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Policy Gradient Methods

Why do we want to parameterize a policy directly?
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Why do we want to parameterize a policy directly?

* Jo handle continuous actions

Why is this hard for Q learning? Max operator
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ordering of actions -- allocates its power to optimize performance
directly, not value representation)



Policy Gradient Methods

Why do we want to parameterize a policy directly?

 Continuous actions

* Policy simpler than value function

« Scales with policy complexity, not size of state space

+ More robust to poor features (not trying to get exact values right, just
ordering of actions -- allocates its power to optimize performance
directly, not value representation)

« Allows for stochastic policies: great for function approximation and
partial observability (e.g. bluffing in poker or not knowing which way is
exit).



Reading Responses

Nell Roy

Section | 3.1 mentions that one advantage of soft-max in action preferences
s that it can approach a deterministic policy, which epsilon greedy action
selection or soft-max distribution based action-values cannot do. | am a little
confused on why action preferences are able to do this while action values
are not. It mentions that action preferences do not approach specific values,
they are instead driven to produce the optimal stochastic policy. | guess | was
a little confused on how the action preferences are driven towards the
optimal policy.

Cody Rushing

- Example | 3.1 highlights how soft-max action preferences are better
because "it can learn a specific probability with which to select right." Could
we still approximate this with e-greedy policies by fine-tuning the
hyperparameter for e to maximize performance?



Policy as softmax over preferences

~ exp(h(s,a,0))
m(als, 0) = >, exp(h(s,b,8))

No constraint over what h can be. If h goes to infinity for (s, a), policy
becomes deterministic.

If values don't go to infinity, softmax over values can't lead to deterministic
policies.

Eps-greedy always takes a random action with eps probability. You could
anneal eps, but becomes another design choice.
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Policy Gradient Methods

Downsides to policy gradient methods?

* higher variance without value function to bootstrap
 gradient methods usually locally optimal (except special cases)



Policy Gradient Methods

Consider methods that learn a parameterized policy that can select actions
without consulting a value function.

m(a|s,0) = Pr{A;=a | S;=s,0,=0}

Want to perform gradient ascent to maximize a scalar performance measure

J _—

Ot—i-l = Ot + OéVJ(Ot)



Policy Gradient Theorem

Theoretical benefits to policy gradient methods: VWe will show we can
perform gradient ascent on the following objective:

J(0) = vre(s0)

Inturtion: With continuous policy parameterization the action probability
change smoothly as a function of the learned parameter.

Why does this not apply to value functions?



Policy Gradient Theorem

Theoretical benefits to policy gradient methods:

Inturtion: With continuous policy parameterization the action probability
change smoothly as a function of the learned parameter.

Why does this not apply to value functions?
An arbitrarily small change in the estimated action values can result in a
different action having the maximal value.
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From lecture 2!
Gradient Bandits: Arm Preferences

. efldld
Pr{A;=a} = 25—1 JH, (b) = m¢(a) Differentiable

Hy1(Ar) = Hy(Ay) + a(Ry — Ry) (1 — m(Ay)), and
Hiy1(a) = Hy(a) — a(Ry — Ry)mi(a), for all a # Ay

Updates can be high variance



From lecture 2!
Exact Gradient Ascent

OE [Ry]

Ht_|_1(a) — Ht(a) = OfaHt(a)

Where expected reward is  E[Re] =) m(z)qu(z)

T

Just a scalar per arm. No states!

In full RL setting, policy influences future states.



Policy Gradient Theorem

VJ(0) x Z 1(s) Z q-(s,a)Vem(als, 8)

Exact formula for how performance is affected by the policy parameter.
Does not involve derivatives of the state distribution



Vug(s) =V lz 7r(a|s)q,r(s,a)] , forallse8 (Exercise 3.18)
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= -Vw(a|s)q,r(s, a) + 7(al|s)Vax(s, a)] (product rule of calculus)

= :Vﬂ'(a|s)q,r(s, a) + m(a|s)V Zp(s', r|s,a)(r+ vﬁ(s'))}

(Exercise 3.19 and Equation 3.2)
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= Z :Vw(a|s)q,r(s, a) + 7(als) Zp(s’ |'s,a) (unrolling)
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x€8 k=0

after repeated unrolling, where Pr(s— z, k, 7) is the probability of transitioning
from state s to state z in k steps under policy 7. It is then immediate that

V.J(0) = Vv (so)
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(box page 199)

(Eq. 9.3)
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for all s€ 8 (Exercise 3.18)
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Reading Responses

Alekhya Kuchimanchi
Why does the action probabilities changing as a function of the learned
parameter lead to stronger convergence guarantees! (page 324)

Abhinav Peri

With the policy gradient, it seems that as long as we move in this direction In
parameter space, we can guarantee improvement in the policy. Does this give
us a replacement for the policy improvement theorem that we lost when
switching to function approximation?



