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Aligned reward functions



Sequential Decision-Making
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Sequential Decision-Making

Gridworld States: cell location

GOAL Actions: move in each cardinal
direction




Sequential Decision-Making

State: board configuration

Action: a legal move




Sequential Decision-Making

Observation: joint positions, joint
velocities, and a camera image of
its task area

Action: acceleration on each joint




Reinforcement learning
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Reinforcement learning

Gridworld

GOAL

State: cell location

Action: move in each cardinal
direction

Reward: -1 per time step / action




Reinforcement learning

State: board configuration
Action: a legal move

Reward: 1 upon winning, 0 otherwise
(assume no stalemates)




REWARD AND RETURN




REWARD AND RETURN

T

G(r) =) 7RI

\ ’7'}— Y \ St,CLt,SH_l?
Field Y t:O Y
reinf. learning return reward
motion planning -1 x cost -1 x cost
control theory -1 x cost -1 x cost
evolutionary algs. fitness -
utility theory utility -
optimization objective function* -
- performance metric -
- score -

* “objective function” more precisely refers to the expectation of G(T)



REWARD
AND

RETURN Y

return

EXPECTED RETURN

ZW Staatast—l—l?
t=0 \ Y

reward
discount
factor

J(m) = Ex|G(7),

(Implicit in the expectation is the distribution over
start states and state transitions.)




REWARD ZV Styatast—|—1?

AND
t—= |
RETU RN return 0 dscount reward
factor

EXPECTED RETURN  J(7r) = E.[G(7)]

(Implicit in the expectation is the distribution over
start states and state transitions.)

A more precise characterization of RL:
attempt to find a behavior policy t that




Rewards vs goals

Problems that can
expressed with
rewards

Problems that
can expressed
with goals



Main alternatives to RL problems

e Learning from demonstrations (imitation

learning)
e Learning from preferences (RLHF, RLAIF, DPO,

CPL, etc))

Learning an intermediate reward function and
doing RL on it is not the only way to these
methods.



BACKGROUND ON REWARD

RL oversimplified: a set of problems and corresponding algorithmic
solutions, in which experience in a task is used to improve an agent’s
behavior such that it gets more reward.

More specifically, most RL problems focus on increasing the expectation of
G(7), the utility of a trajectory:

G(r) = V7Y R(sy, ar, se41)

(Assumes undiscounted/episodic setting and an unstated distribution over
starting states)



An aligned reward function

A reward function creates a preference ordering over possible
trajectories (by GG(7) and probability distributions over trajectories.

These trajectories can simplified to only the outcomes that matter
(e.g., winning/losing or time until reaching a goal.)

We assume humans also have such an ordering.

A perfectly aligned reward function creates an ordering over
outcome distributions that matches that of the human
stakeholder.



An aligned reward function

weees OO 8 O? 0o Best
S
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A perfectly aligned reward function creates an ordering over
outcome distributions that matches that of the human
stakeholder.



An aligned reward function

Human stakeholder Return
Best Toucces ©70 N o o 10
I -Sridle oo~~~ —@® 0
Worst L = A‘: -@ -50

A perfectly aligned reward function creates an ordering over
outcome distributions that matches that of the human
stakeholder.



An aligned reward function?

Human stakeholder

Best Tsuccess _____ ‘r o
A
Tidle 'OﬂAO_ ---®
Lottery: 90% T , 10% T
success crash
' &
Worst Tcrosh X _'OTO _.

Expected return

10

-50
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An aligned reward function?

Human stakeholder

Best Tsuccess _____ 3 o
A
Tidle ';AO_ ---®
Lottery: 90% T ,10% T
success crash
' &
Worst Tcrosh X _'OTO _.

Expected return

Mismatched
with human
ordering!



Design a reward function

Gridworld

GOAL

State: cell location
Action: move in a cardinal direction

The agent's purpose is to reach the goal in the
minimum mean time from any state.

Design a reward function by designating what the
reward should be for each action from each cell (state).

There is no discounting and the goal state is terminal
(or transitions to absorbing state, if you prefer).



Design a reward function

Gridworld An aligned reward function

GOAL -1 reward until goal

The is the time to goal (* -1).
The is the mean time to goal (* -1).
‘ So the task is to minimize the mean time to goal.



