
Abstract
Despite many decades of research into mobile
robot control, reliable, high-speed motion in
complicated, uncertain environments remains
an unachieved goal. In this paper we present a
solution to realtime motion control that can
competently maneuver a robot at optimal speed
even as it explores a new region or encounters
new obstacles. The method uses a navigation
function to generate a gradient field that repre-
sents the optimal (lowest-cost) path to the goal
at every point in the workspace. Additionally,
we present an integrated sensor fusion system
that allows incremental construction of an un-
known or uncertain environment. Under mod-
est assumptions, the robot is guaranteed to get
to the goal in an arbitrary static unexplored en-
vironment, as long as such a path exists. We
present preliminary experiments to show that
the gradient method is better than expert human
controllers in both known and unknown envi-
ronments.

1 Introduction
Motion control for a mobile robot can be divided into
three general categories.

1. Motion planning. A complete path from robot to
goal is generated, and the robot follows this path
[5].

2. Local path evaluation. Several paths (e.g., a set
of circular arcs of differing radii) in the immedi-
ate vicinity of the robot are evaluated to see if
they are obstacle-free and lead towards a [9].

3. Reactive. The robot chooses a direction to move,
based on current information about obstacles and
the goal direction [1,7].

Most current controllers are combinations of these tech-
niques, using motion planning for a global path and the
other techniques to deal with uncertain or unknown ob-
jects. For example, in the bubble method of Khatib [3],
motion planning generates an initial path based on prior
knowledge of the environment, and then the path is ad-
justed as the robot senses obstacles that lie in the way of
the path. Similarly, in local path methods, a motion

planner generates waypoints, while motion towards the
waypoint is determined by checking a small set of paths
in the vicinity of the robot for collisions, based on local
sensing.
 What these hybrid methods sacrifice is optimality.
Local path and reactive methods, for example, can get
stuck in local minima, and require a recalculation of
waypoints by the motion planner. Since the motion
planner is computationally expensive, the robot must
wait while the new waypoints are found. Even when the
local methods work, they do not generate optimal paths
for the robot to a waypoint. In fact, they typically do
not even have a concept of optimality.
 In this paper we present a new method for local navi-
gation, called the gradient method, that continuously
calculates an optimal path to a waypoint goal, overcom-
ing the limitations of current local methods. The con-
cept of optimality is derived by assigning costs to a
path, based on its length and closeness to obstacles, as
well as any other criteria that may be chosen. The gra-
dient method computes a navigation function in the lo-
cal space of the robot, such that the gradient of the
navigation function represents the direction of the low-
est-cost path at every point in the space. The method is
efficient enough to be computed at a 10 Hz rate with
modest computational resources.
 By itself, the gradient method can generate the low-
est-cost path in a static and completely known environ-
ment. But in many situations, there are complicated
movable obstacles (furniture, doors) whose position may
be uncertain or unknown. In the second part of this
paper, we develop a sensor fusion algorithm for con-
structing a Local Perceptual Space [4] of the robot, in
which new information is continuously added. In con-
junction with the gradient method, it allows the robot to
efficiently explore a local area and find a path to the
goal.
 Finally, we present some experiments that compare
the gradient method to expert human controllers.

A Gradient Method for Realtime Robot Control
Kurt Konolige
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

konolige@ai.sri.com

2 Navigation functions for minimum-
cost paths

In this section we consider the generation of minimum-
cost paths to a goalset in configuration space. We show
how to build a navigation function that assigns a poten-
tial field value to every point in the space. Traveling
along the gradient of the navigation potential yields the
minimum cost path to the goalset from any point in the
space.

 For the rest of this paper, we consider the configu-
ration space to be discretized into a set of points at
which the navigation function and path costs will be
sampled. Typically the discretization will be uniform,
but it need not be. Values for the navigation function
and costs at arbitrary non-sampled points can be com-
puted by interpolation between sample points. The
goalset is a set of sample points, although again we
could relax this assumption without changing the basic
formulation.

2.1 Path costs
We would like to find a path with minimum cost to
some point in the goalset. Let us represent a path by an
ordered set of points in the sample space,

},,{ 21 KppP = , (1)

where the set of points are contiguous (either diagonally
or rectilinearly), and no point repeats. The last point on
the path must be a goalset point, and no other point can
be. We abbreviate a path that starts at point k by kP .

