TacTex: An Adaptive Supply Chain Bidding Agent

David Pardoe Ronggang Yu Ali Niaz Peter Stone

Department or Computer Sciences The University of Texas at Austin

Starting Point

- Formulate **optimal** solution for each of the 5 decisions
- Intractable in all cases
- Identify key necessary **approximations**
- Example: production and delivery
 - Deliver as soon as it's produced
 - Heuristic production scheduling

Production and Delivery: Optimal LP

- Define x[i][d]: customer order *i* satisfied on day *d*? - $d = -1 \Longrightarrow$ use product inventory
- Pr[i] : profit (price) of order i
- Pe[i][d]: penalties **avoided** on *i* for all days after *d*
- int[d] : interest earned on profit from day d until end.
- Objective function:

 $\sum_{d=-1 \rightarrow \text{maxday}} \sum_{i} x[i][d] * (Pr[i] + Pe[i][d]) * int[d]$

- Constraints: cycles, components, inventory, ...
- Takes too long even with maxday = 0!

Production and Delivery: Approximations

- Consider late orders first (2 pools of orders)
 - Priority Sort: Rank by (price cost + penalties)
 - Approximate LP:
 - * Separate by computer
 - * Separate use of inventory from production
 - * If taking too long, fall back to priority sort
- With free cycles, partially satisfy large future orders

Comparisons

- Experiments over 36 games
- 1 approximate LP, 4 Priority sort, 1 dummy
- Agents are otherwise identical

AGENT NAME	RELATIVE SCORE	RANK	ERROR
Linear Prog.	3,440,916.76]	1,171,318.3
Priority1	-295,478.49	2	1,239,094.1
Priority2	-350,361.10	3	939,827.4
Priority3	-1,320,184.18	4	1,411,318.9
Priority4	-1,474,892.99	5	1,106,764.8

Ordering Components

- Components are **cheapest on the first day**
 - Try to stock up
 - But don't order too many
- The right number depends on the total number of **customer RFQs** in the game

RFQs vs. Orders

- RFQs on day 2 gives indication of expected total
- Problem: cheapest supplies on day 1
- Solution: Send RFQs to maintain flexibility
 - RFQs of 8000, 4000, 2000, 1000, and 500 (in order)
 - Never need more than 16000
 - Can be combined to get a wide range of totals
 - Largest first to last until next order arrives
 - Accept a subset based on RFQ prediction
- **Prediction** based on simulation of day 2 RFQ \Rightarrow Total RFQs

Components after day 1

- Need a different strategy after day 1 (if more needed)
- Prices are **determined by due date**
 - Supplier has lots of orders before due date \Rightarrow high price
- **Probe** price as function of due date with small RFQs
- Request enough to maintain threshold supply 50 days ahead (assuming current rate of use)
- Only accept if expected profit increase > price
 - Marginal value based on assumptions about computer prices and other components' costs

Offering Computers

- Find the set of offers that **maximizes profit**
- Need to **estimate** P(winning order I offer price)
- Given RFQ and cost of computer in question, optimal price maximizes (price - cost) * P(order | price)
- May not be able to produce all orders for optimal prices
 - Then need to raise prices to reduce demand

Raising prices

- Iteratively raise prices on the least profitable offers
- Based on **greedy** production scheduler
 - Order by profit/prod. cycles (main constraint)
 - Look ahead 15 days (last production for request today)
- Order not produced \Rightarrow increase price (frac. of base price)
- **Repeat** until all orders can be produced
- Too many orders \Rightarrow less capacity for future orders
- So we add **predicted** future RFQs to today's RFQs

Predicting RFQs

- Generate RFQs for computers that could be produced in the 15 days we are considering
- Only need to predict # of RFQs
- 2 options for using past data:
 - line fitting
 - averaging
- Tested using same model as the server
 Thousands of simulated games
- Average of the past four values gave the best result
- Tried using slope of fitted line to predict the RFQ trend
 Less accurate than simply assuming zero trend

Predicting the probability of an order

- For deciding offers, need P(order | price)
- Useful data from **daily reports** (past 10 days):
 - the lowest price it was ordered at (P=1)
 - the mean low price
 - mean of mean low and mean high
 - the mean high price
 - the highest price (P=0)
- Estimate probabilitiess at middle 3 points
 - Start with .75, .50, .25
 - Also trying to use past game data
- Linearly interpolate between points for prices in between

Day Factor

- # days to due date also important
 - Learn day factor: multiplier for probability
 - Each possible day (3-12) has its own day factor
 - Day factors start at 1
 - Adjust based on expected # orders, actual orders
- Without it, get more orders on earlier days
- With it, more even distribution

Using Past Game Data

- Assume that games are played against constant opponents
- Mining logfiles gives long term P(offer | price)
- Turned out that short term information from daily reports is more predictive

Summary

- Very little opportunity for **optimal** decision-making
- Lots of **prediction** in our strategy
- Many attempts at learning and adaptation
- So far only a few are useful (e.g. day factor)