Design a reward function

Gridworld

GOAL

A misaligned reward function

1 reward for an action towards the goal
O reward otherwise

The is the number of goal-approaching actions.
The is the mean number of
goal-approaching actions.

So the task is to maximize the mean number of
goal-approaching actions.



Design a reward function

Gridworld A misaligned reward function

GOAL 1 reward for an action towards the goal
O reward otherwise

The is the number of goal-approaching actions.
The is the mean number of
‘ goal-approaching actions.

So the task is to maximize the mean number of
goal-approaching actions.

Will an agent that's maximizing its expected return terminate?



Design a reward function

Gridworld A misaligned reward function

GOAL 0 reward for an action towards the goal
-1 reward otherwise

The is the number of suboptimal actions (* -1).
The is the mean number of
‘ suboptimal actions (* -1).

So the task is to minimize the mean number of
suboptimal actions.



Design a reward function

Gridworld A misaligned reward function

GOAL 0 reward for an action towards the goal
-1 reward otherwise

The is the number of suboptimal actions (* -1).
The is the mean number of
‘ suboptimal actions (* -1).

So the task is to minimize the mean number of
suboptimal actions.

What if the goal is moved?
What if you misunderstood which actions go to the goal?



Al safety terminology

Precise definitions couldn't be found, so my versions:

outer alignment - the problem given to an Al optimizer to
solve is aligned

e regardless of whether the resultant solution is aligned
In practice

outcome-based learning - optimizing decisions based on
future rewards or goals



Is RL unfixably unsafe?

Science

JOURNALS RWAAAS

POLICY FORUM

ARTIFICIAL INTELLIGENCE

Regulating advanced artificial agents

Governance frameworks should address the prospect
of Al systems that cannot be safely tested

By Michael K. Cohen'2, Noam Kolt34,
Yoshua Bengio®$, Gillian K. Hadfield2347,
Stuart Russell'2

have increasingly emphasized the

noaad tn addrace avtinatinn riclr fram

T echnical experts and policy-makers

under control is also reflected in President
Biden’s 2023 executive order that intro-
duces reporting requirements for AI that
could “eva[de] human control or oversight
through means of deception or obfusca-
tion” (3). Building on these efforts, now is

tha tima far onvarnmantc tn davalan raon-

So long
be controll¢
achieve com
rewards ap]
capable RL
rewards, wh

+n cannira me«

"Giving an advanced Al system the
objective to maximize its reward (LTPAs)..."
leads to concerns that include reward
tampering, removing humans as obstacles
to reward, and power seeking.

"both safety and validity cannot be ensured
when testing sufficiently capable LTPASs"

"Developers should not be permitted to
build sufficiently capable LTPAs, and the
resources required to build them should
be subject to stringent controls."



Is RL unfixably unsafe?

Science

JOURNALS RWAAAS

"If dangerously capable LTPAs are at

e T RN e s some point permitted to be developed,
Regulating advanced artificial agents rigorous technical and regulatory work

Governance frameworks should address the prospect

of Al systems that cannot be safely tested would need to be done first..."

By Michael K. Cohen'2, Noam Kolt34, under control is also reflected in President So long
Yoshua Bengio®?, Gillian K. Hadfield347, Biden’s 2023 executive order that intro- | be controll¢
Stuart Russelll2 duces reporting requirements for AI that | achieve com

could “eva[de] human control or oversight | rewards ap;
T echnical experts and policy-makers | through means of deception or obfusca- | capable RL

have incresingly emphasized, the | tiow (9. bulding on these s now s | revaras wh - T'hjg ¢k covers such work.



Is RL impactful?

Observation: prompt + any previous text
Action: n-token response
Reward: ?7?7?




Is RL impactful?

O

Observation: prompt + any previous text
Action: n-token response

Reward: ?7??

Here, demonstrations and preferences are used.
The "reward function" from RLHF is not a

reward function in they way we normally use
the concept.




Is RL impactful?

RL has often had a stigma of not yet working well for important problems. It
has had some large successes though. A few:

e Games: Go, Chess, Poker, and Starcraft
e Data center cooling
e RL as search (LLM fine-tuning and AlphaFold)

Learning from long-horizon reward is harder to wield than learning from
demonstrations and preferences.