In general, the cost of a path is an arbitrary function
of the (discretized) path,)(PF . But such cost functions

are difficult to deal with, and we make the assumption
that the path cost is separable into the sum of an intrin-
sic cost of being at a point, along with an adjacency
cost of moving from one point to the next:

∑∑ ++=
i

ii
i

i ppApIPF),()()(1 (2)

Both I and A can be arbitrary functions. For typical
situations, I will represent the cost of traversing through
the given point, and will be set according to the domain
characteristics, e.g., a high cost will be assigned to be-
ing near an obstacle. Other possibilities are to have
higher costs for unknown regions, slippery regions, etc.

The path length can be taken into account by assign-
ing A to be proportional Euclidean distance the robot
travels between the two points; then the sum of A gives
a cost proportional to the path length.

2.2 Navigation function
A navigation function N is the assignment of a potential
field value to every element of the configuration space,

such that the goalset is always “downhill” no matter
where you are in the space [5]. Navigation functions,
unlike potential field methods in general, have the char-
acteristic that it is impossible to get stuck in a local
minimum, and no search is required to determine a
direction to go to arrive at the goalset.
 The key idea behind the gradient method is to assign
the navigation function at a point to be the cost of the
minimal cost path that starts at that point. Mathemati-
cally,

)(min k
P

k PFN
k

= , (3)

where as before, the path kP starts at point k.

 If the intrinsic costs are zero, then the navigation
function just represents the distance to the nearest goal-
set point. Traveling in the direction of the gradient of N
yields the fastest reduction of path costs, i.e., the mini-
mum distance to a goalset point. In the general case,
traveling along the gradient is a minimum cost path to
the goalset.

2.3 The LPN algorithm
Computing the values of Equation (3) at every point is
difficult, since the size of the configuration space can be
large, and finding the minimal cost path in a naïve
manner involves iteration over all paths from the point.
In this paper, we do not attempt to resolve the problem
of the configuration space size, and the gradient method
is only appropriate for a small number of dimensions.
In our experiments, we assume the robot operates on the
floor plane, is circular, and can turn in its own radius,
so that a simple XY space is appropriate. The computa-
tion we describe here can be done for an arbitrary space,
but is not practical for dimensions larger than 3 or 4.
 In the literature, simple navigation functions for
small-dimension spaces have been computed by a wave-
front algorithm [1,9]. The goalset points are assigned a
value of 0. At each iteration, the points with value n are
expanded to their nearest (rectilinear) neighbors, giving
them a value of n+1 if they are not already assigned,
and are not obstacles. The process repeats until all
points have been assigned. It takes time of the order of
the number of points in the space, which is why it can
only be used in small spaces. The wavefront algorithm
computes the minimal Manhattan distance free-space
path to the goalset.

The wavefront algorithm never backtracks, because at
each point it advances the navigation function only to
those points that have a value one higher than any other
assigned point. However, the naïve application of the
wavefront algorithm to the navigation function of Equa-
tion (3) won’t work, because the value of the function
can change arbitrarily from one point to the next.

Instead, we use a linear programming algorithm that
is a generalization of the wavefront algorithm, which we
call LPN. The cost of LPN is again the order of the
number of points in the space, and it reduces to the
wavefront algorithm under the appropriate conditions
on the navigation function.

Initially we assign all goalset points a value 0, and
every other point an infinite cost. The goalset points are
put in an active list of points. At each iteration of the
algorithm, we operate on each point on the active list,
removing it from the list and updating its neighbors.
Consider an arbitrary point p that we have just assigned
a value. This point is surrounded by 8 neighbors on a
regular grid (Figure 1). For any of the neighbors q, we
can compute the cost to extend the path from p to this
point, using the cost metric of Equation (2). If the new
cost at q is smaller than its own cost, we replace it with
the new cost, and add q to the new list of active points

that constitute the wavefront. For example, in Figure 1,
the new cost for the diagonal neighbor is 20+14+5 = 39,
which is less than its original cost, so it is added to the
wavefront. The process repeats until the active list be-
comes empty.

