Good Morning Colleagues

- Are there any questions?
Logistics

- Start thinking about final project
Logistics

- Start thinking about final project
- Next week’s readings
Logistics

- Start thinking about final project
- Next week’s readings
 - Eligibility traces: blending different n-step returns
 - Some sections can be skimmed
Logistics

- Start thinking about final project

- Next week’s readings
 - Eligibility traces: blending different n-step returns
 - Some sections can be skimmed
Chapter 10

- On-policy control with approximation
Chapter 10

- On-policy control with approximation
- Policy improvement with complex state (and action) spaces
Chapter 10

- On-policy control with approximation
- Policy improvement with complex state (and action) spaces
 - Semi-gradient Control (SARSA)
 - Average reward RL
Chapter 10

• On-policy control with approximation

• Policy improvement with complex state (and action) spaces
 – Semi-gradient Control (SARSA)
 – Average reward RL

• Later: policy gradient methods
Mountain Car

- 3D MC slides
Common Questions

- Why not use average reward RL in the first place?
Common Questions

- Why not use average reward RL in the first place?
- Is ergodicity a common assumption in RL?
Common Questions

• Why not use average reward RL in the first place?
• Is ergodicity a common assumption in RL?
• Why does the policy improvement theorem fail with function approximation?
Common Questions

• Why not use average reward RL in the first place?

• Is ergodicity a common assumption in RL?

• Why does the policy improvement theorem fail with function approximation?
 – Proof on p.78 relies on q and v being exact (correct)
Chima Ezeilo: Can the assumption of ergodicity be used in the episodic case or is it strictly for the continuous case?
Other Interesting Questions

- Chima Ezeilo: Can the assumption of ergodicity be used in the episodic case or is it strictly for the continuous case?

- Jiaxun Cui: Can we get at least asymptotic improvement for the on-policy control under function approximation?
Other Interesting Questions

- Chima Ezeilo: Can the assumption of ergodicity be used in the episodic case or is it strictly for the continuous case?

- Jiaxun Cui: Can we get at least asymptotic improvement for the on-policy control under function approximation?

- Garrett Gu: Does it really matter that we cannot guarantee convergence in corner cases if the algorithm still converges in most real-world use cases?