Nonetheless, a well-formulated RL problem has the potential to lead to
performance far beyond what humans can demonstrate or identify through
preferences.



The set of optimal policies is invariant to rescaling of
the reward function.



The set of optimal policies is invariant to shifts of the
reward function if...

from each state, all possible trajectories have the same length

Includes continuing and finite horizon tasks.

Does not include typical episodic tasks, such as those with goal or failure states.



A change in perspective

Reward from the perspective of an RL algorithm

An agent conducting policy improvement continually searches for policies that
get higher mean return.

We start zoomed in and zoom out from there:

e Agentis a pursuer of reward. @

e Agent estimates expected return from the reward it has experienced.

e Agentidentifies actions (more precisely, changes in policy) that will increase
estimated expected return.

Image modified from CC 2.0 license (source )


https://commons.wikimedia.org/wiki/File:Pacman_stub.svg
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A change in perspective

A reward-centric perspective of policies

The choice of the reward function and discounting create an ordering over

policies—given a start-state distribution—via their expected returns and over full
trajectories.

EFach change in a reward function may rearrange this ordering by changing each
policy's expected return.

Learning is not a consideration.

Ordering by expected return:

CHEMHCRCHENE



Consider designing for interpretable return.

Two highly common reward functions have interpretable return.

reward function: -1 reward until goal conL
The is the time to goal (* -1).
The is the mean time to goal (* -1).

So the task is to minimize the mean time to goal.

reward function: O upon losing, 1 upon winning, and 0 otherwise
The is a binary indicator of winning.

The is the probability of winning.

So the task is to maximize the probability of winning.

CC 2.0 license (source)


https://commons.wikimedia.org/wiki/File:Go_game.jpg

Finding Misalignment in a Reward
Function



FIND MISMATCHES IN PREFERENCE ORDERINGS

(The most powerful method I'm aware of.)

If all human stakeholders agree that trajectory 7, is preferable to 7,
(i.e., 7, > To), then > return of T, should hold.

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf,

Felix Schmitt, and Peter Stone. Reward (Mis)design
M for Autonomous Driving. AlJ 2023.

N



http://www.cs.utexas.edu/~pstone
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Rewarding two drives
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Rewarding two drives
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Rewarding two drives
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Rewarding two drives



Rewarding two drives
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End-to-End Race Driving with Deep Reinforcement Learning

Dynamic Input for Deep Reinforcement Learning Deep Distributional Reinforcement Learning Based
in Autonomous Drivi Maximilian Jaritz' 2, Raoul de Chareti', Marin Toromanoff, Etienne Perot? and Fawzi Nashashibit oh- ra) i ats
End-to-End Model-Free Reinforcement Learning in ous Driving High-Level Driving Policy Determination
for Urban Driving using Implicit Affordances Maria Huegle! Branka Mirchevska?, Moritz Werling?, Joschka Boedecker! > Model-free Deep Reinforcement Learning for Urban Kyushik Min®, Hayoung Kim, and Kunsoo Huh ©, Member, IEEE

Autonomous Driving
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A SAMPLING OF PUBLISHED REWARD FUNCTIONS

Reward Function

Navigating Occluded Intersections
with Autonomous Vehicles using

Deep Reinforcement Learning
[Isele et al., 2018]

Unweighted sum of 3 attributes:

- 0.01 for every step

- 10 if a collision occurred
(o otherwise)

+ 1 when the agent successfully
reaches the destination
beyond the intersection
(o otherwise)

Deep Distributional
Reinforcement Learning Based
High-Level Driving Policy
Determination [Min et al., 2019]

CARLA:An open urban driving
simulator [Dosovitskiy et al.,2017]

Unweighted sum of 4 attributes:
+ (v-40) /40, where v is
speed in km/h within the
allowed range [40,80] km/h
- 10 if the ego vehicle collides
(o otherwise)

+ 0.5 if the ego vehicle
overtakes another vehicle (o
otherwise)

- 0.25 if the ego vehicle
changes lane (0 otherwise)

Weighted sum of 5 attributes:
r =(1)Ad +(0.05)Av

+ (-2*%107°)Ac + (-2)As

+ (2)Ao

* Ad, the change in distance along the
shortest path from start to goal

* Av, the change in speed in km/h

* Ac, the change in collision damage
expressed in range [0, 1]

