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Overview of Game Theory

• Models of Interaction

– Normal-Form Games

– Repeated Games

– Stochastic Games

• Solution Concepts
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Normal-Form Games
A normal-form game is a tuple (n,A1...n, R1...n),

• n is the number of players,
• Ai is the set of actions available to player i

– A is the joint action space A1 × . . .×An,

• Ri is player i’s payoff function A → <.
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Example — Rock-Paper-Scissors
• Two players. Each simultaneously picks an action:

Rock, Paper, or Scissors.
• The rewards:

Rock beats Scissors
Scissors beats Paper
Paper beats Rock

• The matrices:

R1 =
R
P
S

 0
R
−1

P
1
S

1 0 −1
−1 1 0

 R2 =
R
P
S

 0
R

1
P
−1

S

−1 0 1
1 −1 0


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More Examples
• Matching Pennies

R1 =
H
T

(
1
H
−1

T

−1 1

)
R2 =

H
T

(
−1

H
1
T

1 −1

)
• Coordination Game

R1 =
A
B

(
2
A

0
B

0 1

)
R2 =

A
B

(
2
A

0
B

0 1

)
• Bach or Stravinsky

R1 =
B
S

(
2
B

0
S

0 1

)
R2 =

B
S

(
1
B

0
S

0 2

)
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More Examples
• Prisoner’s Dilemma

R1 =
C
D

(
3

C
0
D

4 1

)
R2 =

C
D

(
3

C
4
D

0 1

)

• Three-Player Matching Pennies
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Three-Player Matching Pennies

• Three players. Each simultaneously picks an action:
Heads or Tails.

• The rewards:
Player One wins by matching Player Two,
Player Two wins by matching Player Three,
Player Three wins by not matching Player One.
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Three-Player Matching Pennies

• The matrices:

R1(〈·, ·, H〉) =
H
T

(
1
H

0
T

0 1

)
R1(〈·, ·, T 〉) =

H
T

(
1
H

0
T

0 1

)
R2(〈·, ·, H〉) =

H
T

(
1 0
1 0

)
R2(〈·, ·, T 〉) =

H
T

(
0 1
0 1

)
R3(〈·, ·, H〉) =

H
T

(
0 0
1 1

)
R3(〈·, ·, T 〉) =

H
T

(
1 1
0 0

)
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Strategies

• What can players do?

– Pure strategies (ai): select an action.

– Mixed strategies (σi): select an action according
to some probability distribution.
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Strategies

• Notation.

– σ is a joint strategy for all players.

Ri(σ) =
∑
a∈A

σ(a)Ri(a)

– σ−i is a joint strategy for all players except i.

– 〈σi, σ−i〉 is the joint strategy where i uses strategy σi
and everyone else σ−i.
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Types of Games
• Zero-Sum Games (a.k.a. constant-sum games)

R1 +R2 = 0

Examples: Rock-paper-scissors, matching pennies.

• Team Games
∀i, j Ri = Rj

Examples: Coordination game.

• General-Sum Games (a.k.a. all games)
Examples: Bach or Stravinsky, three-player matching
pennies, prisoner’s dilemma
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Repeated Games

• You can’t learn if you only play a game once.

• Repeatedly playing a game raises new questions.

– How many times? Is this common knowledge?

Finite Horizon Infinite Horizon

– Trading off present and future reward?

limT→∞
1
T

∑T
t=1 rt

∑∞
t=1 γ

trt

Average Reward Discounted Reward
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Repeated Games — Strategies
• What can players do?

– Strategies can depend on the history of play.

σi : H → PD(Ai) where H =
∞⋃
n=0

An

– Markov strategies a.k.a. stationary strategies

∀a1...n ∈ A σi(a1, . . . , an) = σ(an)

– k-Markov strategies

∀a1...n ∈ A σi(a1, . . . , an) = σ(an−k, . . . , an)
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Repeated Games — Examples
• Iterated Prisoner’s Dilemma

R1 =
C
D

(
3

C
0
D

4 1

)
R2 =

C
D

(
3

C
4
D

0 1

)
– The single most examined repeated game!

