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Previously

Chapter 9 On-policy Prediction with Approximation 

Focus on value estimation with various function approximation methods



Semi-gradient Control

Gradient-descent update for action-value prediction



Semi-gradient Control

Gradient-descent update for action-value prediction

One-step Sarsa:



N-step semi-gradient Sarsa

N-step return in function approximation form:



N-step semi-gradient Sarsa

N-step return in function approximation form:

N-step update equation:



N-step semi-gradient Sarsa

N-step return in function approximation form:

N-step update equation:
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Average Reward

For the continuing problem setting (alternative to episodic and discounted 
settings)



Average Reward

For the continuing problem setting (alternative to episodic and discounted 
settings)

Steady state assumption:



Reading Responses

[Linus Zhang]
“In the average-reward setting, returns are defined in terms of differences between 
rewards and the average reward” - isn’t it strange to have the return depend on 
the current policy? Doesn’t this mean that a state’s new value is somehow 
dependent on how the algorithm has gotten to its current value? Perhaps I am 
understanding this wrong. The book also talks a lot about “ordering”; does this 
describe a generalization of the meaning of the value function to represent 
something specific to a run of the algorithm, instead of an objective value that can 
be compared across various runs and algorithms?



Reading Responses

[Linus Zhang]
“In the average-reward setting, returns are defined in terms of differences between 
rewards and the average reward” - isn’t it strange to have the return depend on 
the current policy? Doesn’t this mean that a state’s new value is somehow 
dependent on how the algorithm has gotten to its current value? Perhaps I am 
understanding this wrong. The book also talks a lot about “ordering”; does this 
describe a generalization of the meaning of the value function to represent 
something specific to a run of the algorithm, instead of an objective value that can 
be compared across various runs and algorithms?
Return always depends on a policy!
The ordering refers to the ordering of what policy is better than another according 
to the expected return.



Differential Return

In the average-reward setting, returns are defined in terms of differences between 
rewards and the average reward: 

Differential form of  TD errors:
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Reading Responses

[Abhi Sridhar]
Chapter 10 introduces the concept of average reward as a new problem setting for 
continuing tasks. How does this setting differ from the episodic and discounted 
settings, and why is it relevant for function approximation?

[Garvit Mohata]
Can't we use differential returns in the earlier part where we were not using 
function approximation? Would we still run the risk of getting not defined values 
(+inf, -inf)? Then if that is true, what makes the function approximation case not 
have such undefined values? Does this have to do with the sequence in differential 
return that is being generated?



Reading Responses
[Abhi Sridhar]
Chapter 10 introduces the concept of average reward as a new problem setting for 
continuing tasks. How does this setting differ from the episodic and discounted 
settings, and why is it relevant for function approximation?
We find that discount factor does not affect the ordering of policies in the 
continuous state setting which requires function approximation.

[Garvit Mohata]
Can't we use differential returns in the earlier part where we were not using 
function approximation? Would we still run the risk of getting not defined values 
(+inf, -inf)? Then if that is true, what makes the function approximation case not 
have such undefined values? Does this have to do with the sequence in differential 
return that is being generated?
We can! Not defined values not an issue with average returns. 



Reading Responses

[Krystal An]
Why is it necessary to transition from a discounting formulation to an average-
reward formulation in the context of function approximation for continuing tasks?

[Emin Arslan]
I don't understand what is different between the tabular and function 
approximation methods that makes discounting unnecessary in the latter case and 
not so in the former. I understand the symmetry argument and how the discount 
rate would have no effect on the ordering of policies, but I don't fully understand 
why this only applies to the approximation methods.



Reading Responses

We find that discounting and average reward formulations are the same in 
continuing tasks with continuous state spaces. Average reward means we don’t have 
to consider discount factor anymore.
Also see Discounted Reinforcement Learning is Not an Optimization Problem by 
Naik, Shariff, Yasui, and Sutton on resources page.



Problems with discounting in continuous settings

Discounting is equivalent to average reward

Discounting algorithms with function approximation do not optimize discounted value 
over the on-policy distribution, and thus are not guaranteed to optimize average reward. 

With function approximation we have lost the policy improvement theorem!



Reading Responses

[Linus Zhang]
“Once we introduce function approximation we can no longer guarantee 
improvement for any setting.” - this means that we cannot prove theoretical bounds 
for any of the algorithms involving function approximation? Are there special classes 
of MDPs or certain function approximators that we can prove bounds for? 

[Ahmet Aydin]
In Section 10.4, it is mentioned that the policy improvement theorem is lost with 
function approximation. Could you elaborate on this further? Is this due to the 
approximation and working in a smaller space?



Reading Responses

[Linus Zhang]
“Once we introduce function approximation we can no longer guarantee 
improvement for any setting.” - this means that we cannot prove theoretical bounds 
for any of the algorithms involving function approximation? Are there special classes 
of MDPs or certain function approximators that we can prove bounds for? 
We will talk about policy gradient methods and the policy gradient theorem in 
Chapter 13.

[Ahmet Aydin]
In Section 10.4, it is mentioned that the policy improvement theorem is lost with 
function approximation. Could you elaborate on this further? Is this due to the 
approximation and working in a smaller space?
With function approximation, value predictions for other states get affected when 
we update the value for a target state, so we lose the policy improvement theorem.



n-step Differential Semi-gradient Sarsa

Differential form of n-step return with function approximation:

N-step TD error:
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Reading Responses

[Gizem Toplu-Tutay]
How does the concept of ergodicity ensure the existence of the limits in the 
equations defining the average reward setting, and why is it important in the study 
of dynamic programming and reinforcement learning?

[Shikhar Gupta]
Is ergodicity less strict than the Markov condition we introduced in previous 
chapters? How is is the same or different, and why do we not use the same 
conditions for both?



Reading Responses
[Gizem Toplu-Tutay]
How does the concept of ergodicity ensure the existence of the limits in the 
equations defining the average reward setting, and why is it important in the study 
of dynamic programming and reinforcement learning?
Ergodicity ensures there is a steady state distribution that does not depend on 
initial state. Makes average reward easier to compute.

[Shikhar Gupta]
Is ergodicity less strict than the Markov condition we introduced in previous 
chapters? How is is the same or different, and why do we not use the same 
conditions for both?
Different assumptions. Can have ergodicity without Markov assumption, and vice 
versa.



Next lecture: 
Chapter 11 (through 11.4): Off-policy Methods with Approximation 
Reading assignments due 2PM Monday

Office hours:
Mon: Michael 1-2PM GDC Basement TA Station #5
Tues: Caroline 11:15-12:15PM 
Wed: Amy 2-3PM EER 6.878
Thurs: Haoran 11-12PM; Siddhant 5-6PM
Fri: Shuozhe 4-5PM

Final Logistics



Final project proposal due at 11:59pm on Thursday, 3/7

Complete Homework for Chapters 10+11 on edx by Friday 11:59 PM CST

Programming Assignment 3 is Ch 9 + 10 and due in 2 weeks

Complete Programming Assignment 2 on edx by Sunday at 11:59 PM CST

Final Logistics


