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Up To Higher Dimensions

• Our previous Kalman Filter discussion was
of a simple one-dimensional model.

• Now we go up to higher dimensions:
– State vector:
– Sense vector:
– Motor vector:

• First, a little statistics.
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Expectations
• Let x be a random variable.
• The expected value E[x] is the mean:

– The probability-weighted mean of all possible
values.  The sample mean approaches it.

• Expected value of a vector x is by component.
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Variance and Covariance
• The variance is E[ (x-E[x])2 ]

• Covariance matrix is E[ (x-E[x])(x-E[x])T ]

– Divide by N−1 to make the sample variance an
unbiased estimator for the population variance.
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Biased and Unbiased Estimators
• Strictly speaking, the sample variance

   is a biased estimate of the population
variance.  An unbiased estimator is:

• But:  “If the difference between N and N−1
ever matters to you, then you are probably
up to no good anyway …”  [Press, et al]
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Covariance Matrix
• Along the diagonal, Cii are variances.
• Off-diagonal Cij are essentially correlations.
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Independent Variation
• x and y are

Gaussian random
variables  (N=100)

• Generated with
σx=1    σy=3

• Covariance matrix:
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Dependent Variation
• c and d are random

variables.
• Generated with

c=x+y     d=x-y
• Covariance matrix:
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Discrete Kalman Filter
• Estimate the state               of a linear

stochastic difference equation

– process noise w is drawn from N(0,Q), with
covariance matrix Q.

• with a measurement

– measurement noise v is drawn from N(0,R), with
covariance matrix R.

• A, Q are nxn.  B is nxl. R is mxm.  H is mxn.
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Estimates and Errors
•              is the estimated state at time-step k.
•               after prediction, before observation.
• Errors:

• Error covariance matrices:

• Kalman Filter’s task is to update
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Time Update (Predictor)
• Update expected value of x

• Update error covariance matrix P

• Previous statements were simplified
versions of the same idea:
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Measurement Update (Corrector)

• Update expected value

– innovation is
• Update error covariance matrix

• Compare with previous form
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The Kalman Gain
• The optimal Kalman gain Kk is

• Compare with previous form
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Extended Kalman Filter
• Suppose the state-evolution and

measurement equations are non-linear:

– process noise w is drawn from N(0,Q), with
covariance matrix Q.

– measurement noise v is drawn from N(0,R),
with covariance matrix R.
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The Jacobian Matrix
• For a scalar function y=f(x),

• For a vector function y=f(x),
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Linearize the Non-Linear

• Let A be the Jacobian of f with respect to x.

• Let H be the Jacobian of h with respect to x.

• Then the Kalman Filter equations are
almost the same as before!
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EKF Update Equations
• Predictor step:

• Kalman gain:

• Corrector step:
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“Catch The Ball” Assignment
• State evolution is linear (almost).

– What is A?
– B=0.

• Sensor equation is non-linear.
– What is y=h(x)?
– What is the Jacobian H(x) of h with respect to x?

• Errors are treated as additive.  Is this OK?
– What are the covariance matrices Q and R?



TTD

• Intuitive explanations for APAT and HPHT

in the update equations.


