
Lecture 4:
Basic Concepts in Control

CS 344R: Robotics
Benjamin Kuipers

Controlling a Simple System

• Consider a simple system:

– Scalar variables x and u, not vectors x and u.
– Assume x is observable: y = G(x) = x
– Assume effect of motor command u:

• The setpoint xset is the desired value.
– The controller responds to error: e = x − xset

• The goal is to set u to reach e = 0.

!

˙ x = F(x,u)

!

"F

"u
> 0

The intuitions behind control

• Use action u to push back toward error e = 0

• What does pushing back do?
– Velocity versus acceleration control

• How much should we push back?
– What does the magnitude of u depend on?

Velocity or acceleration control?

• Velocity:

• Acceleration:

!

˙ x = (˙ x) = F (x, u) = (u)

!

x = (x)

!

x =
x

v

"

$ $
%

&
' '

!

˙ x =
˙ x

˙ v

"

$ $
%

&
' ' = F (x, u) =

v

u

"

$ $
%

&
' '

!

˙ v = ˙ ̇ x = u

Laws of Motion in Physics
• Newton’s Law: F=ma or a=F/m.

• But Aristotle said:
– Velocity, not acceleration, is proportional to the

force on a body.
• Who is right? Why should we care?

– (We’ll come back to this.)

!

˙ x =
˙ x

˙ v

"

$
%

&
' =

v

F /m

"

$

%

&
'

The Bang-Bang Controller
• Push back, against the direction of the error
• Error:

• To prevent chatter around

• Household thermostat. Not very subtle.

!

e = x " x
set

!

e < 0 " u := on " ˙ x = F (x, on) > 0

e > 0 " u := off " ˙ x = F (x, off) < 0

!

e < "# $ u := on

e > +# $ u := off

!

e = 0

Proportional Control
• Push back, proportional to the error.

– Set ub so that
• For a linear system, exponential

convergence.

• The controller gain k determines how
quickly the system responds to error.

!

u = "ke + u
b

!

˙ x = F(x
set

,u
b
) = 0

!

x(t) = Ce
"# t

+ x
set

Velocity Control

• You want the robot to move at velocity vset.

• You command velocity vcmd.
• You observe velocity vobs.

• Define a first-order controller:

– k is the controller gain.

!

˙ v
cmd

= "k (v
obs
" v

set
)

Steady-State Offset

• Suppose we have continuing disturbances:

• The P-controller cannot stabilize at e = 0.
– Why not?

!

˙ x = F(x,u) + d

Steady-State Offset

• Suppose we have continuing disturbances:

• The P-controller cannot stabilize at e = 0.
– If ub is defined so F(xset,ub) = 0
– then F(xset,ub) + d ≠ 0, so the system is unstable

• Must adapt ub to different disturbances d.

!

˙ x = F(x,u) + d

Nonlinear P-control

• Generalize proportional control to

• Nonlinear control laws have advantages
– f has vertical asymptote: bounded error e
– f has horizontal asymptote: bounded effort u
– Possible to converge in finite time.
– Nonlinearity allows more kinds of composition.

!

u = " f (e)+ ub where f # M0

+

Stopping Controller

• Desired stopping point: x=0.
– Current position: x
– Distance to obstacle:

• Simple P-controller:

• Finite stopping time for

!

d = | x |+"

!

v = ˙ x = " f (x)

!

f (x) = k | x | sgn(x)

Derivative Control

• Damping friction is a force opposing
motion, proportional to velocity.

• Try to prevent overshoot by damping
controller response.

• Estimating a derivative from measurements
is fragile, and amplifies noise.

!

u = "k
P
e " k

D
˙ e

Adaptive Control

• Sometimes one controller isn’t enough.
• We need controllers at different time scales.

• This can eliminate steady-state offset.
– Why?!

u = "k
P
e + u

b

!

˙ u
b

= "k
I
e where k

I
<< k

P

Adaptive Control

• Sometimes one controller isn’t enough.
• We need controllers at different time scales.

• This can eliminate steady-state offset.
– Because the slower controller adapts ub.!

u = "k
P
e + u

b

!

˙ u
b

= "k
I
e where k

I
<< k

P

Integral Control

• The adaptive controller means

• Therefore

• The Proportional-Integral (PI) Controller.

!

˙ u
b

= "k
I
e

!

u
b
(t) = "k

I
e dt

0

t

+ u
b

!

u(t) = "k
P
e(t) " k

I
e dt

0

t

+ u
b

The PID Controller

• A weighted combination of Proportional,
Integral, and Derivative terms.

• The PID controller is the workhorse of the
control industry. Tuning is non-trivial.
– Next lecture includes some tuning methods.

!

u(t) = "k
P

e(t) " k
I

e dt

0

t

" k
D

˙ e (t)

Habituation
• Integral control adapts the bias term ub.
• Habituation adapts the setpoint xset.

– It prevents situations where too much control
action would be dangerous.

• Both adaptations reduce steady-state error.

!

u = "k
P
e + u

b

!

˙ x
set

= +k
h
e where k

h
<< k

P

Types of Controllers
• Feedback control

– Sense error, determine control response.
• Feedforward control

– Sense disturbance, predict resulting error,
respond to predicted error before it happens.

• Model-predictive control
– Plan trajectory to reach goal.
– Take first step.
– Repeat.

Laws of Motion in Physics
• Newton’s Law: F=ma or a=F/m.

• But Aristotle said:
– Velocity, not acceleration, is proportional to the

force on a body.
• Who is right? Why should we care?
!

˙ x =
˙ x

˙ v

"

$
%

&
' =

v

F /m

"

$

%

&
'

Who is right? Aristotle!

• Try it! It takes constant force to keep an
object moving at constant velocity.
– Ignore brief transients

• Aristotle was a genius to recognize that
there could be laws of motion, and to
formulate a useful and accurate one.

• This law is true because our everyday
world is friction-dominated.

Who is right? Newton!
• Newton’s genius was to recognize that the

true laws of motion may be different from
what we usually observe on earth.

• For the planets, without friction, motion
continues without force.

• For Aristotle, “force” means Fexternal.
• For Newton, “force” means Ftotal.

– On Earth, you must include Ffriction.

From Newton back to Aristotle
• Ftotal = Fexternal + Ffriction

• Ffriction = −f(v) for some monotonic f.
• Thus:

• Velocity v moves quickly to equilibrium:

• Terminal velocity vfinal depends on:
– Fext, m, and the friction function f(v).
– So Aristotle was right! In a friction-dominated

world.

!

˙ x

˙ v

"

$
%

&
' =

v

F /m

"

$

%

&
' =

v
1

m
Fext (

1

m
f (v)

"

$

%

&
'

!

˙ v = 1

m
Fext "

1

m
f (v)

