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Previously

Chapter 9 Policy Evaluation with Function Approximation
Chapter 10 On-policy Control with Approximation
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Off-policy semi-gradient methods

Recap from Chapter /, perstep importance sampling ratio:

W(At ISt)
b(AtlSt)

Pt = Pt =

Semi-gradient Expected Sarsa (for action values):

No importance sampling!
W1 = Wi +ad, V(S Ay, wy), with

8¢ = Rysq +727f(a|5t+1)(§(5t+1,a, w¢) — G(S;, Ag, wy), or Episodic and discounted

8 = Rep1 — R+ ) m(a|Si41)§(Se1,a, wi) — (S, A, we).  Continuing and
undiscounted



N-step Off-policy semi-gradient methods

Recap from Chapter /, perstep importance sampling ratio:

p = Pt = ﬂ-—(AtISt)
YA

N-step semi-gradient Expected Sarsa (for action values):  Importance sampling is back. ..
Wiin = Wein—1 +@pei1 - Pron—1 [Green — 4(St, A, Wepn—1)] VG(St, Ar, Wi 1)

with
Grin = Rest +++ 4" Rysn +7"0(Seams Avrms Wean1), oF Episodic and discounted

Grtin = Res1 — Re+ -+ Resn — Resn1 +G(Stsns Arins Wesn_1), Corﬁmumg and
undiscounted



Reading Responses

[Karen Chen]
If function approximation is significantly more difficult for off-policy learning,

what are cases where it's the most effective approach? Is the default to use
on-policy learning with approximation?



Reading Responses

[Karen Chen]

If function approximation is significantly more difficult for off-policy learning,
what are cases where it's the most effective approach? Is the default to use
on-policy learning with approximation?

Off-policy learning is still useful because we can re-use data that we can't
with on-policy methods.

Trade-off: is it cheaper to get on-policy samples or deal with the instability of
off-policy learning?



The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:
* Function approximation
» Bootstrapping

» Off-Policy training

Scott’s slide



Off-policy semigradient methods @—*@

Stability of semigradient methods depends on on-policy distribution of updates. Why?

Imagine only updating one state S over and over again (i.e. off-policy):
* In tabular case, updating one state’s value leaves all others changed

« With function approx + MC, multiple state values are updated, but
V(S) Is estimated independently of them via rewards only

« With function approx + TD (semigradient), multiple values are updated,
which are then used to help estimate V(S) via bootstrapping, which are
then updated again, which are then used to help estimates V(S)...

On-policy distribution forces state values to be “grounded” to something real

Scott’s slide



Examples of Off-policy Divergence
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Reading Responses

[ Troy Dutton]

'm confused why bootstrapping is part of the deadly triad. Why could a
problem converge with monte carlo, but not with some bootstrapping
method! Is it because the estimate Ut is dependent upon the weights? |
thought that just meant we could only guarantee convergence to a local
minima.



Reading Responses

[ Troy Dutton]

I'm confused why bootstrapping is part of the deadly triad. Why could a
problem converge with monte carlo, but not with some bootstrapping
method? Is it because the estimate Ut is dependent upon the weights! |
thought that just meant we could only guarantee convergence to a local
minima.

Monte Carlo means we're updating only with real rewards, not value
estimates, which bounds our error. With bootstrapping we get runaway
growth.



Baird’s Counterexample
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Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov process is of the
form shown by the linear expressions inside each state. The solid action usually results in the seventh state,

and the dashed action usually results in one of the other six states, each with equal probability. The reward is
always zero.
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Reading Responses

[Krystal An]

In the Fig.| |.]| How does the behavior policy b contribute to the divergence
in Baird's counterexample, and what does this imply about the importance
of policy choices in function approximation settings?



Reading Responses

[Krystal An]

In the Fig.| |.] How does the behavior policy b contribute to the divergence
in Baird's counterexample, and what does this imply about the importance
of policy choices in function approximation settings?

Divergence occurs because our target policy concentrates on the bottom
state while DP updates all states uniformly. These policies are not the same,
and hence DP gives an off-policy update. If we updated according to the
current policy, we would converge.