* As,the change in the proportion of
the ego vehicle overlapping with the
sidewalk

* Ao, the change in the proportion of
the ego vehicle overlapping with the
sidewalk

Learning hierarchical behavior and

motion planning for autonomous
driving [Wang et al., 2020]

Defined separately:
¢ For transitions to terminal states,
one of the following:
+ 100 if the goal was reached
- 50 upon a collision or running
out of time
- 10 for a red-light violation
- 1 if the ego vehicle is in the
wrong lane

* For transitions to non-terminal
states, unweighted sum of 3 attr.:
- B.t2v _-v(E)] / 3.t
2 ref &
which rewards speeds close to the
desired speed
-1/ [1 + Zt|v(t) |, which
rewards based on distance traveled
aF Zt [O0. O2:‘;{dOlon
+ 0.01*d_,_ (€)1,
which rewards keeping larger
distances

@TEXAS () BOSCH



FIND MISMATCHES IN PREFERENCE ORDERINGS

(The most powerful method I'm aware of.)

7 of 9 reward functions* incorrectly prefer v .
crash

W. Bradley Knox, Alessandro Allievi, Holger
o : —. T Banzhaf, Felix Schmitt, and Peter Stone.
Reward (Mis)design for Autonomous
Driving. AlJ 2023.

*9 exhaustively characterized papers’ reward functions allow this analysis


http://www.cs.utexas.edu/~pstone

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

Let 1, be atrajectory that successfully reaches the destination.

Tcrash < Tidle < Tdest ’

Option A Option B
P(1)
T — —.ofo =) P
Tl 'OTO_ - _.
e Td _____ ? ° 1 P




FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

Let 1, be atrajectory that successfully reaches the destination. 7___, <

Tidle < Tdest ’

If 7, <1,<T, then there is some probability p such that
G(18) = pG(1c) + (1 — p)G(74a)

p is the indifference point.

For each R, we calculate p, then convert it to km per collision at the
indifference point.



Sanity check failure 3: UNDESIRED RISK
TOLERANCE VIA INDIFFERENCE POINTS

[Wan20] Indifference points for collision frequency

[Chel9]

[Dos|7]

[Min19]

[Lial8] [Isel8] Drunk US 16-17 US 50-60

P'?;‘If(]);k / [Cail9] \ US 16-17 L
| | | \r

100 1000 10000 100000

Tcrash |d|e

km per collision
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FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

Indifference points for collision frequency

Drunk US 16-17 US 50-60
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FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

Indifference points for collision frequency

Drunk US 16-17 US 50-60
[Cail9] \ US 16-17 L
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FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

Indifference points for collision frequency

[Isel8] Drunk US 16—17 US 50-60
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FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

[Wan20] Indifference points for collision frequency

[Chel9]

[Dos|7]

[Min19]

[Lial8] [Isel8] Drunk US 16-17 US 50-60

P'?;‘If(]);k / [Cail9] \ US 16-17 L
| | | \r

100 1000 10000 100000

Tcrash |d|e

km per collision



OTHER GOTCHAS

e Clipping
o Example: -1,000,000 for collision, +1 for reaching the
destination



Missing attributes — negative side effects

SCORE LAPS ™ TURSO : . < :
13500 f—/s oes M @@

Amodei et al., 2016



MINOR SANITY CHECK FAILURES (5-8)

|dentify any of these red flags:

Incomplete description of the problem specification in research
presentations
m [Speculation] missing details in a paper indicate not considering
reward design to be a critical component of the research project

m 9 of 10 exhaustively characterized papers lacked details of their
problem specification (that were learned via our correspondence
with their authors)



Misalignment by Shaping



REWARD SHAPING

Reward shaping, def. — in addition to the true/environmental
reward, providing reward to aid learning, e.g., by providing
behavioral hints or heuristics

Tshaped — R(Sta At , St—l—l) + Rshaping(sta a¢, St—l—l)

In practice, most RL problems only have one, shaped reward
function. (’



REWARD SHAPING

What leaders in Al say

Russell and Norvig: “As a general rule, it is better to design performance metrics
according to what one actually wants to be achieved in the environment, rather than
according to how one thinks the agent should behave.”