It is possible to show that the LPN algorithm com-
putes the least-cost path to every point in the workspace.

Proposition 1. At each point in the workspace, the gra-
dient of the navigation function computed by LPN, if it
exists, points in the direction of a least-cost path to the
goalset.

Figure 2 shows the LPN algorithm at several different
stages, starting from a single goal point. The rectangles
represent the intrinsic cost of the sample points, with a
large rectangle being infinite cost. These cost are com-
puted from the obstacles in the workspace, as described
in the next section.

The navigation function is implicitly described by the
gradient direction at each point, here indicated by the
short line segments. Where the navigation function is
uniform, as it is in the vicinity of obstacles, the gradient
is undefined. Note how the gradient points strongly
away from the interior of the obstacles. Another inter-
esting feature of the navigation function is the presence
of ridges, points at which the gradient is equal in sev-
eral directions. Ridges represent choice points in find-
ing a minimal-cost path: any direction can be chosen,
they lead to equal cost paths. In the last frame, there is
a ridge that extends upward from the obstacle just above
the goal point, where it is equally costly to go either left
or right around the obstacle.
 In the sequence of Figure 2, the wavefront is com-

C = 20

I = 5
C = 40

A = 14

Figure 1. Updating the cost of points in the
neighborhood of an active point. See text for expla-
nation.

Figure 2. Three stages of the LPN algorithm, starting from a single goal point. The rectangles indicate the intrinsic
cost of a point. The gradient direction at each point is shown as a short black line. The images shown are at 10, 30,
and 70 iterations. The interpolated path from the robot to the goal is shown in the last image.

posed mostly of the set of points on the periphery of the
gradient field. However, there can also be wavefront
points on the interior. For example, in the second im-
age, wavefronts from two sides of the obstacle have con-
verged, and interior points will be added to the active
list as long as they can update their neighbors with
lower costs.

Finally, the minimal-cost path from the robot to the
goal is computed and shown in the last frame. This
path is easily found once the navigation function is
known: starting from the robot, move a short distance
along the gradient. At the new point, find the gradient
by interpolation, move a short distance, and repeat.
Note that although we show the gradient at all points in
the space, we need only compute along the path from
the robot to the goalset.

2.4 Obstacle costs
One of the problems with the original wavefront algo-

rithm was that it produced paths that grazed obstacles.
Other variations place the path as far as possible from
obstacles. The LPN algorithm computes a generalized
form of the navigation function that minimizes the cost
of the path, and so the path behavior around obstacles
can be controlled by the assignment of intrinsic costs, in
the following way.

Suppose the obstacles in the workspace are given by a
set of obstacle points. Let d(p) be the distance of the
point p to the nearest obstacle point. Then assign:

))(()(pdQpI = , (4)

where Q is a decreasing function of its argument.
Figure 3 shows two examples of a Q function. Both
have a very high cost within 20 cm of any obstacle,
which is the robot radius. In the function Q1, the cost

falls rapidly with distance after this point, while in Q2,
it falls much more slowly. Hence Q1 will allow the ro-
bot to approach obstacles more closely than Q2. The
intrinsic costs in Figure 2 were computed with the func-
tion Q1.

Note that an intrinsic cost function like Q2 will not
prevent the robot from going through tight spots, but it
will make it more likely that a longer path around the
constriction will be less costly. For example, in Figure
2 the function Q2 would put the path to the left of the
obstacle above the goal point.

In practice the intrinsic costs can be assigned in the
following way. Given a set of obstacle points, each
point is labeled with the distance to the nearest obstacle
point using the LPN algorithm, with the goalset being
the obstacle points, all intrinsic costs at zero, and the
adjacency cost set to Euclidean distance. Then, the Q
function converts the distance at each point to an intrin-
sic cost.

2.5 LPN timing
The LPN algorithm runs in time proportional to the

number of points in the workspace. Two LPN calcula-
tions must be done: one for the obstacle cost computa-
tion, and one for the navigation function. In most cases,
the obstacle cost calculation can be stopped after a few
iterations, and the navigation function dominates the
computation time.

