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Logistics

• Registering for the course
• If you missed Tuesday . . .
− Watch intro lecture video
− Read webpage carefully

• Email both instructors and TAs
• Nice responses!
− Length and content mostly good
− Be clear and specific
− Short and focussed is fine
− Help us help you
− Also ask in class or on discussion board
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More Logistics

• Next readings:

– 2nd edition!!
– MDPs and Dynamic Programming
– Budget a good amount of time!
– Mostly chapter 3 Tuesday, then chapter 4
– Single written response to cover both.

• Do the first exercises and programming assignment

• Look at resources page
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Our Role

• Our role isn’t to teach RL

• It’s to help you learn RL

− provide context
− guide your learning (assign readings, exercises, activities)
− clarify misconceptions

• You have to do the learning

• Read, write, ask, answer, program (investigate)
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Let’s Play!

• I’m a 2-armed bandit
• As a class, you choose which arm
• Maximize your payoff.
• The answer:

(defun l () (+ 5 (random 7))) expectation: 8

(defun r ()
(let ((x (random 4)))

(case x
(0 20) (1 0) (2 0)
(3 (+ 7 (random 11)))))) expectation: 8.5

• What about minimizing risk?
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N-armed bandit in practice?

• Choosing mechanics

• Choosing a barber/hairdresser

stationary or non-stationary?



Common Questions

• How to initialize hyperparameters?

• Theoretical guarantees about exploration vs exploitation



Common Questions

• How to initialize hyperparameters?

• Theoretical guarantees about exploration vs exploitation

• Do dynamic epsilon value strategies exist in the field of RL?
Are they effective?



Common Questions

• How to initialize hyperparameters?

• Theoretical guarantees about exploration vs exploitation

• Do dynamic epsilon value strategies exist in the field of RL?
Are they effective?

• How do we determine the convergence of RL algorithms?

• How to deal with local minima in RL algorithms?



Common Questions

• How to initialize hyperparameters?

• Theoretical guarantees about exploration vs exploitation

• Do dynamic epsilon value strategies exist in the field of RL?
Are they effective?

• How do we determine the convergence of RL algorithms?

• How to deal with local minima in RL algorithms?

• How do gradient bandit approaches work?
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Shivaram’s Slides

• Steven Callahan: Why are they called "bandit" algorithms?

• Nikos Mouzakis: What changes if we dont have infinite
attempts at the bandits, but a limited amount. How
should we weight exploration vs exploitation then?

• Natasha Frumkin: Why do we even care about theoretical
bounds if they don’t hold in practice?
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RL Questions

• Neha Akode: How differentiate between an optimization
and a reinforcement learning problem?

• Yigit Ege Bayiz: Bandit problems often use regret as a
performance measure, is there a way to extend the notion
of regret to RL problems as well?

• Sharachchandra Bhat: If two RL agents are trained
against each other would both the policies learnt be the
minimax solution?



Non-stationary problems

• Sravan Ankireddy: How do we expect the estimated
reward to converge when the true reward is non-
stationary?



Non-stationary problems

• Sravan Ankireddy: How do we expect the estimated
reward to converge when the true reward is non-
stationary?

• Hasan Burhan Beytur: Why is the step-size is kept constant?



Incremental implementation

• Nathaniel Sauerberg: In section 2.4, I was confused by the
claim that the incremental implementation for tracking
the sample-mean of an arm requires only constant
memory. Doesn’t it need to keep track of how many
times the arm has been pulled (n), which should take
log(# times steps) space? The claim only makes sense if
this number of times steps is constant, in which case the
super naive method is also constant space.



Bandit vs. RL

• Alec Mehra: One good example of the K-armed bandit
problem might be driving from your home to work. Here
the situation is the same but the driver may have many
possible routes to get to work. Of course every time
they drive to work the traffic may be slightly different
leading to varying actual driving times. The driver should
explore for alternative routes but also exploit those routes
to find the true average time. We could also apply upper
confidence bound selection because we can estimate
the total distance of a path and speed limits that would
constrain the minimum time required. This may show us
that certain paths are highly non optimal and should not
be chosen



Gradient Bandits
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Assignments

• Monitor and contribute to discussion forums!

• 1st exercises and programming assignment

• Read Chapters 3 and 4

• Submit a reading response by 5pm Monday
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