CS395T Reinforcement Learning: Theory and Practice Fall 2004

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week4a: Tuesday, September 21st

Good Afternoon Colleagues

• Are there any questions?

- Consider the week 0 environment
- For some s, what is V(s)?

- Consider the week 0 environment
- For some s, what is V(s)?
- OK consider the policy we ended with
- Now, for some s, what is V(s)?

- Consider the week 0 environment
- For some s, what is V(s)?
- OK consider the policy we ended with
- Now, for some s, what is V(s)?
- Construct V in undiscounted, episodic case

- Consider the week 0 environment
- For some s, what is V(s)?
- OK consider the policy we ended with
- Now, for some s, what is V(s)?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case

- Consider the week 0 environment
- For some s, what is V(s)?
- OK consider the policy we ended with
- Now, for some s, what is V(s)?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it's discounted?

- Consider the week 0 environment
- For some s, what is V(s)?
- OK consider the policy we ended with
- Now, for some s, what is V(s)?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it's discounted?
- What if it's continuing?

 \bullet Relationship between Q and V

- \bullet Relationship between Q and V
- Bellman equations

- \bullet Relationship between Q and V
- Bellman equations unique solution

- \bullet Relationship between Q and V
- Bellman equations unique solution
- Backup diagrams (p. 70, 74, 77)

- \bullet Relationship between Q and V
- Bellman equations unique solution
- Backup diagrams (p. 70, 74, 77)
- Exercise 3.17

• Solution methods given a model

- Solution methods **given a model**
- Why is it called dynamic programming?

• Susan on the Gambler's Problem (p. 101)

- Susan on the Gambler's Problem (p. 101)
- Email discussion linked to the book web page

• V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)

- V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)
- Policy evaluation converges under the same conditions (p. 91)

- V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)
- Policy evaluation converges under the same conditions (p. 91)
- Exercises 4.1, 4.2

- V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)
- Policy evaluation converges under the same conditions (p. 91)
- Exercises 4.1, 4.2
- Policy improvement theorem: $\forall s, Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) \Rightarrow \forall s, V^{\pi'}(s) \ge V^{\pi}(s)$

• p. 107: Is LP still inefficient?

- p. 107: Is LP still inefficient?
- p. 109: This chapter treats **bootstrapping** with a model

- p. 107: Is LP still inefficient?
- p. 109: This chapter treats **bootstrapping** with a model
 Next: no model and no bootstrapping

- p. 107: Is LP still inefficient?
- p. 109: This chapter treats **bootstrapping** with a model
 - Next: no model and no bootstrapping
 - Then: no model, but bootstrapping