Sutton and Barto agree in almost the same phrasing, adding that imparting knowledge
about effective behavior is better done via the initial policy or initial value function.

My version: Specify how to measure outcomes, not how to achieve them.

l.e., in general, don’t shape rewards.
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REWARD SHAPING

“Safe” reward shaping

Safety here means that the reward shaping will not change the optimal policy
(or ordering over policies).

Some specific methods for reward shaping are safe (under some assumptions),
but their desirability is still controversial.

If no effort is made to establish that an instance of reward shaping is safe, then
it's unsafe.



SAFE REWARD SHAPING METHODS

"Safe" here means that the reward shaping will not change the optimal
policy (or ordering over policies).

o Potential-based reward shaping (Ng. et al, 1999)

Rshaping(8t7 at, St—i—l) — ’YCD(St—i—l) — (:D(St)
o Its assumptions are often overlooked - tabular and a proper task
o Extensionto ®(s,a) (Wiewiora et al., 2023)
o Equivalence of potential-based shaping and Q-value initialization (Wiewiora et al.,
2023)
o Dynamic potential-based reward shaping (Devlin and Kudenko, 2012)

e Annealing the shaped reward (Behboudian et al., 2020; Szoke et al.
2024)



REWARD SHAPING IN PRACTICE

Reward shaping in RL for AD papers
e 13 of 19 include reward shaping

e Some examples of behavior that shaped rewards encourage
* staying close to the center of the lane [Jaritz et al., 2018]
* increasing distances from other vehicles [Wang et al., 2020]

* avoiding overlap with the opposite-direction lane [Dosovitskiy et al., 2017, Liang et al.,

2018]



REWARD SHAPING IN PRACTICE

Reward shaping in RL for AD papers

e Of those 8 exhaustively characterized papers that include reward
shaping ...
o 0 explicitly describe the separation of their shaping rewards and their true rewards
o 0O use a recognized method of safe reward shaping or discuss safety of reward shaping
o 2 acknowledge usage of reward shaping

o 1 acknowledges its potential adverse effects



Recommendation: Create an aligned reward function without
shaping, then optionally add a shaping reward function.

Why?

o C(larity
o The reward function should create an aligned problem
specification.
o The shaping rewards give policy guidance and may
change the problem specification.

Debugging ("overfit" plot) \

° == Shaped return

Return

Training episodes



Misalignment by Trial-and-Error Design



Imagine you want to design a new RL
problem.



Imagine you want to design a new RL
problem.

How might you approach this?



A trial-and-error process

Step 1: Design a candidate RL problem, including R.
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Step 2: Pick an RL algorithm for testing.



A trial-and-error process

Step 1: Design a candidate RL problem, including R.
Step 2: Pick an RL algorithm for testing.

Step 3: Learn a behavior policy.



A trial-and-error process

Step 1: Design a candidate RL problem, including R.
Step 2: Pick an RL algorithm for testing.
Step 3: Learn a behavior policy.

Step 4: If the policy isn’t right, update the RL problem
(especially the reward function) and repeat.



This trial-and-error process is the norm.

RL for AD
Of 8 papers whose authors shared their reward design

process over email,
100% used trial-and-error to design their reward function.

General RL experts

We surveyed 24 expert RL practitioners.
92% used trial-and-error to design their most recent
reward function.



Overfitting the reward function to the
training context?

Test RL algorithm

Performance

Trial-and-error
reward design iterations
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Overfitting the reward function to the
training context?

Training context - RL algorithm, hyperparameters, and tasks
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Overfitting the reward function to the
training context?

Training context - RL algorithm, hyperparameters, and tasks

pONER

Nes Test RL algorithm

Performance

Other RL algorithms

Trial-and-error
reward design iterations



Hungry Thirsty Domain

Singh et al., 2009, Where Do Rewards Come From?



Cumulative Performance

Finding the potential for overfitting.

= )

Intersections indicate
potential for
overfitting.

D

D,

Contexts



Finding: Reward functions that achieve the best
performance in one learning context can be
suboptimal in another.

Cumulative True Reward

1200001

100000+
80000

60000+

I HAT -0.05HA-T: -0.05;-HAT: 050, =HA -T:
Il HAT -0.05HA-T: -0.10;-HAT: 1.00,-H A —T:
HAT -050;HA-T: -0.10; -HAT: 1.00, -H A -T:

0.50
0.50
0.50

For all experiments, we find
the best performing reward
functions differ across
learning contexts.