Example 11.1: Tsitsiklis and Van Roy’s Counterexample This example shows
that linear function approximation would not work with DP even if the least-squares
solution was found at each step. The counterexample is formed

by extending the w-to-2w example (from earlier in this section) 1 —¢
with a terminal state, as shown to the right. As before, the

estimated value of the first state is w, and the estimated value

of the second state is 2w. The reward is zero on all transitions, ( ) »
so the true values are zero at both states, which is exactly

representable with w = 0. If we set wi4+1 at each step so

Rl €
as to minimize the VE between the estimated value and the
expected one-step return, then we have
' A ) 2

W41 = argmin Z(v(s,w) — ]EW[Rt_H + Y0(Sp41,wk) | S, = s])

weR sc8

= argmin (w— '72wk)2 + (2w —(1- 6)72wk)2
weR
6 — 4e

The sequence {wy} diverges when v > ﬁ and wqg # 0. |



Reading Responses

[Saloni Modi]

s there a reason we have empirical evidence but no theoretical analysis for
why Q-learning doesn't diverge when the behavior policy Is sufficiently
close to the target policy (ex: when it's the epsilon-greedy policy) (referring
to page 263, section | [.2)?

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence guarantees
of all control methods. Considerable effort has gone into trying to find a remedy to
this problem or to obtain some weaker, but still workable, guarantee. For example, it
may be possible to guarantee convergence of Q-learning as long as the behavior policy is
sufficiently close to the target policy, for example, when it is the e-greedy policy. To the
best of our knowledge, Q-learning has never been found to diverge in this case, but there
has been no theoretical analysis. In the rest of this section we present several other ideas



Reading Responses

[Saloni Modi]
s there a reason we have empirical evidence but no theoretical analysis for

why Q-learning doesn't diverge when the behavior policy is sufficiently
close to the target policy (ex: when it's the epsilon-greedy policy) (referring
to page 263, section | [.2)!

Not necessarily!

Near Optimal Provable Uniform Convergence in On Convergence of Average-Reward Off-Policy Control Algorithms in
Off-Policy Evaluation for Reinforcement Learning Weakly Communicating MDPs

WAN6 @UALBERTA.CA

Ming Yin ¥, Yu Bai?, and Yu-Xiang Wang? Yi Wan
1 e . s University of Alberta
Department of Statistics and Applied Probability, UC Santa Barbara Richard S. Sutton RSUTTON@ UALBERTA.CA

2Salesforce Research o .
4 Ui y of Alberta, DeepMind
3Department of Computer Science, UC Santa Barbara niversity of Alberta, DeepMin
ming.yin@ucsb.edu yu.bai@salesforce.com yuxiangw@cs.ucsb.edu

Dr Jekyll and Mr Hyde:
The Strange Case of Off-Policy Policy Updates

Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality
Romain Laroche” Rémi Tachet des Combes*
Microsoft Research Montréal, Canada Microsoft Research Montréal, Canada

Tengyu Xu' Zhuoran Yang? Zhaoran Wang® Yingbin Liang'



The projection matrix

For a linear function approximator, the projection operation is linear, which implies that it can
be represented as an |§| x |§| matrix:

II=X(X'DX) X'D, (11.13)

where, as in Section 9.4, D denotes the |8| x |8| diagonal matrix with the u(s) on the diagonal,
and X denotes the |§| x d matrix whose rows are the feature vectors x(s)", one for each state
s. If the inverse in does not exist, then the pseudoinverse is substituted. Using these matrices,
the norm of a vector can be written

2 T
[v][}, = v Dw, (11.14)
and the approximate linear value function can be written

vw = XW. (11.15)




Od/\'\ajo V\«l Pfol\je ckionm

Pfo;lE(__’h'O\/\ '\'0 a UV\;S( veckor . ‘l)u : L,LL):r
5(): ?LLX - \LKLTX

Scott’s slide



O(\—(/\’\JJO V\«l Pfo’de ckionm

Pro;lech'ov\ o o onk vedo ‘RL = uu”
Soi PuX = U X

L\)\A\( 7

Wx = Ixll s 6

MWW X (s & vedovy of V‘“\‘)v\f‘\'d&l “X” s ©
in Ahe direchion of W

Scott’s slide



D(\J/\'\JJO V\«l PFOIJZCJ%(‘DV\

More éeweﬂ“L’ ;

i(— A=[:L)~( -'-Uk-lis an Of“L\onofW\q,
Dasis o€ Ale sobspaa O flew !

