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What's the problem?

this is easy (mostly) this is impossible

Why?

Slide credit: Sergey Levine CS 285



Montezuma’s revenge

* Getting key = reward
* Opening door = reward
 Getting killed by skull = nothing (is it good? bad?)

* Finishing the game only weakly correlates with
rewarding events

 We know what to do because we understand what
these sprites mean!

Slide credit: Sergey Levine CS 285



Three broad classes of exploration approaches:

|, Optimistic Exploration
2. Posterior Sampling
3. Information Gain

Go over the basic idea
How do we implement this for large environment/continuous state-
action spaces/function approximation?



Optimistic exploration in RL

2InT
N(a)

UCB: a =argmax i, +

“exploration bonus”
lots of functions work, so long as they decrease with N(a)

can we use this idea with MDPs?

count-based exploration: use N(s,a) or N(s) to add exploration bonus

use 77 (s,a) = r(s,a) + B(N(s))
N\

bonus that decreases with N(s)

use 77 (s,a) instead of r(s,a) with any model-free algorithm

- need to tune bonus weight Slide credit: Sergey Levine CS 285



Exploring with pseudo-counts

¥

fit model py(s) to all states D seen so far
take a step ¢ and observe s;

fit new model py(s) to D Us;

use py(s;) and py(s;) to estimate N(s)
set v =1 + B(N(s)) ~— .

pseudo-count”

how to get N (s)? use the equations

N (s:) _ N(si) +1
po(si) = — por(si) = — 1
two equations and two unknowns!
. . 1 — per(s;)
N(s;) = npy(s; n = Po\Sq
(6 =polss) M=) — patsn) P

Bellemare et al. “Unifying Count-Based Exploration...”s|ide credit: Sergey Levine CS 285



What kind of model to use?

po(s)

need to be able to output densities, but doesn’t
necessarily need to produce great samples

T
hoth
T

¥

opposite considerations from many popular
generative models in the literature (e.g., GANs)

Bellemare et al.: “CTS” model:
condition each pixel on its top- <
left neighborhood

Other models: stochastic neural
networks, compression Iength’ EX2 Slide credit: Sergey Levine CS 285




Posterior sampling in deep RL

Thompson sampling:

. What do we sample?
O1,. O~ p(Or, ... 60,) P
a = arg max Ep_[r(a)] How do we represent the distribution?
bandit setting: p(f1,...,0,) is distribution over rewards

MDP analog is the Q)-function!

1. sample Q-function @ from p(Q) since Q-learning is off-policy, we don’t care
. . which Q-function was used to collect data
2. act according to () for one episode

3. update p(Q) /

how can we represent a distribution over functions?

Osband et al. “Deep Exploration via Bootstrapped DQN” Slide credit: Sergey Levine CS 285



Bootstrap

given a dataset D, resample with replacement N times to get D1,...,Dn
train each model fy. on D;

to sample from p(#), sample i € [1,..., N] and use fy,

1 1 1 1 e 1 1 1
-l 0 | 2 -l 0 1

(b) Gaussian process posterior  (c) Bootstrapped neural nets

training N big neural nets is expensive, can we avoid it?

Shared network

Osband et al. “Deep Exploration via Bootstrapped DQN” Slide credit: Sergey Levine CS 285



Information Gain in Deep RL



Reasoning about information gain (approximately)

Info gain:  1G(z,yla)

information gain about what?

Slide credit: Sergey Levine CS 285



Reasoning about information gain (approximately)

Info gain:  1G(z,yla)

information gain about what?
information gain about reward (s, a)? not very useful if reward is sparse

state density p(s)? a bit strange, but somewhat makes sense!

information gain about dynamics p(s’|s,a)?  good proxy for learning the MDP, though still heuristic

Generally intractable to use exactly, regardless of what is being estimated!

Slide credit: Sergey Levine CS 285



Reasoning about information gain (approximately)

Generally intractable to use exactly, regardless of what is being estimated

A few approximations:

prediction gain: log pg (s) — log pe(s) (Schmidhuber ‘91, Bellemare ‘16)

intuition: if density changed a lot, the state was novel

Slide credit: Sergey Levine CS 285



Reasoning about information gain (approximately)

Generally intractable to use exactly, regardless of what is being estimated

A few approximations:

prediction gain: log pg:(s) — log py(s) (Schmidhuber ‘91, Bellemare ‘16)

intuition: if density changed a lot, the state was novel

variational inference: (Houthooft et al. “VIME")
IG can be equivalently written as Dy, (p(z|y)||p(2))
learn about transitions pg(s¢i1|S,a¢): z =0 Dx1,(p(0lh, s¢, ae, 5¢11)||p(0|R))
U (St’ at, St+1) model parameters for pg(si+1|st, ar) / ‘
newly observed transition

history of all prior transitions

intuition: a transition is more informative if it causes belief over 6 to change

idea: use variational inference to estimate q(0|¢) ~ p(0|h)

given new transition (s, a, s’), update ¢ to get ¢’ Slide credit: Sergey Levine CS 285