– Repeated play can justify behavior that is not
rational in the one-shot game.

– Tit-for-Tat (TFT)

∗ Play opponent’s last action (C on round 1).
∗ A 1-Markov strategy.
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Stochastic Games

Stochastic Games

- Multiple State
- Multiple Agent

- Single State
- Multiple Agent
Repeated Games

- Multiple State

MDPs
- Single Agent
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Stochastic Games — Definition
A stochastic game is a tuple (n,S,A1...n, T,R1...n),

• n is the number of agents,
• S is the set of states,
• Ai is the set of actions available to agent i,

– A is the joint action space A1 × . . .×An,

• T is the transition function S ×A× S → [0, 1],
• Ri is the reward function for the ith agent S ×A → <.
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T (s, a, s′)

s

s′
R1(s, a)

a2

R1(s) =
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Stochastic Games — Policies
• What can players do?

– Policies depend on history and the current state.

πi : H× S → PD(Ai) where H =
∞⋃
n=0

(S ×A)n

– Markov polices a.k.a. stationary policies

∀h, h′ ∈ H ∀s ∈ S πi(h, s) = π(h′, s)

– Focus on learning Markov policies, but the
learning itself is a non-Markovian policy.
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Example — Soccer
(Littman, 1994)

A

B

• Players: Two.
• States: Player positions and ball possession (780).
• Actions: N, S, E, W, Hold (5).
• Transitions:

– Simultaneous action selection, random execution.
– Collision could change ball possession.

• Rewards: Ball enters a goal.
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Example — Goofspiel
• Players hands and the deck have cards 1 . . . n.
• Card from the deck is bid on secretly.
• Highest card played gets points equal to the card

from the deck.
• Both players discard the cards bid.
• Repeat for all n deck cards.
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Example — Goofspiel
• Players hands and the deck have cards 1 . . . n.
• Card from the deck is bid on secretly.
• Highest card played gets points equal to the card

from the deck.
• Both players discard the cards bid.
• Repeat for all n deck cards.

n |S| |S ×A| SIZEOF(π or Q) V(det) V(random)
4 692 15150 ∼ 59KB −2 −2.5
8 3× 106 1× 107 ∼ 47MB −20 −10.5
13 1× 1011 7× 1011 ∼ 2.5TB −65 −28
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Stochastic Games — Facts

• If n = 1, it is an MDP.

• If |S| = 1, it is a repeated game.

• If the other players play a stationary policy, it is an
MDP to the remaining player.

T̂ (s, ai, s′) =
∑

a−i∈A−i

π−i(s, a)T (s, 〈ai, a−i〉 , s′)

– The interesting case, then, is when the other
agents are not stationary, i.e., are learning.
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Overview of Game Theory

• Models of Interaction

• Solution Concepts

Normal Form Games

– Dominance
– Minimax
– Pareto Efficiency
– Nash Equilibria
– Correlated Equilibria

Repeated/Stochastic Games

– Nash Equilibria
– Universally Consistent
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Dominance

• An action is strictly dominated if another action is
always better, i.e,

∃a′i ∈ Ai ∀a−i ∈ A−i Ri(〈a′i, a−i〉) > Ri(〈ai, a−i〉).

• Consider prisoner’s dilemma.

R1 =
C
D

(
3

C
0
D

4 1

)
R2 =

C
D

(
3

C
4
D

0 1

)

– For both players, D dominates C.
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Iterated Dominance
• Actions may be dominated by mixed strategies.

R1 =
A
B
C

 1
D

1
E

4 0
0 4

 R2 =
A
B
C

 4
D

0
E

1 2
0 1


• If strictly dominated actions should not be played. . .

