
PID Self-Tuning Rules in Agent Design
for TAC-SCM Competition

Long Wang

Department of Electrical & Computer
Engineering

The University of Texas at Austin

Peter Stone
Department of Computer Science
The University of Texas at Austin

Abstract
The supply chain can be seen as a multi-agent system. Each
agent is responsible for one or more activities and
coordinates with each other to optimize the performance.
TAC-SCM provides a dynamic trading environment which
can be used to test different strategies in the agent design.
This paper will introduce a strategy which implements PID
self-tuning rules and has robust performance in the class-
scale TAC-SCM competition so far.

1 Introduction
Supply chain management is very important to a large
manufacturing enterprise to meet dynamic market demand
changes. Activities such as raw components procuring,
production, delivery and order bidding should be planned
and executed in a timely and cost-effective way. One new
technique is considering a supply chain as a multi-agent
system where each agent is responsible for one or more
activities and interacts with each other to optimize the
system performance.

The e-Supply Chain Management Lab at Carnegie Mellon
University and the Swedish Institute of Computer Science
(SICS) jointly designed TAC-SCM which provides a
testing bed for different agent strategies. Typically, 6
software agents will compete for customer orders and
procurement of components from different providers in a
219 days game. Each agent has its own assembly lines and
can plan production and delivery everyday. To win the
game, agents have to coordinate their behavior in all the
activities and may be strategic. Interested readers can find
more detailed information about TAC-SCM in [1].

In this agent designed for class-scale TAC-SCM
competition, the key strategy implemented is PID self-
tuning algorithm which is used in the market for bidding
customer orders. The PID control algorithm is widely used
for the control of almost all loops in the process industries
and is also the basis for many advanced control algorithms
and strategies. And the PID tuning technique is used to
keep the process staying at the set-point where system
optimizes its performance.

In the following sections, section 2 will give an simple
introduction of PID control algorithm and PID self-tuning
techniques, section 3 will describe the strategy used for
bidding customer orders, section 4 will describe the
strategy used for procuring components from providers,
section 5 will describe the strategy for other activities. And
finally, we will evaluate this agent design and expect its
performance in the conclusion.

2 PID Control Algorithm
PID (Proportional-Integral-Derivative) control algorithms
allow the process control to accurately maintain set-point
by adjusting the control outputs. The set-point is where you
would like the measurement to be while error is defined as
the difference between set-point and measurement. (error)
= (set-point) – (measurement) The output of PID controller
will change in response to the change of set-point or
measurement. Usually there are three control modes:

Proportional Band
With proportional band, the controller output is
proportional to the error or a change in measurement.

(controller output) = (error) * 100 / (proportional band)

The proportional band is defined as 100 / gain. There will
be a proportional controller offset (deviation from set-
point) when using this control mode and increasing the
controller gain will make the loop go unstable. Integral
control is included to eliminate this offset.

Integral
With integral action, the controller output is proportional to
the amount of time the error is present.

(controller output) = (1/INTEGRAL) (Integral of) e(t) d(t)

Integral action can reduce the offset and the load
disturbances. However, there is a phase lag between the
environment change and the controller output which can be
compensated by including derivative control.

Derivative
With derivative action, the controller output is proportional
to the rate of change of the measurement or error.

(controller output) = DERIVATIVE (dm / dt)

Where m is the measurement at time t. Derivative action
can compensate for a changing measurement to inhibit
more rapid changes of the measurement than proportional
action. Thus, overshoot can be avoided.

These three control modes can often be used together to
stabilize the system fast and accurately.

The most important thing when implementing the PID
control algorithm is to understand the underlying process
and set correct control parameters. For an unknown system
or partly known system, we have to tune these control
parameters on the fly which is called self tuning or auto
tuning techniques. The typical self-tuning techniques
include tuning on demand with upsets and adaptive tuning.

Tuning On Demand with Upset: It will determine the PID
parameters by inducing an upset in the process. The
controls proportioning is shut off and the control is allowed
to oscillate around a set-point. This allows the control to
measure the response of the process when environment is
changed. From this data the control can calculate and load
appropriate PID parameters.

Adaptive Tuning: It will tune the PID parameters without
introducing an upsets. When a control is utilizing this
function it is constantly monitoring the process variable for
any oscillation around the set-point. If there is an
oscillation the control adjusts the PID parameters in an
attempt to eliminate or minimize them. This type of tuning
is ideal for processes where load characteristics change
drastically while the process is running.

3 Strategy for Bidding Customer Orders
The strategy for my agent in response to the customer
demand is as follows:

Compute the PC prices each day:

Compute the current unit price of each component based on
all the offers from the suppliers so far. Then compute the
unit price of each kind of PC according to Bill of Material
(BOM).

Compute the production status
Sum up the processing cycles in the past 5 days and get the
average sumCycles

Compute the profit discount
Use the following function to determine the current profit
parameter which will be used in bidding for orders:

Profit +=alpha* (sumCycles–cycleAmount) / cycleAmount

Where alpha has the initial value of 0.08 and will be self-
tuned according to the oscillate behavior. That is

Alpha = alpha*cycleAmount/|sumCycles – CycleAmount|

I first set cycleAmount to 2000 which is the production cap
for each agent and finally change it to 1800 to avoid high
penalty.