On a modest PC (266 MHz Pentium), a C implemen-
tation averages about 1 µs per workspace point. For a
10 m by 10 m workspace, with a grid size of 10 cm, it
will take 10 ms to calculate the navigation function.
Thus, the LPN algorithm is suitable for realtime control.
Typically we run it at a 10 Hz rate, which is fast enough
to run the robot efficiently at speeds up to 1 m/s.

3 Environment modeling
To be able to move efficiently, a robot must have a

good model of its environment. The most interesting
domains are those in which there is only partial infor-
mation about the location of permanent objects (walls,
doorways), there are movable static objects (chairs, ta-
bles, doors), and there are dynamic objects (people,
other robots).

Range sensors on the robot give only partial and un-
certain information about objects. For example, a robot
may know that the room it has entered has a doorway on
the other side, but may not be able to see it because it is
blocked by other objects in the room (Figure 4). As the
robot starts to search for the doorway, it may have a
limited field of view, and so only a small portion of the
room is under active observation at any given time. If

Figure 3. Two examples of an intrinsic cost function for
obstacles. Cost is on the vertical axis, distance (in cm)
on the horizontal axis.

the robot forgets what it has just seen, then it may think
that there is a doorway in an area it has just explored.

3.1 Local Perceptual Space
One solution to the problem of limited field-of-view is

to fuse sensor information as the robot moves into a co-
herent geometric space. Such a Local Perceptual Space
(LPS) gives a more comprehensive view of the immedi-
ate environment of the robot [4]. If the environment is
static, and if the robot can track its position perfectly,
then the LPS will build up a perfect composite picture of
the environment, within the limits of sensor error. In
the typical case, both these assumptions are violated, so
the LPS is valid only over a short spatio-temporal inter-
val.

For our experiments, we represent the LPS as a set of
points in the workspace, with floating-point precision.
Each point corresponds to a narrow-beam laser range-
finder reading. Unlike evidence grid methods [6,8],
there is no probabilistic representation of uncertainty.
The algorithm we use to update the LPS is simple, but
has proven to be practical, even in the presence of mov-
ing objects. The main steps to integrate a new range
reading are the following.

1. [New points] Add all the new range readings into
the LPS at a position indicated by the robot’s
dead-reckoned motion, and index them by their
angle with respect to the robot.

2. [Visibility] For each old LPS point in the FOV of
the range sensor, delete that point if it is closer
than a new range reading at that angle.

3. [Staleness] If a point is further than a threshold
distance from the robot, or has existed for more
than a certain time, delete it.

The threshold distance determines the size of the LPS
surrounding the robot. In general, a good value depends
on the accuracy of the dead reckoning of the robot, and
the uncertainty in sensor readings. The rate of decay of

the old sensor readings depends on how many moving
objects are detected, and how fast they move.
 Figure 5 shows a typical LPS sequence as the robot
tries to find a path to the goal point. The area is a clut-
tered room, with tables, chairs, boxes, and other obsta-
cles, but no moving objects. Initially the robot has al-
most no information about where the exit door is lo-
cated. Every 100 ms, a new set of range readings is
added to the LPS, and the gradient path is completely
recalculated. In fact, the qualitative nature of the path
changes four times in the course of a small motion of
the robot, as the gradient method discovers that the most
promising areas are blocked. In addition to finding the
correct topological exit from the room, the gradient
method constantly fine-tunes the path of the robot on
the basis of current information, e.g., as it discovers
small occluded obstacles near the doorway. Finally,
having arrived at the goal position in the hallway, the
robot is now able to correctly construct a return path,
even though the doorway and room interior are no
longer in view.

3.2 Exploration
The gradient method and LPS construction were de-

signed to circumvent the problem of getting stuck in
local minima. We can show that, in static environ-
ments, these methods will always get the robot to the
goal.

Proposition 2. If the sensors and dead reckoning of the
robot are error-free, the environment is static, and there
exists a path to the goal within the range of the LPS,
then the robot will eventually arrive at the goal, if it
follows the gradient path.

Obviously any real robot is not perfect, and it is pos-
sible to not find a path to the goal, for example if the
sensors falsely indicate that an opening is closed. Still,
robot performance continues to improve, with the sen-
sors becoming more accurate, and the dead reckoning
remarkably good when the turn error is corrected by
solid-state rate gyros. While we have not yet done a
comprehensive error analysis for the uncertain case, our
experiments (Section 4) indicate that the gradient
method does better than human operators in typical in-
door environments.

