Progress in Learning 3 vs. 2 Keepaway

Gregory Kuhlmann Department of Computer Sciences University of Texas at Austin

> Joint work with Peter Stone

Department of Computer Sciences

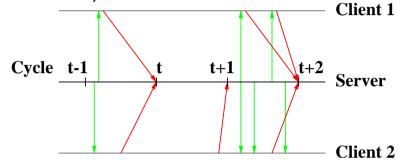
RoboCup and Reinforcement Learning

- Reinforcement Learning suited to soccer
 - Sequential decision making
 - Achieving delayed goals
 - Handling noise and stochasticity
 - Rapid decision-making
- Challenges
 - Multiple learning agents
 - Large state space
 - Not within realm of theoretical results

Department of Computer Sciences

RoboCup Simulator

- Distributed: each player a separate client
- Server models dynamics and kinematics
- Clients receive sensations, send actions



- Parametric actions: dash, turn, kick, say
- Abstract, noisy sensors, hidden state
 - Hear sounds from limited distance
 - See relative distance, angle to objects ahead
- $> 10^{9^{23}}$ states
- Limited resources : stamina
- Play occurs in real time (\approx human parameters)

Department of Computer Sciences

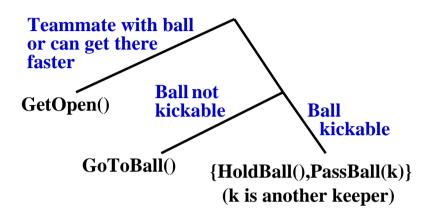
The University of Texas at Austin

3 vs. 2 Keepaway

- Play in a small area ($20m \times 20m$)
- Keepers try to keep the ball
- Takers try to get the ball
- Episode:
 - Players and ball reset randomly
 - Ball starts near a keeper
 - Ends when taker gets the ball or ball goes out of bounds
- Performance measure: average episode duration

Department of Computer Sciences

Keeper Policy Space



- Basic skills from CMUnited-99 team
- Example Policies
 - Random
 - Hold
 - Hand-coded

Department of Computer Sciences

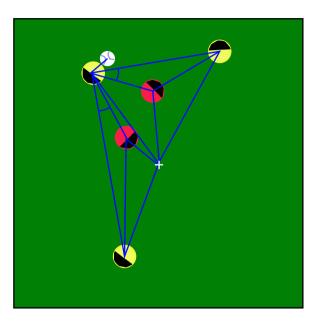
Mapping Keepaway to RL

Discrete-time, episodic, distributed RL

- Simulator operates in discrete time steps, t = 0, 1, 2, ..., each representing 100 msec
- Episode: $s_0, a_0, r_1, s_1, \dots, s_t, a_t, r_{t+1}, s_{t+1}, \dots, r_T, s_T$
- $r_t = 1$
- $V^{\pi}(s) = E\{T \mid s_0 = s\}$
- Goal: Find π^* that maximizes V for all s

Department of Computer Sciences

Keeper's State Variables

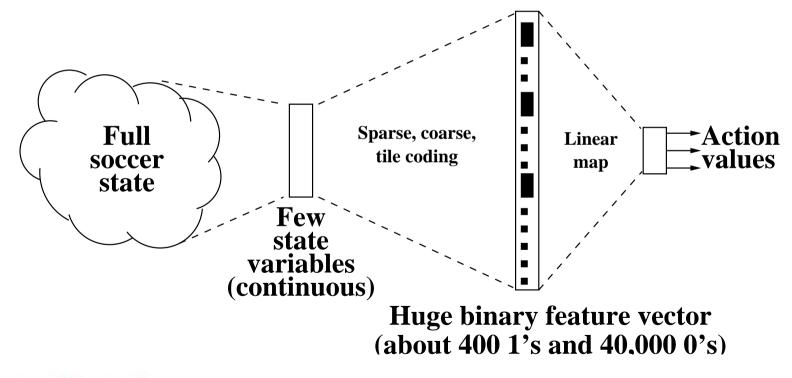


- 11 distances among players, ball, and center
- 2 angles to takers along passing lanes

Department of Computer Sciences

Function Approximation: Tile Coding

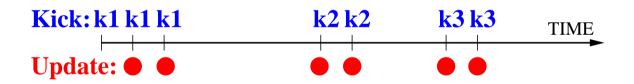
- Form of sparse, coarse coding based on CMACS [Albus, 1981]
- Tiled state variables individually (13)



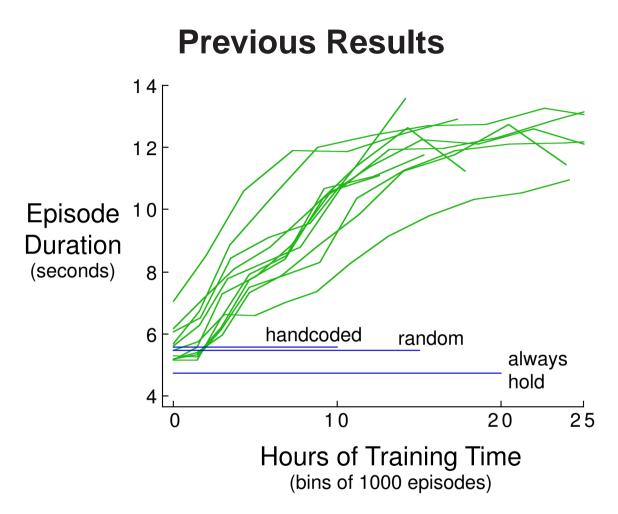
Department of Computer Sciences

SMDP Sarsa(λ **)**

- Linear Sarsa(λ)
 - On-policy method: advantages over e.g. Q-learning
 - Not known to converge, but works (e.g. [Sutton, 1996])
- Only update when ball is kickable for someone: Semi-Markov Decision Process