Bidding the order using profit parameter
When bidding for the order, my agent will submit the bid
as follows:

(bidding price) = (current price) * profit

Protection Mechanism
Most of the time, if the profit goes below 1.0 I will set it to
1.0 which means I am reluctant to sell cheaper than the cost
if there was price war. However, in the end of the
competition (after day 190), this limitation is removed. (In
fact, this mechanism has been changed just before the
game. That is, during the middle of the game, the profit
parameter is allowed to be as low as 0.5)

Whenever the inventory of some components is below 500
in consecutive 2 days, its price will be set to a high value
(5000) to avoid bidding the PC composed of such
components. After new ordered components from the
suppliers arrive, the alarm will be reset. So, in the
beginning of the game, the agent will not bid order from
the customers until we have enough required components
in the inventory.

4 Strategy for Procuring Components
The strategy for this part is changed often during the agent
design due to the fact that we have no inventory cost and
every agent my get benefit by placing large request in the
first game day. Since there is no reason to doubt that some
agent will not do so, the direct result is raising the price of
components in the following days to a much higher level.
So, my agent will not place order in this period (from day 1
to day 40). Because the capacity of suppliers in the first day
is randomly chosen, my agent will supplement the
inventory in day 70. Because the demand for each kind of
PC change a lot in a game and between games, my agent
will supplement the inventory once again in day 130.

First day procurement
Order 10000 units of cpu and 20000 units of other
components which are supposed to arrive after 40 game
days. For components which are supplied by more than 1
suppliers, each supplier will be requested 10000 units.

Procurement in day 70
The request quantity in game day 70 will be computed
using following function

(quantity) = 7000 – inventory (for cpu)

(quantity) = 14000 – inventory (for other components)

Still, when components have two suppliers, half amount
will be requested to each.

Procurement in day 130
Just like day 70, replace the 7000 and 14000 with 4000 and
8000 instead.

Regular procurement

Compare the difference needed components with the sum
of ordered and inventory, order 200 components in 10 days
if the result is positive. When such components have two
suppliers, the cheaper one will be selected. To achieve high
reputation, I don’t send the same requests to both suppliers.
Selection is determined based on the price of the last order.
So my agent will order 1 component everyday to each
agent to keep track of the updated price.

Protection mechanism
Whenever the inventory goes below 500 (the alarm is set at
the same time in the customer market), my agent will order
50 units of components in case some supplier suspend
delivery due to capacity reduced. The reason is, whenever
the delay happens, the order is given priority over orders
with a later due date.

To increase the chance of requests being selected by
suppliers, one large request is divided several small
requests.

5 Strategy for Other Activities
The other activities include production and delivery. It
turns out that in current competition environment they are
not much important compared to bidding for orders and
procurement of components. So I just use the base strategy
of base agent here. Actually, these parts are the future
work that my agents need to be improved.

Production
All the orders are sorted according to the profitability and
puts late order first. The production is executed according
to this order.

Delivery
Good delivery plan can be used to minimize the penalty.
However, I have nearly no time to implement good
delivery strategy, so just deliver the products whenever
they are produced.

Bank & Market report
For the same reason, this agent does not consider their
effect to the market and agents and leaves them there.

6 Conclusion
Our goal is to maximize the overall gain in utilities. Since
the behavior of other agents is unknown and there is some
randomness in the virtual economical environment, the
strategy must be easier to be tuned to adapt to different
games and opponents. PID control algorithm is one of such
methods that can achieve robust performance in a timely
and cost-effective way.

To analyze the strategy for my agent, let us considering the
following scenarios,

Bad market

In the worst case, I will accumulate 10000 units of CPUs
and 20000 units of other components in the inventory in the
end. This may not happen because every agent is rational
enough and will not submit an unreasonable bid. Besides, I
have a protection mechanism that will deplete the inventory
after day 190 as many as possible.

Another situation might be some components are
suspended for delivery and no PC can be produced. In this
way, I can not win order but will not get penalty due to the
alarm protection mechanism.

So, most of the time, my agent will get a positive profit or a
little below zero due to the negative bank interests.

Good market
Market is good means every agent may get enough orders
from the customers and get enough components from the
suppliers with a reasonable price. In this case, the
capability of production of my agent will be fully utilized
and will beat down those agents who are also myopic. Here
myopic agents are those agents who don’t or can’t predict
future market changes and just bid based on past
information.

Those agents who can accurately predict market trend can
perform better, however, with the cost of some risk. And it
turns out that accurately prediction is very hard to achieve
in a relative short development period.

Complex market
Here complex market means customer demand and
capacity of supplier change a lot during one game or
between games. My agent will go above zero because it
can idle in the bad time and be active when there is profit
space. Supplemental procurement in day 70 and day 130
allow the agent have enough inventory with low risk of
stock large amount of unused components. Penalty tends to
be low because most of the time I will have enough
inventory and avoid competition in the bad time (from day
1 to 40 and the end of the game). The most important thing
is that the PID control parameters are self tuned and can
stabilize the system as soon as possible.

In summary, after implementing PID self tuning control
algorithm in the strategy, this agent is expected to have
robust performance in the coming class-scale competition.

References
[1] Arunachalam, Eriksson, Finne, The TAC Supply

Chain Management Game, 2003