R1 =
A
B
C

 1
D

1
E

4 0
0 4

 R2 =
A
B
C

 4
D

0
E

1 2
0 1


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Iterated Dominance
• Actions may be dominated by mixed strategies.

R1 =
A
B
C

 1
D

1
E

4 0
0 4

 R2 =
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B
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 4
D

0
E

1 2
0 1
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• If strictly dominated actions should not be played. . .

R1 =
A
B
C

 1
D

1
E

4 0
0 4

 R2 =
A
B
C

 4
D

0
E

1 2
0 1


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Iterated Dominance
• Actions may be dominated by mixed strategies.

R1 =
A
B
C

 1
D

1
E

4 0
0 4

 R2 =
A
B
C

 4
D

0
E

1 2
0 1


• If strictly dominated actions should not be played. . .

R1 =
A
B
C

 1
D

1
E

4 0
0 4

 R2 =
A
B
C

 4
D

0
E

1 2
0 1



• This game is said to be dominance solvable.
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Minimax
• Consider matching pennies.

R1 =
H
T

(
1
H
−1

T

−1 1

)
R2 =

H
T

(
−1

H
1
T

1 −1

)

• Q: What do we do when the world is out to get us?
A: Make sure it can’t.

• Play strategy with the best worst-case outcome.

argmax
σi∈∆(Ai)

min
a−i∈A−i

Ri(〈σi, σ−i〉)

• Minimax optimal strategy.
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Minimax
• Back to matching pennies.

R1 =
H
T

(
1
H
−1

T

−1 1

) (
1/2
1/2

)
= σ∗1

• Consider Bach or Stravinsky.

R1 =
B
S

(
2
B

0
S

0 1

) (
1/3
2/3

)
= σ∗1

• Minimax optimal guarantees the saftey value.

• Minimax optimal never plays dominated strategies.
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Minimax — Linear Programming

• Minimax optimal strategies via linear programming.

argmax
σi∈∆(Ai)

min
a−i∈A−i

Ri(〈σi, σ−i〉)

1x∗0
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Pareto Efficiency

• A joint strategy is Pareto efficient if no joint strategy is
better for all players, i.e.,

∀a′ ∈ A ∃i ∈ 1, . . . , n Ri(a) ≥ Ri(a′)

• In zero-sum games, all strategies are Pareto efficient.
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Pareto Efficiency
• Consider prisoner’s dilemma.

R1 =
C
D

(
3

C
0
D

4 1

)
R2 =

C
D

(
3

C
4
D

0 1

)
– 〈D,D〉 is not Pareto efficient.

• Consider Bach or Stravinsky.

R1 =
B
S

(
2
B

0
S

0 1

)
R2 =

B
S

(
1
B

0
S

0 2

)
– 〈B,B〉 and 〈S, S〉 are Pareto efficient.
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Nash Equilibria
• What action should we play if there are no

dominated actions?

• Optimal action depends on actions of other players.

• A best response set is the set of all strategies that are
optimal given the strategies of the other players.

BRi(σ−i) = {σi | ∀σ′i Ri(〈σi, σ−i〉) ≥ Ri(〈σ′i, σ−i〉)}

• A Nash equilibrium is a joint strategy, where all
players are playing best responses to each other.

∀i ∈ {1 . . . n} σi ∈ BRi(σ−i)
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Nash Equilibria
• A Nash equilibrium is a joint strategy, where all

players are playing best responses to each other.

∀i ∈ {1 . . . n} σi ∈ BRi(σ−i)

• Since each player is playing a best response, no
player can gain by unilaterally deviating.

• Dominance solvable games have obvious equilibria.

– Strictly dominated actions are never best responses.

– Prisoner’s dilemma has a single Nash equilibrium.
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Examples of Nash Equilibria

• Consider the coordination game.

R1 =
A
B

(
2
A

0
B

0 1

)
R2 =

A
B

(
2
A

0
B

0 1

)
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Examples of Nash Equilibria

• Consider the coordination game.