This shows potential for
overfitting.



Cumulative Performance

(M)

H2: The cumulative performances achieved with
different reward functions are uncorrelated across

different learning contexts.

D

Distribution Sample

D,

We rank all reward functions for
each experiment setting (D& J)

We compare the ordering of these
rankings using Kendall’s tau.



Finding: The cumulative performances achieved
with different reward functions are uncorrelated
across different learning contexts.

We rank all reward functions for
D, T, T each experiment setting (D& J)»

1 i 838 3 i 82 882 We compare the ordering of these

v =0.8 v =0.5 0.12 rankings using Kendall’s tau.
a=025 wa=0.05 o ] |

We find that these rankings are
(| 7» | <0.1) or
slightly correlated (| 73 | <0.2).



User Study Conducted in Jupyter Notebooks

Reward for state: hungry AND thirsty O -0.50
Reward for state: hungry AND not thirsty -0.25
Reward for state: not hungry AND thirsty O 0.75
Reward for state: not hungry AND not thirsty () 1.00

Undiscounted Return
Summed Reward Per Episode: X s s)-'(S)

Algorithm Choice | DDQN v — row e

gamma | 0.99 v g ~40
num_episodes | 5000 v ”
ir | 0.001 vl

0 1000 2000 3000 4000
Episode

5000




Experts overfit reward functions too

68% of users overfit
reward functions

User P20 first tried a reward
function which achieved a mean
score of 138,092 with DDQN.

They ultimately selected a
different reward function, which
achieved a mean score of 1,031
with DDQN.



Experts' reward functions tend to not generalize.

Hard configuration Easy configuration

(15 steps between water & food) (5 steps between water & food)



Experts' reward functions tend to not generalize.

Hard configuration

(15 steps between water & food)

53% of RL experts submitted
reward functions that had optimal
policies which do not perform the
hard configuration well.



Experts are currently bad at writing reward functions.

53% of RL experts wrote reward
functions which failed to encode the
task in the hard case.

For example, P3’s reward function:

—0.1
—1.0

r(—-HA —-T) = 1.0 r(HA —T)
r(-HAT) = 1.0 r(HAT)

Hard configuration

(15 steps between water & food)



Most experts (83%) used a myopic design strategy of
using reward to order states by their desirability.

Example

“It’s best to not be hungry and thirsty, so I'll set that to the max, 1.
Being not thirsty is better than being not hungry [so 0.3 for only
hungry /not thirsty and -0.35 for only thirsty / not hungry]. Worst is
at hungry AND thirsty; setting that to -1” — Participant 25

Is the word "reward" harming reward design?



Reasoning about reward accumulation (return) is
done poorly.

Example reused

“It’s best to not be hungry and thirsty, so I'll set that to the max, 1.
Being not thirsty is better than being not hungry [so 0.3 for only
hungry /not thirsty and -0.35 for only thirsty / not hungry]. Worst is
at hungry AND thirsty; setting that to -1” — Participant 25



Takeaways

Trial-and-error reward design can overfit to the

training context (RL algorithm, hyperparameters, and
task).

And RL experts appear to do so in practice.
Impact on algorithmic comparison and ablation studies?



Misalignment by Discounting



REWARD AND RETURN

T

G(r) =) 7RI

\ ’7'}— Y \ St,CLt,SH_l?
Field Y t:O Y
reinf. learning return reward
motion planning -1 x cost -1 x cost
control theory -1 x cost -1 x cost
evolutionary algs. fitness -
utility theory utility -
optimization objective function* -
- performance metric -
- score -

* “objective function” more precisely refers to the expectation of G(T)



REWARD AND RETURN



REWARD AND RETURN
T

G(r) = 3" 7' R(st, az, 5141)

t=0 \
discount factor



REWARD AND RETURN

Proportion of

reward's value

retained

1.00

0.75

0.50

0.25

0.00

T

G(1) = Z V' R(st, at, S141)

y = 0.99

t=0

0

250 500 750

Time steps until a reward

discount factor



Contemporary RL tends to have 2 discount factors:
problem-side and algorithmic

Problem-side, y,, ., - part of the MDP definition

e determines how return should be calculated when evaluating a policy's
performance (e.g., for comparing algorithms or reporting results in a publication)

e with a start state distribution, determines the ranking of policies and therefore the
set of optimal policies

Algorithmic, Yoig ~ @ hyperparameter of the RL algorithm
® Yag = Yvopr
® Vg4 < 0.999 in deep RL papers | have seen, usually Yaig < 0.99

e in practice, y,, trades stability during learning at the cost of greater distance
between the RL algorithm's loss function and the task objective

Do not confuse the two! We focus on y,, _ unless otherwise stated.



