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Controlling a Simple System

• Consider a simple system:

– Scalar variables x and u, not vectors x and u.
– Assume x is observable:  y = G(x) = x
– Assume effect of motor command u:

• The setpoint xset is the desired value.
– The controller responds to error:  e = x − xset

• The goal is to set u to reach e = 0.
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The intuitions behind control

• Use action u to push back toward error e = 0

• What does pushing back do?
– Velocity versus acceleration control

• How much should we push back?
– What does the magnitude of u depend on?



Velocity or acceleration control?

• Velocity:

• Acceleration:
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Laws of Motion in Physics
• Newton’s Law:  F=ma  or  a=F/m.

• But Aristotle said:
– Velocity, not acceleration, is proportional to the

force on a body.
• Who is right?  Why should we care?

– (We’ll come back to this.)
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The Bang-Bang Controller
• Push back, against the direction of the error
• Error:

• To prevent chatter around

• Household thermostat.  Not very subtle.

! 

e = x " x
set
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e < 0 " u := on " ˙ x = F (x, on) > 0

e > 0 " u := off " ˙ x = F (x, off ) < 0
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Proportional Control
• Push back, proportional to the error.

– Set ub so that
• For a linear system, exponential

convergence.

• The controller gain k determines how
quickly the system responds to error.
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Velocity Control

• You want the robot to move at velocity vset.

• You command velocity vcmd.
• You observe velocity vobs.

• Define a first-order controller:

– k is the controller gain.
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Steady-State Offset

• Suppose we have continuing disturbances:

• The P-controller cannot stabilize at e = 0.
– Why not?

! 

˙ x = F(x,u) + d



Steady-State Offset

• Suppose we have continuing disturbances:

• The P-controller cannot stabilize at e = 0.
– If ub is defined so F(xset,ub) = 0
– then F(xset,ub) + d ≠ 0, so the system is unstable

• Must adapt ub to different disturbances d.

! 

˙ x = F(x,u) + d



Nonlinear P-control

• Generalize proportional control to

• Nonlinear control laws have advantages
– f has vertical asymptote:  bounded error e
– f has horizontal asymptote:  bounded effort u
– Possible to converge in finite time.
– Nonlinearity allows more kinds of composition.
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Stopping Controller

• Desired stopping point:  x=0.
– Current position:  x
– Distance to obstacle:

• Simple P-controller:

• Finite stopping time for
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d = | x |+"
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Derivative Control

• Damping friction is a force opposing
motion, proportional to velocity.

• Try to prevent overshoot by damping
controller response.

• Estimating a derivative from measurements
is fragile, and amplifies noise.

! 

u = "k
P
e " k

D
˙ e 



Adaptive Control

• Sometimes one controller isn’t enough.
• We need controllers at different time scales.

• This can eliminate steady-state offset.
– Why?! 
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Adaptive Control

• Sometimes one controller isn’t enough.
• We need controllers at different time scales.

• This can eliminate steady-state offset.
– Because the slower controller adapts ub.! 
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Integral Control

• The adaptive controller                      means

• Therefore

• The Proportional-Integral (PI) Controller.
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The PID Controller

• A weighted combination of Proportional,
Integral, and Derivative terms.

• The PID controller is the workhorse of the
control industry.  Tuning is non-trivial.
– Next lecture includes some tuning methods.
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Habituation
• Integral control adapts the bias term ub.
• Habituation adapts the setpoint xset.

– It prevents situations where too much control
action would be dangerous.

• Both adaptations reduce steady-state error.
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Types of Controllers
• Feedback control

– Sense error, determine control response.
• Feedforward control

– Sense disturbance, predict resulting error,
respond to predicted error before it happens.

• Model-predictive control
– Plan trajectory to reach goal.
– Take first step.
– Repeat.



Laws of Motion in Physics
• Newton’s Law:  F=ma  or  a=F/m.

• But Aristotle said:
– Velocity, not acceleration, is proportional to the

force on a body.
• Who is right?  Why should we care?
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Who is right?  Aristotle!

• Try it!  It takes constant force to keep an
object moving at constant velocity.
– Ignore brief transients

• Aristotle was a genius to recognize that
there could be laws of motion, and to
formulate a useful and accurate one.

• This law is true because our everyday
world is friction-dominated.



Who is right?  Newton!
• Newton’s genius was to recognize that the

true laws of motion may be different from
what we usually observe on earth.

• For the planets, without friction, motion
continues without force.

• For Aristotle, “force” means Fexternal.
• For Newton, “force” means Ftotal.

– On Earth, you must include Ffriction.



From Newton back to Aristotle
• Ftotal  =  Fexternal + Ffriction

• Ffriction  =  −f(v)  for some monotonic f.
• Thus:

• Velocity v moves quickly to equilibrium:

• Terminal velocity vfinal depends on:
– Fext,  m,  and the friction function f(v).
– So Aristotle was right!  In a friction-dominated

world.
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