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Previously

Chapter 9 On-policy Prediction with Approximation

Focus on value estimation with various function approximation methods



Semi-gradient Control

Gradient-descent update for action-value prediction

Wit1 = Wi + [Ut — C_?(St, At, Wt)] V@(St, Ay, Wt)



Semi-gradient Control

Gradient-descent update for action-value prediction

Wit1 = Wi + [Ut — Q(St, At, Wt)] V@(Sta Ay, Wt)

One-step Sarsa:

Wiit = Wo+ | Ript +78(Ses1, Avgr, we) — 4(Se, A, we)| V(St, Ar wi)



N-step semi-gradient Sarsa

N-step return in function approximation form:



N-step semi-gradient Sarsa

N-step return in function approximation form:

Gtt+n = Riy1 + YRy + -+ + ’)’n_lRt+n + " G(St4n, At4n, Witn—1)

N-step update equation:



N-step semi-gradient Sarsa

N-step return in function approximation form:

Gtt+n = Riy1 + YRy + -+ + ’Yn_lRt+n + " G(St4n, At4n, Witn—1)

N-step update equation:

Witn = Wipn_1 + Q& [Gt:t+n - @(St, Ay, Wt+n—1)] V@(St, Ay, Wt+n—1)
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Average Reward

For the continuing problem setting (alternative to episodic and discounted
settings)

h
o1
r(m) = hli)rr;o > ;E[Rt | Ag.t—1 ~ 7]

= lim E[Rt | A();t_]_ ~ 7'('],

t—o0

=3 1als) Y m(als) Y p(s', 7|5, a)r



Average Reward

For the continuing problem setting (alternative to episodic and discounted
settings)
1 h
7'(71') = hli)l’l'olo E ;E[Rt | AO:t—l ~ 7'(']

= lim E[Rt | AO:t—l ~ 7'('],

t—o0

= ()Y w(als) S p(s' rls, a)r

Steady state assumption: Z pr(8) Z m(als)p(s'|s,a) = px(s").



Reading Responses

[Linus Zhang]
“In the average-reward setting, returns are defined in terms of differences between

rewards and the average reward’ - isn't it strange to have the return depend on
the current policy! Doesn't this mean that a state's new value is somehow
dependent on how the algorithm has gotten to its current value? Perhaps | am
understanding this wrong. The book also talks a lot about “ordering™; does this
describe a generalization of the meaning of the value function to represent
something specific to a run of the algorithm, instead of an objective value that can
be compared across various runs and algorithms?



Reading Responses

[Linus Zhang]
“In the average-reward setting, returns are defined in terms of differences between

rewards and the average reward” - isn't it strange to have the return depend on
the current policy! Doesn't this mean that a state’s new value is somehow
dependent on how the algorithm has gotten to its current value? Perhaps | am
understanding this wrong. The book also talks a lot about “ordering™; does this
describe a generalization of the meaning of the value function to represent
something specific to a run of the algorithm, instead of an objective value that can
be compared across various runs and algorithms?

Return always depends on a policy!

The ordering refers to the ordering of what policy is better than another according
to the expected return.



Differential Return

In the average-reward setting, returns are defined in terms of differences between
rewards and the average reward:

Gt = Rt+1 —7’(71') + Rt+2—7'(7T) —+ Rt+3—’l°(7T) + ...
Differential form of TD errors:
0 = Ryy1—Ri +9(Sis1,we) — 9(S;,wy),

0 = Ryp1—Ry + G(Sea1, A1, W) — G(St, A, Wi)
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Reading Responses

[Abhi Sridhar]

Chapter 10 introduces the concept of average reward as a new problem setting for
continuing tasks. How does this setting differ from the episodic and discounted
settings, and why is It relevant for function approximation?

[Garvit Mohata]

Can't we use differential returns in the earlier part where we were not using
function approximation? VWould we still run the risk of getting not defined values
(+inf, -inf)! Then if that is true, what makes the function approximation case not
have such undefined values! Does this have to do with the sequence in differential
return that is being generated?



Reading Responses

[Abhi Sridhar]

Chapter |0 introduces the concept of average reward as a new problem setting for
continuing tasks. How does this setting differ from the episodic and discounted
settings, and why is It relevant for function approximation?

We find that discount factor does not affect the ordering of policies in the
continuous state setting which requires function approximation.