Contemporary RL tends to have 2 discount factors:
problem-side and algorithmic

Problem-side, y,, ., - part of the RL problem definition
e creates the true return
Algorithmic, Yaig ~ @ hyperparameter of the RL algorithm
® Yag = Ymor
® Vg < 0.999 in deep RL papers | have seen, usually Yaig < 0.99

e in practice, Yaig trades stability during learning at the cost of greater distance
between the RL algorithm's loss function and the task objective

Do not confuse the two! We focus on y,, . unless otherwise stated.



Estimating return during RL at absorbing state vs.
when stopping an episode for other reasons

If stopping at absorbing state—i.e., satisfying termination conditions—the
absorbing state value is O except under highly unusual circumstances.

OnOn®n®n

When function approximation is used, there is danger that value inference will return a
nonzero value. You can use y=0 to get the equivalent effect as having a value of 0.

If stopping at non-absorbing state—i.e., without satisfying termination
conditions—include the value of the final state discounted by vy, (or Y,,5p).
g9 MDP

OnOntnOn®



The set of optimal policies can change as the discount
factor changes.

+1
In this continuing domain,
@E@ e ify<0.5 then choosing the left loop from s is
optimal
+2 e ify> 0.5 then choosing the fight loop from s is
optimal

Separate intuitive argument: if changing y didn't change the set of optimal policies, then
we would just set y=0 and forget about the credit assignment problem.



To develop intuition about your discounting, calculate
time-t0-10% value (and 1% and 0.1%) via IogY

Example: Autonomous driving often has 100ms time steps.

If y=0.9,
the rewards are discounted to X% of their full value this far in the future:

o 10%-219s
o 1%-437s
e 0.1%-6.56s

It takes a constant amount of time for each reduction by a factor 0.1.



To develop intuition about your discounting, calculate
time-t0-10% value (and 1% and 0.1%) via IogY

Example: Autonomous driving often has 100ms time steps.

If y=0.99,
the rewards are discounted to X% of their full value this far in the future:

o 10% -229s
o 1% -458s
e 0.1%-68.7s

Even with a relatively high y=0.99, events one minute into the future likely have
negligible effect on the value function!



To develop intuition about your discounting, calculate
time-t0-10% value (and 1% and 0.1%) via IogY

Example: Autonomous driving often has 100ms time steps.

If y=0.999,
the rewards are discounted to X% of their full value this far in the future:

e 10% -230s/4 min
e 1% -460s/8 min
e 0.1%-690s/12 min

Each 10x decrease in (1 - y) results in a ~10x increase in horizon.

While a precise horizon does not exist, there is an order of magnitude in which
discounting goes from being significant to being negligible.



Make all episodic tasks undiscounted.

Exponential discounting is a seemingly necessary evil in continuing tasks. It
ensures finite returns and encourages getting reward sooner.

But it has drawbacks:
1) It appears to decrease alignment with humans, who do not evaluate

outcomes with exponential discounting.
2) It makes return less legible / human-readable.

It's not necessary though in episodic tasks, so to avoid these drawbacks it
should not be used.



A continuing exponentially discounted task may not
have an optimal policy under function approximation.

/" MDP N "=
Reward: / H=le \
-1 per time step
m, |G n, |G
s | !
tl— G —|—| G
Nl
Ng
|
} |~—| ¢ Tt in set of worst rts

Argument comes from Discounted Reinforcement Learning Is Not an Optimization Problem by Naik et al. (2019).

If the start state is
the :
1, has higher
expected return.

If the start state is
the aqua cell,

T, has higher
expected return.



A continuing exponentially discounted task may not
have an optimal policy under function approximation.