3.3 Dynamic objects
Since the gradient path can be recomputed every 100

ms, it can correctly account for moving objects, generat-
ing paths to the goal that avoid these objects. In many
simple situations it suffices to have the robot follow the
gradient path as it changes to avoid the object. How-
ever, this simple idea does not account for the dynamics

 door

Figure 4. The robot’s field of view and an occluding
object block the observation of the exit door.

of the robot and the object; for example, if the robot is
on a collision course with an object, the gradient path
will not reflect this until they are close. Although we
have made some progress in this area, it is a research
issue that cannot be adequately addressed here.

4 Experimental results
We have performed a small number of experiments to

validate the gradient method and its associated LPS con-

construction. These experiments do not constitute a
statistically significant sample at this point, and we still
need to address complicated human-robot interface is-
sues. Nonetheless, we provide them as evidence that the
gradient method is indeed successful at efficient high-
speed control of a mobile robot in an uncertain envi-
ronment.

The two main questions we wanted to address were:
1. How well did the gradient method perform

against a human operator in an unknown envi-

Figure 5. Successive stages of the Local Perceptual
Space, and the path computed by the gradient method
to a goal point. Black dots are in the current FOV of
the robot’s laser rangefinder, while red dots are fused
into the LPS from past readings. The first four images
show the robot discovering the exit to the room. In the
final image, the robot is given a goal position within the
room, and correctly computes the return path on the
basis of past sensor readings.

ronment?
2. The same, in a known environment.
We expect the results to be different, because both

humans and robots can optimize their control when the
environment is known beforehand. The first experiment
stresses the ability to explore efficiently, while the sec-
ond places more emphasis on fast control of the robot.

The basic task is to move the robot from an initial po-
sition to a goal position about 10 meters away, as fast as
possible (see Figure 6). The optimal route is through a
large room with offset doors. The room contains nu-
merous confusing obstacles for the sensors, including
chairs, tables and other furniture, and at times moving

people. Both humans and robot were presented with the
same information, namely the LPS displayed from a
plan view.

In the first experiment, the robot was started at one of
the goal positions, and was turned to face away from the
room, so no portion of the environment between the goal
positions was visible. Both goals were always present,
so the operator and robot could see where the robot had
to go. It is very difficult to get unbiased and comparable
data for this experiment, because the robot must be put
into a new environment each time.

In the second experiment, the robot was again posi-
tioned in a similar way, but the sensor scans were left
from a previous run, so it was easy to see where the ro-
bot had to go. We recorded a number of runs for both
operators and the robot in this scenario.

The human operator controlled the robot by pressing
“joystick keys” that changed the robot’s velocity, and
turned the robot. We used two operators: one had a
moderate amount of skill at controlling the robot from
previous work, and the other was highly experienced.
In all experiments, the robot’s angular and translational
accelerations were fixed, and the maximum velocity was
set at 1 m/s.

4.1 Results
For the first experiment, it was easy to run the robot

multiple times to get statistics, but impossible to erase
the operator’s memory. The results below include only
one run by the moderately-skilled operator in this case.

Time is the basic performance category (Table 1). In
Experiment 1, the operator had some difficulty figuring
out which direction the robot should go, and also
crashed at one point trying to maneuver through a door-
way. The time is 4 times worse than the automatic
gradient algorithm. In the second experiment, the two
operators did significantly better, but were still out-
classed by the robot’s algorithm. In all experiments the
results were consistent, with variances less than 2 sec-
onds.

Not crashing the robot is an important goal. In the
first experiment the operator ran into a doorway while
trying to get through. In the second experiment, he av-
eraged one crash every three runs. The robot was com-
pletely safe.

4.2 Analysis
Under all conditions, and in all categories, the gradi-

ent algorithm did significantly better than the human
operators, even when they had a high degree of skill
controlling the robot, and had trained up on the envi-
ronment. To analyze why this is the case, we look at a
typical situation in the room (Figure 7). Here the robot

Figure 6. Test Environment. The image shows the ro-
bot’s view of the large room in the middle of a run, with
black dots representing the robot’s current scan, and
red dots the previous scan information. The task is to go
from one of the blue goal positions to the other.

