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Policy Gradient Methods

Why do we want to parameterize a policy directly?

• Continuous actions
• Policy simpler than value function 
• Scales with policy complexity, not size of state space
• More robust to poor features (not trying to get exact values right, just 

ordering of actions -- allocates its power to optimize performance 
directly, not value representation)

• Allows for stochastic policies: great for function approximation and 
partial observability (e.g. bluffing in poker or not knowing which way is 
exit).



Reading Responses

Neil Roy
Section 13.1 mentions that one advantage of soft-max in action preferences 
is that it can approach a deterministic policy, which epsilon greedy action 
selection or soft-max distribution based action-values cannot do. I am a little 
confused on why action preferences are able to do this while action values 
are not. It mentions that action preferences do not approach specific values, 
they are instead driven to produce the optimal stochastic policy. I guess I was 
a little confused on how the action preferences are driven towards the 
optimal policy.

Cody Rushing
- Example 13.1 highlights how soft-max action preferences are better 
because "it can learn a specific probability with which to select right." Could 
we still approximate this with e-greedy policies by fine-tuning the 
hyperparameter for e to maximize performance?



Policy as softmax over preferences

No constraint over what h can be. If h goes to infinity for (s, a), policy 
becomes deterministic.

If values don’t go to infinity, softmax over values can’t lead to deterministic 
policies.

Eps-greedy always takes a random action with eps probability. You could 
anneal eps, but becomes another design choice.
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Policy Gradient Methods

Downsides to policy gradient methods?

•   higher variance without value function to bootstrap
•   gradient methods usually locally optimal (except special cases)



Policy Gradient Methods

Consider methods that learn a parameterized policy that can select actions 
without consulting a value function. 

Want to perform gradient ascent to maximize a scalar performance measure 
J:



Policy Gradient Theorem

Intuition: With continuous policy parameterization the action probability 
change smoothly as a function of the learned parameter.

Theoretical benefits to policy gradient methods: We will show we can 
perform gradient ascent on the following objective:

Why does this not apply to value functions?



Policy Gradient Theorem

Intuition: With continuous policy parameterization the action probability 
change smoothly as a function of the learned parameter.

Theoretical benefits to policy gradient methods:

Why does this not apply to value functions?
An arbitrarily small change in the estimated action values can result in a 
different action having the maximal value. 
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Gradient Bandits:  Arm Preferences

Differentiable

Updates can be high variance

From lecture 2!



Exact Gradient Ascent

Where expected reward is

Just a scalar per arm. No states!

In full RL setting, policy influences future states.

From lecture 2!



Policy Gradient Theorem

Exact formula for how performance is affected by the policy parameter.
Does not involve derivatives of the state distribution



Proof of policy
gradient theorem



Proof of policy
gradient theorem

→

Marginalize R
,
push in gradient

Dynamics t Reward constant

w .
r

.

E
.

Q



Proof of policy
gradient theorem

Marginalize R
,
push in gradient

→

Dynamics t Reward constant

w .
r

.

E
.

⑦

Expanding Vals
'

) creates
→

deeply nested computation ;

At every step
,
compute every

state you could get to from

every stale you could have been in

t
Transform into simple Sum over

time steps and states :

What is total prob of being at

each state at each time step ?



Proof of policy
gradient theorem

Marginalize R
,
push in gradient

-

Dynamics t Reward constant

w .
r

.

E
.

⑦

Expanding Vt ( s
' ) creates

→

deeply nested computation ;

At every step
,
compute every

state you could get to from

every stale you could have been in

I
on normalized

①
Transform into simple Sum over

steady . stole time steps and states :

prob of 5

What is total prob of being at

each state at each time step ?

normalized
version O



Reading Responses

Alekhya Kuchimanchi
Why does the action probabilities changing as a function of the learned 
parameter lead to stronger convergence guarantees? (page 324)
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Alekhya Kuchimanchi
Why does the action probabilities changing as a function of the learned 
parameter lead to stronger convergence guarantees? (page 324)

Abhinav Peri
With the policy gradient, it seems that as long as we move in this direction in 
parameter space, we can guarantee improvement in the policy. Does this give 
us a replacement for the policy improvement theorem that we lost when 
switching to function approximation?

We’re relying on convergence guarantees of SGD to explain why policy 
gradient methods converge by showing that policy gradient corresponds to 
performing gradient ascent on the objective of maximizing return.
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REINFORCE

Pros and cons?

SGD-based theoretical convergence properties: assures an improvement in 
expected performance for sufficiently small learning rate, and convergence to 
a local optimum under standard stochastic approximation conditions for 
decreasing learning rate. 

However, as a Monte Carlo method REINFORCE may be of high variance 
and thus produce slow learning. 
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Abhi Sridhar
Discuss how introducing a baseline can impact the performance of the 
REINFORCE algorithm. What are the criteria for choosing an effective 
baseline?
A baseline can be any scalar, as long as it doesn’t depend on the action.
Goals: reduce its high variance but not change its direction
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Jackson Paul
Is there any additional intuition behind why a baseline would be useful for 
computation? It seems intuitive that maximizing J(theta) would also (in 
expectation) minimize J(theta) - V(s) since they ultimately have the same goal.
They do! The point of the baseline is not to modify the convergence point, 
but to lower the variance of the updates to get there.
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Why does baseline reduce variance?

62 4

1 2 3

40 2

Original “gradients”

We are NOT subtracting
from the gradient

We are subtracting
from a number that 

multiplies the gradient

From lecture 2!





This is Monte Carlo. How do we incorporate TD?
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Yash Saxena 
Why is REINFORCE with Baseline not considered an actor-critic method? 
The algorithm learns an approximation of the policy and value function, so 
why wouldn’t it fall under the actor-critic umbrella?
Actor-critic methods are temporal difference (TD) learning methods that 
represent the policy function independent of the value function. REINFORCE 
with Baseline does use a critic, but not TD.
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Reading Responses

Ian Symsmith
While you would run into similar problems as was described in earlier 
chapters, could you use policy gradient methods with off-policy learning as 
well?
Yes! Many actor-critic methods are off-policy.



Reading Responses

Adeline Foote
For continuous actions we can learn probability distributions of the actions. 
How do we choose how to represent these distributions? Not everything 
will follow  a normal distribution. For example there may be some situations 
where a bimodal distribution is helpful? Can we add and weight multiple 
distributions to learn more complex probability distributions?

Anthony Bao
What is the current landscape of using generative models in policy gradient 
methods for continuing problems? When is it fruitful to learn distributions for 
action selection using a normalizing flow or diffusion model?



Reading Responses

We can parameterize the policy in many ways:
Gaussians, mixture of Gaussians, diffusion models, SVGD (particle-based 
method)



Next lecture: 
Review for midterm!
Reading assignments due 2PM Monday

No Amy office hours for next three weeks: 3/6, 3/13, and 3/20.

Final Logistics



Final project proposal due at 11:59pm on Thursday, 3/7

Complete the reading response on Canvas by Monday at 2pm CST.

Complete Homework for Chapter 13 on edx by Friday 11:59 PM CST

Final Logistics


