools that we’ll need

(1) An IRL algorithm to obtain a posterior distribution over reward functions

(2) A metric for measuring risk with respect to distributions of outcomes



Background: Bayesian Inverse Reinforcement Learning
[Ramachandran and Amir 200/]

* Use MCMC to sample from posterior:

P(R|D) x P(D|R)P(R)

* Assume demonstrations follow softmax policy with temperature c:
ecQ* (s,a,R)

P(D|R) = o
<s,£[ea D e a €970



Background: (-value at risk

0.95VaR

Worst 5% outcomes ' Best 95% outcomes
-—

+ Single-sided confidence bound

-$500

“With high confidence, you won't lose more than $500 more than
95% of the time when using this investing strategy”



Data efficient, intractable VAIL



Data efficient, intractable VAIL

/ Bayesian IRL \

*
Rvap TMAP

<
Expert | . R - Tp
Demos = i ‘
/ € |/
AN,
\ Ruar R /




Data efficient, intractable VAIL

/ Bayesian IRL \

ok / Calculate policy losses \
N Rvar = "MAP .
* T *
Expert . R = 7Tp :> I TMAP
Demos :> = i ‘ VR — VR
/ c | ‘ ;
LR - /
\ Rmvap R; /




Data efficient, intractable VAIL

Expert
Demos

Bayesian IRL \

*
Rvap TMAP

R - iqi;%i

-

\_

Calculate policy losses

WEi 7T1>\k4AP
VR,L- o VR-

~

/

e

Plus a single-sided

-

Calculate Value at Risk

Policy loss

N

confidence bound

s

/




Data efficient, intractable VAIL

-~

Expert :>
Demos

Bayesian IRL \

*
Rvap — TMAP
1 R - WE%

-

Rmap R; /

23
S 3

D.S. Brown, Y. Cui, and S. Niekum.

Risk-Aware Active Reinforcement I.earning.
Conference on Robot Learning (CoRL), October 2018.

Info-theoretic or

risk-based criteria E <—
Y 4

Y. Cui and S. Niekum.
Active Reward Learning from Critiques.

\_

Calculate policy losses

WEi 7T1>\k4AP
‘Q% __LQ%

~

/

e

-

\_

Calculate Value at Risk

A

Policy loss

N

s

/

International Conference on Robotics and Automation (ICRA), May 2018.

Plus a single-sided
confidence bound



http://www.cs.utexas.edu/users/sniekum/pubs/CuiICRA2018.pdf
http://www.cs.utexas.edu/users/sniekum/pubs/CuiICRA2018.pdf

Results: efficiency (no active learning)

Number of demonstrations Average Accuracy
1 5 9 ... 23,146
0.95-VaR EVD Bound (0937202532 0.1328 : 0.98
0.99-VaR EVD Bound 1428 0.2937 0.1535 1.0
EVD Bound (Syed and Schapire 2008) 142.59 63.77  47.53 1.0

Table 1: Comparison of 95% confidence «-VaR bounds with a 95% confidence Hoetfding-style bound (Syed and Schapire
2008). Both bounds use the Projection algorithm (Abbeel and Ng 2004) to obtain the evaluation policy. Results are averaged
over 200 random navigation tasks.

Four orders of magnitude more data efficient!

... but computationally intractable

D.S. Brown and S. Niekum.
Efficient Probabilistic Performance Bounds for Inverse Reinforcement Learning.
AAAI Conference on Artificial Intelligence, February 2018.


https://arxiv.org/abs/1707.00724

Risk-sensitive preferences

@ & Driving Task Simulation

Demonstration: avoids cars, no lane pref

© ® Driving Task Simulation @ & Driving Task Simulation -~

Driving Task Simulation

.

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions

2



Risk-sensitive preferences (feature count-based)

@ & Driving Task Simulation

Demonstration: avoids cars, no lane pref

(x f— Driving Task Simulation (x M — DriVing Task Simulation - Drlving Task Simulation

2 .

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions



Risk-sensitive preferences (our approach)

@ & Driving Task Simulation

Demonstration: avoids cars, no lane pref

(x f— Driving Task Simulation (x M — DriVing Task Simulation - Drlving Task Simulation

2 .

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions



Data efficient, intractable VAIL
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Rvap — TMAP
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D.S. Brown, Y. Cui, and S. Niekum.

Risk-Aware Active Reinforcement I.earning.
Conference on Robot Learning (CoRL), October 2018.

Info-theoretic or

risk-based criteria E <—
Y 4

Y. Cui and S. Niekum.
Active Reward Learning from Critiques.
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Calculate policy losses

WEi 7T1>\k4AP
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Calculate Value at Risk

A

Policy loss

N

s

/

International Conference on Robotics and Automation (ICRA), May 2018.

Plus a single-sided
confidence bound



http://www.cs.utexas.edu/users/sniekum/pubs/CuiICRA2018.pdf
http://www.cs.utexas.edu/users/sniekum/pubs/CuiICRA2018.pdf

4 ~_
Y. Cui and S. Niekum. S
Active Reward Learning from Critiques.

IEEE International Conference on Robotics and
Automation (ICRA), May 2018.

\_

_________


http://www.cs.utexas.edu/users/sniekum/pubs/CuiICRA2018.pdf
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Y. Cui and S. Niekum. S
Active Reward Learning from Critiques.