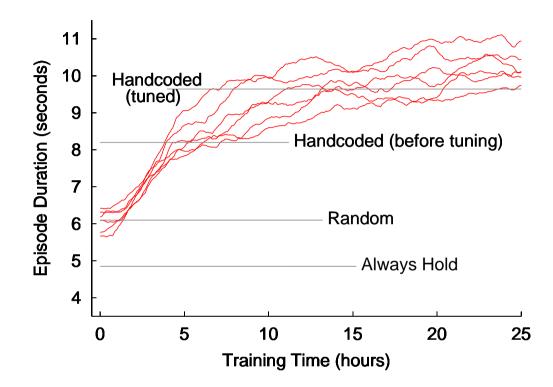
Department of Computer Sciences



- Results scaled up to 4 vs. 3
- 360° view angle. No perceptual noise

Department of Computer Sciences

Limited Vision



- With noise. Limited (90°) vision
- As good as tuned handcoded policy

Department of Computer Sciences

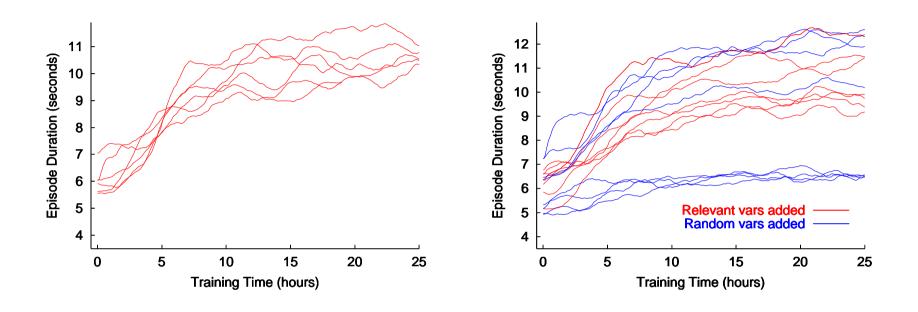
Varying Field Sizes

	Keeper Policy	
Field Size	Hand-coded	Learned ($\pm 1\sigma$)
30×30	19.8	18.2 ± 1.1
25×25	15.4	14.8 ± 0.3
$\boxed{20 \times 20}$	9.6	$\textbf{10.4} \pm \textbf{0.4}$
15×15	6.1	$\textbf{7.4} \pm \textbf{0.9}$
10×10	2.7	$\textbf{3.7} \pm \textbf{0.4}$

• Learning does better on harder problems

Department of Computer Sciences

Changing the State Representation



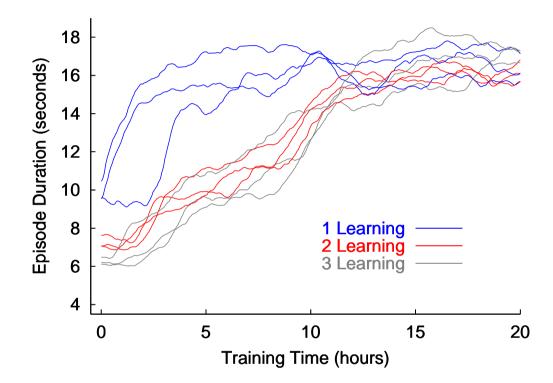
5 variables from the handcoded policy

13 original variable plus an additional 2

- Robust to redundant variables
- Sometimes confused by irrelevant variables

Department of Computer Sciences

Difficulty of Multiagent Learning

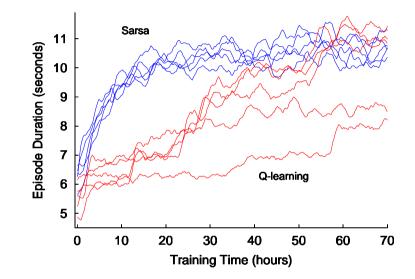


• Multiagent learning is harder!

Department of Computer Sciences

More Results

• Learns faster than on-policy method: Q-learning



Scaling up:

- Solution scales to: 4 vs. 3, 5 vs. 4, 6 vs. 5
- Learning time doubles each step

Department of Computer Sciences

Conclusion

- SMDP Sarsa(λ) with tile-coding provides a robust multiagent learning solution despite lack of theoretical guarantees.
- Performs as well as a handcoded solution and is more robust.
- Keepaway domain part of official Soccer Server: http://sserver.sourceforge.net/
- Acknowledgement: Richard S. Sutton

Department of Computer Sciences