Reasoning about information gain (approximately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, as, s¢11)||p(0]h))
e ‘

history of all prior transitions

model parameters for pg(s;+1|s¢,at)
newly observed transition

q(0|0) =~ p(6|h) specifically, optimize variational lower bound Dky,(q(0|¢)||p(h|0)p(6))

represent ¢(0|¢) as product of independent Gaussian parameter distributions

with mean ¢ (see Blundell et al. “Weight uncertainty in neural networks”)

given new transition (s,a, s’), update ¢ to get ¢’ p(0|D) = HP (0:|D)

i.e., update the network weight means and variances

p(0:|D) = N(ui, o)
use Dkr1,(q(0|¢")||q(0]¢)) as approximate bonus \/

Houthooft et al. “VIME” Slide credit: Sergey Levine CS 285



Reasoning about information gain (approximately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, as, s¢11)||p(0]h))
q(0|p) =~ p(0|h) specifically, optimize variational lower bound Dky,(q(0|¢)||p(h|0)p(0))

use DKL( (9|¢’)||q(9|q5)) as appr0x1mate bonus

Approximate IG:

- models are more complex, generally
harder to use effectively

(a) CartPole (b) CartPoleSwingup (c) DoublePendulum (d) MountainCar

Houthooft et al. “VIME” Slide credit: Sergey Levine CS 285



Exploration with model errors

Dxr1,(q(0]¢")||q(0|¢)) can be seen as change in network (mean) parameters ¢

A

if we forget about IG, there are many other ways to measure this

Stadie et al. 2015:

* encode image observations using auto-encoder

* build predictive model on auto-encoder latent states
* use model error as exploration bonus

low novelty

N

‘\

high novelty

Schmidhuber et al. (see, e.g. “Formal Theory of Creativity, Fun, and Intrinsic Motivation)':

* exploration bonus for model error
* exploration bonus for model gradient
* many other variations

Many others!

Slide credit: Sergey Levine CS 285



General themes

UCB: Thompson sampling: Info gain:

01,...,0, ~p(O,...,0,
2InT 1 P(01 ) 1G(z, y|a)

a = arg max ji, +
N(a) a = argmax Fy_[r(a)]

 Most exploration strategies require some kind of uncertainty
estimation (even if it’s naive)

e Usually assumes some value to new information
 Assume unknown = good (optimism)

 Assume sample = truth
* Assume information gain = good

Slide credit: Sergey Levine CS 285



Discussion Exercise

Go back to the robot navigating to the tower example.
Which of the three types of exploration would you pick?
How would you implement it?

What are potential upsides and downsides compared to the other methods!?



What's a possible failure mode of intrinsic motivation?




Go-Explore (Ecoffet et al. 2019)

1. Intrinsic reward (green) is distributed 2. An IM algorithm might start by exploring
throughout the environment (purple) a nearby area with intrinsic reward

A

Start

3. By chance, it may explore 4. Exploration fails to rediscover
another equally profitable area promising areas it has detached from




Go-Explore (Ecoffet et al. 2019)

Phase 1: explore until solved

Phase 2: robustify
(if necessary)

Select state

Go to state AL Upd:f\te
from state archive

Run imitation learning

on best trajectory

Figure 2: A high-level overview of the Go-Explore algorithm.




Cell representations

Go-Explore can be run directly in high-dimensional state space - but intractable in practice.

How to construct a good cell representation (state abstraction)?
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Cell representations

Go-Explore can be run directly in high-dimensional state space - but intractable in practice.
How to construct a good cell representation (state abstraction)?
Turns out simple dimensionality reduction (downsample game frame) works!
How would you implement a state abstraction with domain knowledge?

X,y position of agent, room number, level number, which rooms currently-held keys were
found, etc.



Go-Explore results on Montezuma'’s revenge
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Figure 4: Performance of the exploration phase of Go-Explore with downscaled frames on
Montezuma’s Revenge. Lines indicating human and the algorithmic state of the art are for compar-
ison, but recall that the Go-Explore scores in this plot are on a deterministic version of the game

(unlike the post-Phase 2 scores presented in this section).



Go-Explore results on Montezuma'’s revenge
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Figure 6: History of progress on Montezuma’s Revenge vs. the version of Go-Explore that does
not harness domain knowledge. Go-Explore significantly improves on the prior state of the art.
These data are presented in tabular form in Appendix A.9.



Go-Explore results on Montezuma'’s revenge with domain knowledge in the cell representation
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Figure 7: Performance on Montezuma’s Revenge of Phase 1 of Go-Explore with and without
domain knowledge. The algorithm finds more rooms, cells, and higher scores with the easily
provided domain knowledge, and does so with a better sample complexity. For (b), we plot the
number of cells found in the no-domain-knowledge runs according to the more intelligent cell
representation from the domain-knowledge run to allow for an equal comparison.