Reading Responses

Alekhya Kuchimanchi
Why does the action probabilities changing as a function of the learned
parameter lead to stronger convergence guarantees! (page 324)

Abhinav Peri

With the policy gradient, it seems that as long as we move in this direction In
parameter space, we can guarantee improvement in the policy. Does this give
us a replacement for the policy improvement theorem that we lost when
switching to function approximation?

We're relying on convergence guarantees of SGD to explain why policy
gradient methods converge by showing that policy gradient corresponds to
performing gradient ascent on the objective of maximizing return.



J(0) x Z p(s) Z 4= (s,a)Vr(als, @)

RE\NFORCE
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RE\NFORCE

VJ(0) x Z p(s) Z 4= (s,a)Vr(als, @)
s “ _ 0:11=60; +« Z G(St,a,w)Vm(al|St, )
=Ex| > ¢x(S:,a)Vr(alS:, 9)] . ¢

i Vr(alS,, 0
vJ(0) =E, Zw(awf,e)qﬂ(st,a)ﬁl
i A
=E, -q'/r(St, At)%} (replacing a by the sample A; ~ 7)
[ VW(At|St,9)}
=E.|Gt ———1, because E [G¢|S;, Ai] = ¢ (S, A
i t W(Atlst,a) ( [ tl t t] q ( t t))



RE\NFORCE

VJ(0) x Z p(s) Z 4= (s,a)Vr(als, @)
s @ _ 0:11 =0, +« Z G(St,a,w)Vm(al|St, )
=Er| Y x(St.a)Vr(alS,, 9)] . ¢

— Vr(a|St, 0

=E, _Qw(St, At)%] (replacing a by the sample A; ~ 7)
[ VW(At|St30)

:EﬂG—7 b EWGS7A:7‘_S’A
(415, 60) (because E[G|S:, A¢] = ¢ (St, Ar))

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7 (als, )
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, Ry, ...,S7—1,Ar—1, Ry, following 7(-|-, @)
Loop for each step of the episode t =0,1,...,7 — 1:
G« Zzzt-}-l YRy, (Gt)
0« 0+ ay'GVinm(AS:, 0)




REINFORCE

Pros and cons!?



REINFORCE

Pros and cons!?

SGD-based theoretical convergence properties: assures an improvement in
expected performance for sufficiently small learning rate, and convergence to
a local optimum under standard stochastic approximation conditions for
decreasing learning rate.

However, as a Monte Carlo method REINFORCE may be of high variance
and thus produce slow learning.
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Ht-l-l(a) = Ht(a’) + aaHt(a)
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Gradient Rankit s RE\NFORCE + Baseline

-
Base line

VJ(0) x Z 1(s) Z ¢=(s,a)Vr(als,0)
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Reading Responses

Abhi Sridhar

Discuss how introducing a baseline can impact the performance of the

REINFORCE algorithm.What are the criteria for choosing an effective
baseline!



Reading Responses

Abhi Sridhar

Discuss how introducing a baseline can impact the performance of the

REINFORCE algorithm.What are the criteria for choosing an effective
baseline!

A baseline can be any scalar, as long as it doesn’t depend on the action.
Goals: reduce its high variance but not change its direction



Reading Responses

Jackson Paul

s there any additional inturtion behind why a baseline would be useful for
computation? It seems intuitive that maximizing J(theta) would also (in
expectation) minimize J(theta) - V(s) since they ultimately have the same goal.



Reading Responses

Jackson Paul

s there any additional inturtion behind why a baseline would be useful for
computation? It seems intuitive that maximizing J(theta) would also (in
expectation) minimize J(theta) - V(s) since they ultimately have the same goal.
They do! The point of the baseline is not to modify the convergence point,
but to lower the variance of the updates to get there.

10, REINFORCE with baseline of =2

BT Lot M Lk LN N o il WWMW § o b+—0.(s0)
20 [ , M\"M’WWW i
' )lf‘l REINFORCE
Go a0 ) =
Total reward |
on episode

averaged over 100 runs
-60

|

-80

-90 L 1 1 1 1 1 J
1 200 400 600 800 1000
Episode
Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, as illus-

trated here on the short-corridor gridworld (Example 13.1). The step size used here for plain
REINFORCE is that at which it performs best (to the nearest power of two; see Figure 13.1).




Why does the variance of the gradient matter?

Theory: upper bounds on convergence rate of SGD are
directly related to the variance of gradient estimates

Intuition: variance causes “overshooting” that destabilizes learning

Hyy1(Ay) = Hy(Ay) + a(Ry — Ry) (1 — m(Ay)), and
Hiiq(a) = Hy(a) — a(Rt - Rt)m(a), for all a # A,

A= | A=2
I I R =98 R = 100
- —)
| 2

From lecture 2!
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Why does the variance of the gradient matter?

Theory: upper bounds on convergence rate of SGD are
directly related to the variance of gradient estimates

Intuition: variance causes “overshooting' that destabilizes learning

Hyy1(Ay) = Hy(Ay) + a(Ry — Ry) (1 — m(Ay)), and

Hiiq(a) = Hy(a) — a(Rt - Rt)m(a), for all a # A,
A= A=2
I I R =98 R = 100
— —) =y ==
2 | 2 | 2

Ny -
in = 1l - al
2 ) 2

From lecture 2!
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. . From lecture 2!
Why does baseline reduce variance?