AverageTime (secs)

80.9

19.9

50.2

30.9

19.9

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

op1 grad op1 op2 grad

Experiment 1

op1

grad

op1

op2

grad

Experiment 2

Table 1. Average time-to-goal for both experiments.

has planned a path around the walls of the room to the
goal position. Because it has a complete path, it can
look ahead and calculate exactly how fast it can go at
each point on the path, based on its dynamic character-
istics. It can also precisely control how it moves along
the path, updating its speed every 100 ms. Thus, the
robot can move very quickly until just before it gets near
the doorway, then slow down to maneuver through.

In contrast, even though a human operator has the
same perceptual information, he or she has difficulty
estimating the exact velocity the robot can have during
difficult maneuvering, such as going around a corner.
Thus, a human operator is at a disadvantage in control-
ling the robot’s trajectory to such a precise degree. The
choice is to slow down and play it safe, or move quickly
and risk a crash. In fact, we recorded a large number of
keystrokes at these critical points, showing that the op-
erators were trying very hard to vary the robot’s trajec-
tory in an optimal way; they just were not able to re-
spond as quickly or accurately as the gradient algo-
rithm.

Another area in which the gradient algorithm excels
is in discovering the best path on a continuing basis, as
new information is added from the sensors. In the first
experiment, the operator had trouble deciding how to
exit the room, and spent some time exploring the upper
right portion of the room (see Figure 7) before deciding
that it was not a good way to go. The gradient algo-
rithm also initially selected this route in Experiment 1;
but by the time the robot had reached the center of the
room, it had seen enough of the environment to reject
this path in favor of one through the correct doorway,
and proceeded to follow it with little lost time. In fact,
there was no difference between the robot’s times in the
first and second experiment.

5 Conclusion

We have presented a new method for local navigation,
the gradient method, that computes optimal paths to
waypoint goals. The method is efficient enough to be
used for realtime control, and is now the main control
strategy for all the robots in our lab. It overcomes the
limitations of other local control paradigms because it
computes a complete set of optimal paths to every point
in the workspace, avoiding local minima and other con-
trol problems. The method has been shown to work well
on real robots equipped with laser range finders, operat-
ing in complicated indoor environments.
 Our future work will concentrate on extending the
gradient method to dynamic situations.

References
[1] Arkin, R. C. Integrating behavioral, perceptual and

world knowledge in reactive navigation. Robotics
and Autonomous Systems 6, pp. 105-122, 1990.

[2] Barraquand, J. and J. C. Latombe. Robot motion
planning: a distributed representation approach.
IJRR, 1990.

[3] Khatib, O. Real-time obstacle avoidance for manipu-
lators and mobile robots, IJRR 5 (1) pp. 90-98, 1996.

[4] Konolige, K. and K. Myers. The SAPHIRA archi-
tecture: a design for autonomy. In Artificial Intelli-
gence Based Mobile Robots: Case Studies of Success-
ful Robot Systems, D. Kortenkamp, R. P. Bonasso,
and R. Murphy, eds., MIT Press, 1998.

[5] Latombe, J. C. Ro bot Motion Planning. Kluwer
Academic Publishers, Boston, 1991.

[6] Moravec, H. and A. Elfes. High resolution maps
from wide angle sonar. In Proc. ICRA, pages 116–
121, 1985.

[7] Saffiotti, A., K. Konolige, and E. Ruspini. A Multi-
valued Logic Approach to Integrating Planning and
Control. Artificial Intelligence 76 (1-2) 1995.

[8] Schultz, A. and W. Adams. Continuous Localization
using Evidence Grids. Proc. ICRA, Leuven, Bel-
gium,1998.

[9] S. Thrun, A. B¨ucken, W. Burgard, D. Fox, T.
Fr¨ohlinghaus, D. Hennig, T. Hofmann, M. Krell, and
T. Schimdt. Map learning and high-speed navigation
in RHINO. In D. Kortenkamp, R. Bonasso, and R.
Murphy, editors, AI-based Mobile Robots: Case stud-
ies of successful robot systems. MIT Press, Cam-
bridge, MA, 1998.

Figure 7. The robot’s path in Experiment 1, going
through a doorway.