Go-Explore results on Montezuma'’s revenge with domain knowledge in the cell representation
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Figure 8: Historical progress on Montezuma’s Revenge vs. the version of Go-Explore that
harnesses domain knowledge. With domain knowledge, Go-Explore dramatically outperforms
prior work, the no-domain-knowledge version of Go-Explore, and even prior work with imitation
learning that was provided the solution in the form of human demonstrations. The data are presented
in tabular form in Appendix A.9.



Discussion Exercise

How can state abstractions or temporal abstractions be combined with exploration!?

Go back to the robot navigating to the tower example.What type of state abstraction would
make exploration more efficient?

What type of temporal abstraction would make exploration more efficient?



Diversity is All You Need:
Learning Skills without a Reward Function

Ben Eysenbach
PhD student at CMU



What is a Skill?

COBOTIX




What is a Skill?

Properties of good skills:

e [Exploration - at most one skill “dithers”; forces skills to explore large regions of the state space.
e Predictability - want to predict what a skill will do (important for hierarchical RL).
e Interpretability - easy to infer which skill is being executed at any given point in time.

ldea: Learn a set of skills that is as diverse as possible.

34



DIAYN: How does the algorithm work?

r—-———=—=—=-=-=-=-- 1 4
| SKILL I W 2. Collect one episode
1. Sample one skill L ~ W@(at | St, 2 ) with this skill.
per episode from 2/ —===== ]. =L lS_
fixed skill distribution. at t+1 S —
Learned |
>~ p(z) ENVIRONMENT _F_' '(; -
ixe
St41 ~ P(St41 | 5t, at)

S
AN [St+1

3. Discriminator estimates skill \; DISCRIMINATOR ' W rz(s) :_log dg(2 | 5t+1)
from state. Update discriminator | Q¢(z | s¢11) 4. Update skillto
to maximize discriminability. B 1 maximize discriminability.

35



How to Learn Without a Reward Function?

F(0) = MlI(s,z) —I—’H[al| s] —Ml(al,z | s)

I 1 I 1 I 1
Skills control states visited: Act as randomly Ignore actions that

° Infer skill from state. as possible. don't affect the state.
° Predict where skill goes.

r.(s,a) =logqe(z | s) — logp(2)

DIAYN is not the first to suggest objectives with this flavor, and there is much concurrent work [Gregor 16, Florensa 17, Co-Reyes 18, Achiam 18]. What
differentiates our work is (1) that it’s able to scale to complex environments, (2) the application to imitation learning and HRL.

36



Visualizing DIAYN

e  Exploration
e  Predictability
e Interpretability

1.0 -

0.8 A

0.6 -

0.4

0.2 A

0.0 -

A \
/ ),

0.0 0.2 0.4 0.6 0.8 1.0
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DIAYN maximizes future diversity.

—>
Skills move right
to become
discriminable.

38



What Skills are Learned?

Front flips

Running Backwards

Walking forwards

-

39



What Skills are Learned?
Skills for different forward gaits

40



What Skills are Learned?
Skills for different backward gaits

41



What Skills are Learned?

Skills for different front flips

s




What Skills are Learned?




What Skills are Learned?

44



What Skills are Learned?

45



Why is DIAYN useful?

Returns a policy To(a | S, 2) with a low
dimensional knob that spans a large set of behaviors.

Applications of DIAYN:

e Hierarchical RL

e [mitation Learning

e |earn an environment-specific policy initialization
e Unsupervised Meta-Learning



DIAYN for Hierarchical RL

Half Cheetah Hurdle

0 5 10 15 20

—— VIME —— DIAYN

—— DIAYN+prior

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
hours
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Effect of Number of Skills

} Std. dev. across
% —0.2 1 5 random seeds.
Jo
g = —0.4 - Increasing the number of — DIAYN
QT skills increases reward VIME
g on hierarchical task.
— —0.6 -
LI | ! ! L |
109 101 102

num. of skills

48



Discussion Exercise

What are some potential downsides to using DIAYN? In robotics? In high-dimensional state-
action spaces!?

(Laith Altarabishi) How do the authors reason and explore the dimensionality of the skill
latent space! How much does the dimensionality impact performance, and what is the
relationship between the environment’s complexity and the necessary dimensionality of the
skill space!?



Reading Responses

(William Avery) The authors suggest DIAYN can be used as an effective pre-training task for a
supervised, sample-efficient finetuning of a target task. If domains are similar enough, could
DIAYN potentially create opportunities for transfer learning?



Reading Responses

(Chloe Chen) In general how might extrinsic rewards play into these equations? Can an agent
trained with this method then be put into a more traditional framework? What might that
look at?



Final Logistics

Next week: Learning from Human Input
Reading assignments due 2PM Monday

Final project due at 1 1:59pm on Monday, 4/29