R1 =
A
B
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2
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0
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2
A

0
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)
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Examples of Nash Equilibria

• Consider the coordination game.

R1 =
A
B

(
2
A

0
B

0 1

)
R2 =

A
B

(
2
A

0
B

0 1

)

• Consider Bach or Stravinsky.
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B
S

(
2
B

0
S

0 1
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R2 =

B
S

(
1
B

0
S

0 2

)
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Examples of Nash Equilibria

• Consider the coordination game.
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A
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0
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)
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A
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0
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B
S
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0
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1
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Examples of Nash Equilibria
• Consider matching pennies.

R1 =
H
T

(
1
H
−1

T

−1 1

)
R2 =

H
T

(
−1

H
1
T

1 −1

)

– No pure strategy Nash equilibria. Mixed strategies?

BR1

(
〈1/2, 1/2〉

)
= {σ1}

– Corresponds to the minimax strategy.
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Existence of Nash Equilibria

• All finite normal-form games have at least one Nash
equilibrium. (Nash, 1950)

• In zero-sum games. . .

– Equilibria all have the same value and are
interchangeable.

〈σ1, σ2〉 , 〈σ′1, σ′2〉 are Nash ⇒ 〈σ1, σ
′
2〉 is Nash.

– Equilibria correspond to minimax optimal strategies.
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Computing Nash Equilibria

• The exact complexity of computing a Nash
equilibrium is an open problem. (Papadimitriou,
2001)

• Likely to be NP-hard. (Conitzer & Sandholm, 2003)

• Lemke-Howson Algorithm.

• For two-player games, bilinear programming solution.
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Fictitious Play
(Brown, 1949; Robinson 1951)

• An iterative procedure for computing an equilibrium.

1. Initialize Ci(ai ∈ Ai), which counts the number of
times player i chooses action ai.

2. Repeat.

(a) Choose ai ∈ BR (C−i).
(b) Increment Ci(ai).
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Fictitious Play
(Fudenberg & Levine, 1998)

• If Ci converges, then what it converges to is a Nash
equilibrium.

• When does Ci converge?

– Two-player, two-action games.

– Dominance solvable games.

– Zero-sum games.

• This could be turned into a learning rule.
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Correlated Equilibria

• Is there a way to be fair in Bach or Stravinsky?

R1 =
B
S

(
2
B

0
S

0 1

)
R2 =

B
S

(
1
B

0
S

0 2

)
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Correlated Equilibria

• Is there a way to be fair in Bach or Stravinsky?

R1 =
B
S

(
2
B

0
S

0 1

)
R2 =

B
S

(
1
B

0
S

0 2

)

– Suppose we wanted to both go to Bach or both
go to Stravinsky with equal probability?

– We want to correlate our action selection.

B
S

(
1/2

B
0
S

0 1/2

)
but not

B
S

(
1/4

B
1/4

S

1/4 1/4

)
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Correlated Equilibria
• Assume a shared randmoizer (e.g., a coin flip) exists.

• Define a new concept of equilibrium.

– Let σ be a probability distribution over joint actions.

– Each player observes their own action in a joint
action sampled from σ.

– σ is a correlated equilibrium if no player can gain
by deviating from their prescribed action.

∀i ai ∈ BRi(σ−i|σ, ai)
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Correlated Equilibria

• Back to Bach or Stravinsky.

R1 =
B
S

(
2
B

0
S

0 1

)
R2 =

B
S

(
1
B

0
S

0 2

)
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Correlated Equilibria

• Back to Bach or Stravinsky.

R1 =
B
S

(
2
B

0
S

0 1

)
R2 =

B
S

(
1
B

0
S

0 2

)

σ =
B
S

(
1/2

B
0
S

0 1/2

)

• All Nash equilibria are correlated equilibria.