Pro'\lech’ov\ 4o a onk vedo Fu. z LLU:r ?A = AA\,
Set PuX = uuw X

L\)\'\\( !
wWx = Uxll s &

WX (s 6 vedov of eeguitile IIXI| @ ©
in the direchon o€ UC

Scott’s slide



Or\ﬁf\ajo V\u( Pfolhéc'lrfDV\

More éeme/&”l’ J

e A=[ul LLK] s an of*fL\MofW\s/
Dasis £ Ale su‘qsp«ca. U’ fley, !

Pro;‘ez:h'ov\ 4o o Onk vedo FLL T ?A = AA‘(
Set PuX = u X

Why 7
wWx = “Y\\ s O

WX (s & vedav of wmugntule x| @ ©
in the direchon & UC

L‘)\/\’”J( bW Wi ol Qr—\'\AQV\ofM«D
Pa = A(A:TA\)-\ A‘r

—

normalz:
»ch,JTW' ’\j

Scott’s slide



OP—(/\«JJO V\ul P(‘O,Jéc;%(‘DV\

’l)ro;lec_*h'cv\ —\—o a UV\LS( \I‘CckOf' . Pu; z L,Lu:r
Sot PuX = u X

Ld\/\\( 7
wWx = Ixll s &

WX (s & vedav of wmugnitule IIXI| @ ©
in the direchion o UC

Wk WU wob orfsnormeal?
Pe = A(ATAY AT

—_

NO M L
»GKLJ(W' ’\j

More 6engn«“7 J

e A=[ul ---U~L.l s an or#‘omrm-;,
Dasis £ Ale sobspaa U, fle, !

o= AAT

kj/\.;l— o\loou\’ othe -wmtr Pfocl\lc’rs?
Bz ACKDAY'ATD

V7

(",V) : \7D)<

Scott’s slide



D(\J/\'\ajo V\al PFO’JZC/’HDV\

More éeweﬂ“L’ ;

e A=[U( -—-ka-lis an or—(L\MorW\-;,
Dasis of Ale sobspaa O flew !

Pro'\‘ech'ov\ 4o a onk vedo Fu z L,Lu:r ‘DA = AA\,
Set PuX = uuw X

L\)\/\\[ !
wWx = Uxll s &

WU (s 6 vedov of eeguitile IXI| @ ©
in the direchon o€ UC

\-J\r\,\—‘( [5 S R VUR ¥ SPR A Qr_\.\,\omfw\\\')‘ ‘JAA’ G\W other 1nner ’tJroJ\/c—K_,F?
o AWKYRT o aesn| BC ACKDAY ATD
Sl DAL Ly = Yo

Scott’s slide



Linear Value-Function Geometry
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Linear Value-Function Geometry

Given two value functions, the vector difference:

= V1 — V2.
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Given two value functions, the vector difference:

= V1 — V2.

But not all states are considered equal! Taking into account on-policy
distribution:



Linear Value-Function Geometry

Given two value functions, the vector difference:

= V1 — V2.

But not all states are considered equal! Taking into account on-policy
distribution:

Mean Squared Value Error (from Ch 9.2):

VE(W) = [[ow — vl



Linear Value-Function Geometry

Given two value functions, the vector difference:
V = V1 — V2

But not all states are considered equal! Taking into account on-policy
distribution:

loll, = > u(s)v(s)?

