Lecture 4: Basic Concepts in Control

CS 344R: Robotics Benjamin Kuipers

Controlling a Simple System

- Consider a simple system: $\dot{x} = F(x, u)$
 - Scalar variables x and u, not vectors \mathbf{x} and \mathbf{u} .
 - Assume x is observable: y = G(x) = x
 - Assume effect of motor command *u*:

 $\frac{\partial F}{\partial u} > 0$

- The setpoint x_{set} is the desired value. - The controller responds to error: $e = x - x_{set}$
- The goal is to set u to reach e = 0.

The intuitions behind control

- Use action *u* to push back toward error e = 0
- What does pushing back do?
 Velocity versus acceleration control
- How much should we push back?
 - What does the magnitude of *u* depend on?

Velocity or acceleration control?

- Velocity: $\dot{\mathbf{x}} = (\dot{x}) = F(\mathbf{x}, \mathbf{u}) = (u)$ $\mathbf{x} = (x)$
- Acceleration: $\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = F(\mathbf{x}, \mathbf{u}) = \begin{pmatrix} v \\ u \end{pmatrix}$ $\mathbf{x} = \begin{pmatrix} x \\ v \end{pmatrix}$ $\dot{v} = \ddot{x} = u$

Laws of Motion in Physics

• Newton's Law: F=ma or a=F/m.

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} v \\ F/m \end{pmatrix}$$

- But Aristotle said:
 - *Velocity*, not acceleration, is proportional to the force on a body.
- Who is right? Why should we care?
 - (We'll come back to this.)

The Bang-Bang Controller

- Push back, against the *direction* of the error
- Error: $e = x x_{set}$ $e < 0 \implies u \coloneqq on \implies \dot{x} = F(x, on) > 0$ $e > 0 \implies u \coloneqq off \implies \dot{x} = F(x, off) < 0$
- To prevent chatter around e = 0

 $e < -\varepsilon \implies u \coloneqq on$

 $e > +\varepsilon \implies u := off$

• Household thermostat. Not very subtle.

Proportional Control

• Push back, *proportional* to the error.

$$u = -ke + u_b$$

- Set u_b so that $\dot{x} = F(x_{set}, u_b) = 0$

• For a linear system, exponential convergence.

$$x(t) = Ce^{-\alpha t} + x_{set}$$

• The controller gain *k* determines how quickly the system responds to error.

Velocity Control

- You want the robot to move at velocity $v_{set.}$
- You command velocity v_{cmd} .
- You observe velocity v_{obs} .
- Define a first-order controller:

$$\dot{v}_{cmd} = -k\left(v_{obs} - v_{set}\right)$$

-k is the controller gain.

Steady-State Offset

- Suppose we have continuing disturbances: $\dot{x} = F(x, u) + d$
- The P-controller cannot stabilize at *e* = 0.
 Why not?

Steady-State Offset

- Suppose we have continuing disturbances: $\dot{x} = F(x, u) + d$
- The P-controller cannot stabilize at e = 0.
 - If u_b is defined so $F(x_{set}, u_b) = 0$
 - then $F(x_{set}, u_b) + d \neq 0$, so the system is unstable
- Must adapt u_b to different disturbances d.

Nonlinear P-control

- Generalize proportional control to $u = -f(e) + u_b$ where $f \in M_0^+$
- Nonlinear control laws have advantages
 - -f has vertical asymptote: bounded error e
 - -f has horizontal asymptote: bounded effort u
 - Possible to converge in finite time.
 - Nonlinearity allows more kinds of composition.

Stopping Controller

- Desired stopping point: x=0.
 - Current position: x

– Distance to obstacle: $d = |x| + \varepsilon$

• Simple P-controller: $v = \dot{x} = -f(x)$

• Finite stopping time for $f(x) = k\sqrt{|x|} \operatorname{sgn}(x)$

Derivative Control

- Damping friction is a force opposing motion, proportional to velocity.
- Try to prevent overshoot by damping controller response.

$$u = -k_P e - k_D \dot{e}$$

• Estimating a derivative from measurements is fragile, and amplifies noise.

Adaptive Control

- Sometimes one controller isn't enough.
- We need controllers at different time scales. $u = -k_P e + u_b$ $\dot{u}_b = -k_I e$ where $k_I << k_P$
- This can eliminate steady-state offset.
 Why?

Adaptive Control

- Sometimes one controller isn't enough.
- We need controllers at different time scales. $u = -k_P e + u_b$ $\dot{u}_b = -k_I e$ where $k_I << k_P$
- This can eliminate steady-state offset.
 Because the slower controller adapts u_b.

Integral Control

- The adaptive controller $\dot{u}_b = -k_I e$ means $u_b(t) = -k_I \int_0^t e \, dt + u_b$ • Therefore $u(t) = -k_P e(t) - k_I \int_0^t e \, dt + u_b$
- The Proportional-Integral (PI) Controller.

The PID Controller

• A weighted combination of Proportional, Integral, and Derivative terms.

$$u(t) = -k_P e(t) - k_I \int_{0}^{t} e \, dt - k_D \dot{e}(t)$$

- The PID controller is the workhorse of the control industry. Tuning is non-trivial.
 - Next lecture includes some tuning methods.

Habituation

- Integral control adapts the bias term u_b .
- Habituation adapts the setpoint x_{set} .
 - It prevents situations where too much control action would be dangerous.
- Both adaptations reduce steady-state error.

$$u = -k_P e + u_b$$

$$\dot{x}_{set} = +k_h e \text{ where } k_h << k_P$$

Types of Controllers

- Feedback control
 - Sense error, determine control response.
- Feedforward control
 - Sense disturbance, predict resulting error, respond to predicted error before it happens.
- Model-predictive control
 - Plan trajectory to reach goal.
 - Take first step.
 - Repeat.

Laws of Motion in Physics

• Newton's Law: F=ma or a=F/m.

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} v \\ F/m \end{pmatrix}$$

- But Aristotle said:
 - *Velocity*, not acceleration, is proportional to the force on a body.
- Who is right? Why should we care?

Who is right? Aristotle!

• Try it! It takes constant force to keep an object moving at constant velocity.

– Ignore brief transients

- Aristotle was a genius to recognize that there could be laws of motion, and to formulate a useful and accurate one.
- This law is true because our everyday world is *friction-dominated*.

Who is right? Newton!

- Newton's genius was to recognize that the true laws of motion may be different from what we usually observe on earth.
- For the planets, without friction, motion continues without force.
- For Aristotle, "force" means $F_{external}$.
- For Newton, "force" means F_{total} .

– On Earth, you must include $F_{friction}$.

From Newton back to Aristotle

•
$$F_{total} = F_{external} + F_{friction}$$

- $F_{friction} = -f(v)$ for some monotonic f. Thus: $\begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} v \\ F/m \end{pmatrix} = \begin{pmatrix} \frac{v}{\frac{1}{m}F_{ext} \frac{1}{m}f(v) \end{pmatrix}$
- Velocity v moves quickly to equilibrium: $\dot{v} = \frac{1}{m} F_{ext} - \frac{1}{m} f(v)$
- Terminal velocity v_{final} depends on:
 - $-F_{ext}$, m, and the friction function f(v).
 - So Aristotle was right! In a friction-dominated world.