IEEE International Conference on Robotics and
Automation (ICRA), May 2018.
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http://www.cs.utexas.edu/users/sniekum/pubs/CuiICRA2018.pdf
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Y. Cui and S. Niekum.
Active Reward Learning from Critiques. A -
IEEE International Conference on Robotics and >
Automation (ICRA), May 2018. 5
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Reward Functions


http://www.cs.utexas.edu/users/sniekum/pubs/CuiICRA2018.pdf

Information Gain Estimation from Reward Function Distribution

1 oy 1 e e e e e e
Pr(a g_f O(S ) | R) =1- ZBQQ( 1) i PT((I c O(S ) | R) _ ZleaQ( R)
- - Update an action T
e Set of optimal actions at a state: to be bad Updatcte ag actloz
o be goo
O(s) = argmax Q" (s, a)
acA

e Distance Measure:

Dkr(P||Q) = ZP 108;

e EXxpected Information Gain:

G*(si,a;) = G(DT U (si,a) | Be(R)) =§rPr(ai c 0(s;) | Be(R):D(Be
G (si,a;) = G(D™ U (si,a:) | Be(R)) =iPr(ai ¢ O(si) | Be(R))D(Be'(R)|| Be(R))




Problems with standard inverse reinforcement learning

Policy learning in inner loop Cannot outperform demonstrator

M

Argh!

Policy learning




T-REX: Trajectory-ranked Reward Extrapolation

Optimal pert.

exp 3 fo(s)

L A A SET;

< P(Jg(’?'.i) < J@(Tu)) s !

g ! exp Z Fo(s) 4+ exp Z ro(s)
@ SCT; SET;

A .

5 i ) A i
& TRankedTrajS- L(0) =E; .~ §(P(J9(Ti) < JQ(Tj)),Ti < 73)

T1 < Tg <+ < T

True Performance

» Fully supervised — no policy learning
* Works on high-dim (e.g. Atari) with ~10 demos

D. Brown,W. Goo, and S. Niekum.

° AUtO—geﬂerated I”aﬂklﬂgS: Ranking-Based Reward Extrapolation without Rankings
Conference on Robot Learning (CoRL), October 2019.

D.S. Brown,W. Goo, P. Nagarajan, and S. Niekum.
Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations.
International Conference on Machine Learning (ICML), June 2019.



Bayesian REX

Features

S

Ranked demo
feature counts

W

*@4*@4;94@4'-@4

welghts
MCMC l
step

l

T1
;2 I T-REX +
3 .
T4 Self-supervised
TN

losses
Ranked demos

Feature pre-training

D.S. Brown, R. Coleman, R. Srinivasan, and S. Niekum.
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences.
International Conference on Machine Learning (ICML), July 2020.



Bayesian REX: Results

Predicted Ground Truth Avg.
Policy Mean 0.05-VaR  Score Length
A 17.1 7.9 480.6 1372.6

B 22.7 11.9 703.4  1,412.8
C 45.5 24.9 1828.5  2,389.9
D 57.6 31.5 2586.7  2,965.0
£ No-Op | 102.5 -1557.1 0.0  99,994.0

Sl rhhirsiom

Not restricted to policy evaluation!

Beamrider |
Can also learn policy to balance

expected return and CVaR:

D.S. Brown, S. Niekum, and M. Petrik.
Bayesian Robust Optimization for Imitation Learning.
Neural Information Processing Systems, December 2020.



Efficient value alignment verification: A driver’s test for Al

* What It we want to verify a robot's value alignment with
us post-learning!

* We don't want to require policy rollouts, due to both
safety and efficiency concerns.

* Can we design a driver’s test — a small set of (various
types of) questions to ask an agent that verify alisnment!

D.S. Brown, J. Schneider, A. Dragan, and S. Niekum.

Value Alignment Verification.
International Conference on Machine Learning, July 2021.



Definition: Epsilon value alighment

Definition 1. Given reward function R, policy 7’ is e-value
aligned in environment I if and only if

Via(s) — VI_?{/(S) <eVseS. (1)

65



Value alignment verification

How to efficiently test whether a robot is value aligned with a human’s intent?

Human Test Generator Alignment Test Verification Agents to be verified
Tester

Reward Fn.
or
Preferences

-—>

66



Assumptions

Non-Restrictive

/ %
e Rational Robot m'(s) € arg max Qr (s,a)
e Reward function is linear combination of features R(S) — ngb(S)
Restrictive

e Human and robot share same features R(S) — W ¢(5)



Reward function halfspaces

w ((I)(Tl) — (I)(TQ)) > ()

Fuel
Efficiency

7‘2 : ~ Close to speed

limit
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Test Generation

Fuel
Efficiency

~ Close to speed

Passing rewards

limit
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Test Generation

Fuel
Efficiency

PasSsIing rewares

limit

~ Close to speed

70



Test Generation Fuel
Efficiency

~ Close to speed
limit

PeISSINE) MEWERIFEIS
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Test Generation

Fuel
Efficiency

Redundant

~ Close to speed

PeISSINE) MEWERIFEIS

limit
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Test Generation

Fuel
Efficiency

Allgnec Reweare SEt

ARS(R) = {R’| o}T(R') C OPT(R)).

limit

~ Close to speed

73



Alignment test conditions

e If the human can write down their reward function, an exact alignment test

can be performed in the following query-access settings:

o Reward function weights WRobot

o Reward samples RRobot (8)

©  Value samples VRobot (8): @Rrobot (85 @)
o Trajectory Preferences £ < &

e Otherwise, must perform preference elicitation to construct test