[Garvit Mohata]

Can't we use differential returns in the earlier part where we were not using
function approximation? VWould we still run the risk of getting not defined values
(+inf, -inf)! Then if that is true, what makes the function approximation case not
have such undefined values! Does this have to do with the sequence in differential
return that is being generated?

We can! Not defined values not an issue with average returns.



Reading Responses

[Krystal An]
Why Is it necessary to transition from a discounting formulation to an average-
reward formulation in the context of function approximation for continuing tasks?

[Emin Arslan]

| don't understand what is different between the tabular and function
approximation methods that makes discounting unnecessary in the latter case and
not so In the former. | understand the symmetry argument and how the discount
rate would have no effect on the ordering of policies, but | don't fully understand
why this only applies to the approximation methods.



Reading Responses

We find that discounting and average reward formulations are the same in
continuing tasks with continuous state spaces. Average reward means we don't have
to consider discount factor anymore.

Also see Discounted Reinforcement Learning is Not an Optimization Problem by
Naik, Shariff, Yasui, and Sutton on resources page.




Problems with discounting in continuous settings

Discounting Is equivalent to average reward

Discounting algorithms with function approximation do not optimize discounted value
over the on-policy distribution, and thus are not guaranteed to optimize average reward.

With function approximation we have lost the policy improvement theorem!



Reading Responses

[Linus Zhang]

"Once we introduce function approximation we can no longer guarantee
improvement for any setting.” - this means that we cannot prove theoretical bounds
for any of the algorithms involving function approximation? Are there special classes
of MDPs or certain function approximators that we can prove bounds for?

[Ahmet Aydin]

In Section 104, it Is mentioned that the policy improvement theorem is lost with
function approximation. Could you elaborate on this further? Is this due to the
approximation and working in a smaller space!



Reading Responses

[Linus Zhang]

“Once we introduce function approximation we can no longer guarantee
improvement for any setting.” - this means that we cannot prove theoretical bounds
for any of the algorithms involving function approximation? Are there special classes
of MDPs or certain function approximators that we can prove bounds for?

We will talk about policy gradient methods and the policy gradient theorem In
Chapter | 3.

[Ahmet Aydin]

In Section 104, it Is mentioned that the policy improvement theorem is lost with
function approximation. Could you elaborate on this further? Is this due to the
approximation and working in a smaller space!

With function approximation, value predictions for other states get affected when
we update the value for a target state, so we lose the policy improvement theorem.



n-step Differential Semi-gradient Sarsa

Differential form of n-step return with function approximation:

Gt:t+n = Rt+1 _Rt+n—1 s bbbl o Rt+n_Rt+n—1 + Q(St+n, At+na Wt+n—1)’

N-step TD error:

5t = Gt:t+n - Q(St) AtaW)
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Reading Responses

[Gizem Toplu-Tutay]

How does the concept of ergodicity ensure the existence of the limits in the
equations defining the average reward setting, and why is it important in the study
of dynamic programming and reinforcement learning?

[Shikhar Gupta]

s ergodicity less strict than the Markov condition we introduced in previous
chapters? How s is the same or different, and why do we not use the same
conditions for both?



Reading Responses

[Gizem Toplu-Tutay]

How does the concept of ergodicity ensure the existence of the limits in the
equations defining the average reward setting, and why is it important in the study
of dynamic programming and reinforcement learning?

Ergodicity ensures there Is a steady state distribution that does not depend on
initial state. Makes average reward easier to compute.

[Shikhar Gupta]

s ergodicity less strict than the Markov condition we introduced in previous
chapters? How s is the same or different, and why do we not use the same
conditions for both?

Different assumptions. Can have ergodicity without Markov assumption, and vice
versa.



Final Logistics

Next lecture:
Chapter |'| (through | |.4): Off-policy Methods with Approximation

Reading assignments due 2PM Monday

Office hours:

Mon: Michael |-2PM GDC Basement TA Station #5
Tues: Caroline | |:15-12:15PM

Wed: Amy 2-3PM EER 6.878

Thurs: Haoran | |-12PM; Siddhant 5-6PM

Fri: Shuozhe 4-5PM



Final Logistics

Final project proposal due at 1 1:59pm on Thursday, 3/7
Complete Homework for Chapters 10+ | on edx by Friday 11:59 PM CST
Programming Assighment 3 is Ch 9 + 10 and due in 2 weeks

Complete Programming Assignment 2 on edx by Sunday at 11:59 PM CST



