CS395T Reinforcement Learning: Theory and Practice Fall 2004

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week6b: Thursday, October 7th

Good Afternoon Colleagues

• Are there any questions?

Good Afternoon Colleagues

- Are there any questions?
- Pending questions:
 - How can actor learn continuous actions?
 - Can knowing actions help the critic?

Good Afternoon Colleagues

- Are there any questions?
- Pending questions:
 - How can actor learn continuous actions?
 - Can knowing actions help the critic?
 - Windy grid why not MC?
 - * Can't we guarantee convergence? (147)

- Are there any questions?
- Pending questions:
 - How can actor learn continuous actions?
 - Can knowing actions help the critic?
 - Windy grid why not MC?
 - * Can't we guarantee convergence? (147)
 - Afterstates vs. state values?

• Fill out survey by 12:30pm tomorrow

- Fill out survey by 12:30pm tomorrow
- Chapter 7 important and a bit tricky

• Exercises 6.2, 6.4 (book slides)

- Week 0 example
 - (Remember no access to real model)
 - $\ \alpha = .1, \epsilon\text{-greedy} \ \epsilon = .75,$ break ties in favor of \rightarrow

- Week 0 example
 - (Remember no access to real model)
 - $\ \alpha = .1, \epsilon\text{-greedy} \ \epsilon = .75,$ break ties in favor of \rightarrow
 - Where did policy change?

- Week 0 example
 - (Remember no access to real model)
 - $\ \alpha = .1$, $\epsilon\text{-greedy} \ \epsilon = .75$, break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?

- Week 0 example
 - (Remember no access to real model)
 - $\ \alpha = .1, \epsilon\text{-greedy} \ \epsilon = .75,$ break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?
 - Sarsa depends on policy' dependence on Q:
 - Policy must converge to greedy

- Week 0 example
 - (Remember no access to real model)
 - $\alpha = .1$, ϵ -greedy $\epsilon = .75$, break ties in favor of \rightarrow
 - Where did policy change?
- How do their convergence guarantees differ?
 - Sarsa depends on policy' dependence on Q:
 - Policy must converge to greedy
 - Q-learning value function converges to Q^*
 - As long as all state-action pairs visited infinitely
 - And step-size satisfies (2.8)

• Mazda's discussion

- Mazda's discussion
- How can actor learn coninuous actions?
- Can knowing actions help the critic?

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy
- R-learning sum converges?

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy
- R-learning sum converges?
- R-learning: why negative in 6.17?

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy
- R-learning sum converges?
- R-learning: why negative in 6.17?
- R-learning better than Q? Converges to optimal? (David)

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy
- R-learning sum converges?
- R-learning: why negative in 6.17?
- R-learning better than Q? Converges to optimal? (David)
- (Afterstates)