It's plausible that no

/ optimal policy can = ye*
MDP \

If the start state is

\%19] ud be represented. \ the
_ J1—%6 | i, has higher
Rewqrc_j. / expected return.

-1 per time step
m, |G m, |G If the start state is
| } the aqua cell,
° ) . ¢ T, has higher
expected return.
G

— Ng /

} |~—| ¢ Tt in set of worst rts

Argument comes from Discounted Reinforcement Learning Is Not an Optimization Problem by Naik et al. (2019).



A continuing exponentially discounted task may not
have an optimal policy under function approximation.

e N Under the optimality criterion v™(s) = v™(s) for all states s and all
/ % policies rt', there may be no optimal representable policy.

150

> |

<]

Can we still specify an optimal representable policy by setting the
Ng / start state distribution? Le., set J(m) = Egyp(s)[Vr (50)]

-
A
fad
0
o
©
o)
(el
B3
g
=
o

Not if we want an aligned learning objective.

e Over the infinite time of a continuing task, the state visitation
distribution may have no support for the states that are
visited from start states within the discount factor's "horizon'
of non-negligible impact.

e Generally violates the idea that we care about performance
over an infinite task, not just at its start.

Argument comes from Discounted Reinforcement Learning Is Not an Optimization Problem by Naik et al. (2019).



Designing Alignhed Reward



There are no best practices!
(Well, not yet.)



But our methods for catching misalignment might
help.



Sketch of possible best practices

1. Consider the simplest set of outcome variables that differentiate varying

levels of success vs. failure.
o Find a per-time step version of each outcome variable that adds up to its full-trajectory
value.
o Example: time to goal
o Example: soccer

2. Create a parametrized reward function representation with these

variables.
o Recommendation: try a linear representation and stubbornly try to make it work

3. Tune the parameters so that its preference ordering over outcome
distributions matches yours.
4. Evaluate.

At any point, you may learn something that causes you to return to an earlier
step.



Sketch of possible best practices

1. Consider the simplest set of outcome variables that differentiate varying

levels of success vs. failure.
o Find a per-time step version of each outcome variable that adds up to its full-trajectory

value.
o Example: time to goal
o Example: soccer

2. Create a parametrized reward function representation with these variables.
o Recommendation: try a linear representation and stubbornly try to make it work

3. Tune the parameters so that its preference ordering over outcome
distributions matches yours.
4. Evaluate.

At any point, you may learn something that causes you to return to an earlier
step.



Methods for finding misalignment become methods for optimizing
the reward function via

3. Tune the parameters so that its preference ordering over outcome
distributions matches yours.



Summary



Tools and insights

e Catching misalignment via preference mismatch (R vs. human)
o Preferences over trajectorie
o Preferences over trajectory lotteries
e Shaping
o Keep shaping in a separate function.
o Plottrue return vs. shaped return to detect overfitting.
o Consider a shaping method that doesn't change the preference ordering over policies /
outcome distributions.
e Discounting
o Keep a separate problem-sidey.
o Calculate time to 10% / 1% / 0.1% value.

e Others

o Consider how the RL alg modifies R - e.g., clipping
o Bias towards designing an R with legible return and expected return



What Should We Work Towards?



Promising projects

e Validated best practices for aligned reward function design

e \When reward cannot be practically aligned
o Some valued outcomes aren't measurable by the learning system

e Debug methods --> debug tools

Al safety agenda: Expose where reward design can cause
dangerous misalignment. Fix it if possible. Otherwise, identify where
it should not be used.



Reward design consultation

Free for academic or
non-profit projects Designing a
reward function?

Want to talk about it
with someone?

Email bradknox@cs.utexas.edu and ask for a 30 minute consultation.

Disclaimer: | research the design of reward functions. | want to help you while developing my methodology for
doing these consultations, which may eventually be published as best practices for reward function design. This is
not a formal investigation, but | do hope to learn from you what was helpful and what was not.




Our papers on reward design

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt,
and Peter Stone. Reward (Mis)design for Autonomous Driving.
AlJ 2023.

Serena Booth, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone,
Alessandro Allievi. The perils of trial-and-error reward design:

misdesign through overfitting and invalid task specifications.
AAAI 2023.

Brad Knox <bradknox@cs.utexas.edu>


http://www.cs.utexas.edu/~pstone