SES

Mean Squared Value Error (from Ch 9.2): Solution found by

. 5 Monte Carlo! (Slow)
VE(w) = [|ow — vx



Linear Value-Function Geometry

TD methods:

ve(s) = Zw(a|s)2p(s’,r|s,a) [r + yv:(s)], for all s € 8.

a



Linear Value-Function Geometry

TD methods:

ve(s) = Zw(a|s)2p(s’,r|s,a) [r + yv:(s)], for all s € 8.

a

Bellman error:

SW(S) = (Z‘R’(als) Zp(S','rls,a) [r + 7”“'(3')]) — vw(s)

= IE[RH-I + YVw (St41) — vw(St) | Sy =8,A; ~ 71'] ;

Bellman error is expectation of TD error!



Linear Value-Function Geometry

1D methods:
ve(s) = Zw(a|s) Zp(s’,rls,a) [r + yv:(s)], for all s € 8.

Bellman error:

Sw(s) = (Zﬂ(als) Zp(s',rls,a) [r + 7UW(S,)]) - Uw(s)

= E[R¢+1 + '}'Uw(st+l) — vw(St) | St —_— SaAt ~ ﬂ'] y

Mean Squared Bellman Error:



Linear Value-Function Geometry

Intermediate value functions lie outside the subspace we can represent.

Mean Squared Projected Bellman error:

PBE(w) = [|Iéw||? -

./ —o.
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PBE =0
- 1B vy e
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Reading Responses

[Jiaheng Hu]

It is relatively well-known that DQN s not guaranteed to converge but Q-
learning is. Do we have any understanding about what kind of function
approximations can converge and what cannot? It sounds like there might be
some middle ground where the function approximation is more powerful
than the tabular case, but restricted such that convergence is still guaranteed?



Reading Responses

[Jiaheng Hu]

It is relatively well-known that DQN is not guaranteed to converge but Q-
learning is. Do we have any understanding about what kind of function
approximations can converge and what cannot? It sounds like there might be
some middle ground where the function approximation is more powerful
than the tabular case, but restricted such that convergence is still guaranteed?
Showed that linear cannot. More powerful function approximation seems like
it would help, but we don't know how to think about the “geometry”
anymore.



Reading Responses

[Jeffrey Lali]
What are some partial modern solutions to avoid the deadly triad? It seems

like function approximation and bootstrapping are essential to practical
problems but are there ways to independently address either of these to
alleviate their negative interaction?



Reading Responses

[Jeffrey Lal]

What are some partial modern solutions to avoid the deadly triad? It seems

like function approximation and bootstrapping are essential to practical

problems but are there ways to independently address either of these to

alleviate their negative interaction?

Prevent extrapolation outside data support:

| regularization to keep policy close to behavior policy (mitigating off-
policy)

2. suppress out-of-distribution value estimates (mitigating bootstrapping)

3. Powerful function approximation (to keep BE and PBE close)



Reading Responses

[Jasper Lee]
Section | .4 mentions several different types of errors that different

algorithms try to minimize. Can anything be said about which types of errors
are better to minimize in practice for which types of RL problems? Or s
everything still in the air?



Reading Responses

[Jasper Lee]
Section | |.4 mentions several different types of errors that different

algorithms try to minimize. Can anything be said about which types of errors
are better to minimize in practice for which types of RL problems? Or s
everything still in the air?

What error we're minimizing is dictated by what method we're using.
Typically it's TD error because Monte Carlo is too slow.



Final Logistics

Next week:
Chapter |2: Eligibility Traces
Reading assignments due 2PM Monday

Office hours:

Mon: Michael |-2PM GDC Basement TA Station #5
Tues: Caroline | |:15-12:15PM

Wed: Amy 2-3PM EER 6.878

Thurs: Haoran | |-12PM; Siddhant 5-6PM

Fri: Shuozhe 4-5PM



Final Logistics
Final project proposal due at 1 1:59pm on Thursday, 3/7
Complete Homework for Chapters 10+ | on edx by Friday 11:59 PM CST

Complete Programming Assisnment for Chapters 4,5,6,7 on edx by Sunday at
11:59 PM CST