Original “gradients” o o ®
2 4 6
We are NOT subtracting @ ®
from the gradient 0 ) 4
We are subtracting
from a number that —o—¢
multiplies the gradient | 2 3




REINFORCE with Baseline (episodic), for estimating mg ~ 7,

Input: a differentiable policy parameterization m(a|s, 0)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a® > 0, a™ > 0

Initialize policy parameter 6 € RY and state-value weights w € R4 (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7—1,Ar_1, Rr, following 7(-|-,0)
Loop for each step of the episode t =0,1,...,T — 1:
G+ Zfzm 7*=t 1Ry
0+ G —0(Sp,w)
W W+ aVoVo(S,,w)
0 — 0+ a®+'6VInm(AS:, 6)




REINFORCE with Baseline (episodic), for estimating mg ~ 7,

Input: a differentiable policy parameterization m(a|s, 0)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a® > 0, a™ > 0

Initialize policy parameter 6 € RY and state-value weights w € R4 (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7—1,Ar_1, Rr, following 7(-|-,0)
Loop for each step of the episode t =0,1,...,T — 1:
G+ Zz=t+1 yEt-1Ry (Gy)
0+ G —0(Sp,w)
W W+ aVoVo(S,,w)
0 — 0+ a®+'6VInm(AS:, 6)

This is Monte Carlo. How do we incorporate TD?



REINFORCE with Baseline (episodic), for estimating mg ~ 7,

Input: a differentiable policy parameterization m(a|s, 0)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a® > 0, a™ > 0

Initialize policy parameter 6 € RY and state-value weights w € R4 (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7—1,Ar_1, Rr, following 7(-|-,0)
Loop for each step of the episode t =0,1,...,T — 1:
G+ Zz=t+1 yEt-1Ry (Gy)
0+ G —0(Sp,w)
W W+ aVoVo(S,,w)
0« 0+ a?+'6VInn(A4|S:, 6)

One-step Actor—Critic (episodic), for estimating mg ~ 7,

Input: a differentiable policy parameterization 7(als, 8)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes a® >0, a% > 0
Initialize policy parameter 8 € RY and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ 7(-]S,0)
Take action A, observe S, R
0 R+~0(S"\w) —0(S,w) (if S’ is terminal, then 0(S',w) = 0)

W+ w4 aViVo(S,w)
0« 0+a°I5Vinn(A|S,0)
I+ ~I

S+ S




Reading Responses

Yash Saxena

Why is REINFORCE with Baseline not considered an actor-critic method?
The algorithm learns an approximation of the policy and value function, so
why wouldn't it fall under the actor-critic umbrella?



Reading Responses

Yash Saxena

Why is REINFORCE with Baseline not considered an actor-critic method?
The algorithm learns an approximation of the policy and value function, so
why wouldn't it fall under the actor-critic umbrella?

Actor-critic methods are temporal difference (TD) learning methods that
represent the policy function independent of the value function. REINFORCE
with Baseline does use a critic, but not TD.
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Reading Responses

lan Symsmith

While you would run into similar problems as was described in earlier
chapters, could you use policy gradient methods with off-policy learning as
well?

Yes! Many actor-critic methods are off-policy.
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Reading Responses

Adeline Foote

For continuous actions we can learn probability distributions of the actions.
How do we choose how to represent these distributions! Not everything
will follow a normal distribution. For example there may be some situations
where a bimodal distribution is helpful? Can we add and weight multiple
distributions to learn more complex probability distributions?

Anthony Bao

What is the current landscape of using generative models in policy gradient
methods for continuing problems?! VWhen is it fruitful to learn distributions for
action selection using a normalizing flow or diffusion model?



Reading Responses

VWe can parameterize the policy in many ways:
Gaussians, mixture of Gaussians, diffusion models, SVGD (particle-based
method)

IDQL: Implicit Q-Learning as an Actor-Critic
Method with Diffusion Polici . . . .
CRod Wi TR TR S2AC: Energy-Based Reinforcement Learning with Stein Soft Actor

Philippe Hansen—Estruc!l Ilya Kostrikov Mi'chael Janner c rl t I c
Jakub Gmei}eé‘ﬁ?:e’}eyser’fey_%v"_"e - Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, Sanjay Chawla

Distributional Policy Optimization:
An Alternative Approach for Continuous Control

Chen Tessler*, Guy Tennenholtz* and Shie Mannor



Final Logistics

Next lecture:
Review for midterm!
Reading assignments due 2PM Monday

No Amy office hours for next three weeks: 3/6, 3/13, and 3/20.



Final Logistics

Final project proposal due at 1 1:59pm on Thursday, 3/7

Complete the reading response on Canvas by Monday at 2pm CST.

Complete Homework for Chapter |3 on edx by Friday | 1:59 PM CST