• All mixtures of Nash are correlated equilibria.
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Overview of Game Theory

• Models of Interaction

• Solution Concepts

Normal Form Games

– Dominance
– Minimax
– Pareto Efficiency
– Nash Equilibria
– Correlated Equilibria

Repeated/Stochastic Games

– Nash Equilibria
– Universally Consistent
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Nash Equilibria in Repeated Games
• Obviously, Markov strategy equilibria exist.

• Consider iterated prisoner’s dilemma and TFT.

R1 =
C
D

(
3

C
0
D

4 1

)
R2 =

C
D

(
3

C
4
D

0 1

)
– With average reward, what’s a best response?

∗ Always D has a value of 1.
∗ D then C has a value of 2.5
∗ Always C and TFT have a value of 3.

– Hence, both players following TFT is Nash.
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Nash Equilibria in Repeated Games

• The TFT equilibria is strictly preferred to all Markov
strategy equilibria.

• The TFT strategy plays a dominated action.

• TFT uses a threat to enforce compliance.

• TFT is not a special case.

SA3 – C42



Nash Equilibria in Repeated Games
Folk Theorem. For any repeated game with average
reward, every feasible and enforceable vector of
payoffs for the players can be achieved by some Nash
equilibrium strategy. (Osborne & Rubinstein, 1994)

• A payoff vector is feasible if it is a linear combination
of individual action payoffs.

• A payoff vector is enforceable if all players get at
least their minimax value.
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Nash Equilibria in Repeated Games
Folk Theorem. For any repeated game with average
reward, every feasible and enforceable vector of
payoffs for the players can be achieved by some Nash
equilibrium strategy. (Osborne & Rubinstein, 1994)

• Players’ follow a deterministic sequence of play that
achieves the payoff vector.

• Any deviation is punished.

• The threat keeps players from deviating as in TFT.
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Computing Repeated Game Equilibria
(Littman & Stone, 2003)

• Polynomial time algorithm for finding a Nash
equilibrium in a repeated game.

– Find a feasible and
enforceable payoff vector.

– Construct a strategy that
punishes deviance.
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Computing Repeated Game Equilibria
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Computing Repeated Game Equilibria
(Littman & Stone, 2003)

• Polynomial time algorithm for finding a Nash
equilibrium in a repeated game.

– Find a feasible and
enforceable payoff vector.

– Construct a strategy that
punishes deviance.
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Universally Consistent

• A.k.a. Hannan consistent, regret minimizing.

• For a history h = a1, a2, . . . , an ∈ A, define regret for
player i,

Regreti(h) =

(
max
ai∈Ai

n∑
t=1

R(
〈
ai, a

t
−i
〉
)

)
−

n∑
t=1

Ri(at)

i.e., the difference between the reward that could
have been received by a stationary strategy and
the actual reward received.
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Universally Consistent

• A strategy σi is universally consistent if for any ε > 0
there exists a T such that for all σ−i and t > T ,

Pr

[
Regreti

(
a1, . . . , at

)
t

> ε

∣∣∣∣ 〈σi, σ−i〉
]
< ε

i.e., with high probability the average regret is low for
all strategies of the other players.

• If regret is zero, then must be getting at least the
minimax value.
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Nash Equilibria in Stochastic Games
• Consider Markov policies.

• A best response set is the set of all Markov policies
that are optimal given the other players’ policies.

BRi(π−i) =

{
πi | ∀π′i ∀s ∈ S

V
〈πi,π−i〉
i (s) ≥ V 〈π

′
i,π−i〉

i (s)

}

• A Nash equilibrium is a joint policy, where all players
are playing best responses to each other.

∀i ∈ {1 . . . n} πi ∈ BRi(π−i)
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Nash Equilibria in Stochastic Games

• All discounted reward and zero-sum average
reward stochastic games have at least one Nash
equilibrium. (Shapley, 1953; Fink, 1964)

• Stochastic games are the general model.

• Nash equilibria in stochastic games has certainly
received the most attention.
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