Lecture 11: Kalman Filters

CS 344R: Robotics Benjamin Kuipers

Up To Higher Dimensions

- Our previous Kalman Filter discussion was of a simple one-dimensional model.
- Now we go up to higher dimensions:
 - State vector: $\mathbf{x} \in \mathfrak{R}^n$
 - Sense vector: $\mathbf{z} \in \mathfrak{R}^m$
 - Motor vector: $\mathbf{u} \in \mathfrak{R}^{l}$
- First, a little statistics.

Expectations

- Let *x* be a random variable.
- The expected value E[x] is the mean: $E[x] = \int x \ p(x) \ dx \approx \overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i}$
 - The probability-weighted mean of all possible values. The sample mean approaches it.
- Expected value of a vector **x** is by component. $E[\mathbf{x}] = \overline{\mathbf{x}} = [\overline{x}_1, \cdots, \overline{x}_n]^T$

Variance and Covariance

- The variance is $E[(x-E[x])^2]$ $\sigma^2 = E[(x-\overline{x})^2] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$
- Covariance matrix is $E[(\mathbf{x}-E[\mathbf{x}])(\mathbf{x}-E[\mathbf{x}])^T]$

$$C_{ij} = \frac{1}{N} \sum_{k=1}^{N} (x_{ik} - \bar{x}_i)(x_{jk} - \bar{x}_j)$$

 Divide by N-1 to make the sample variance an unbiased estimator for the population variance.

Biased and Unbiased Estimators

• Strictly speaking, the sample variance

$$\sigma^2 = E[(x - \overline{x})^2] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

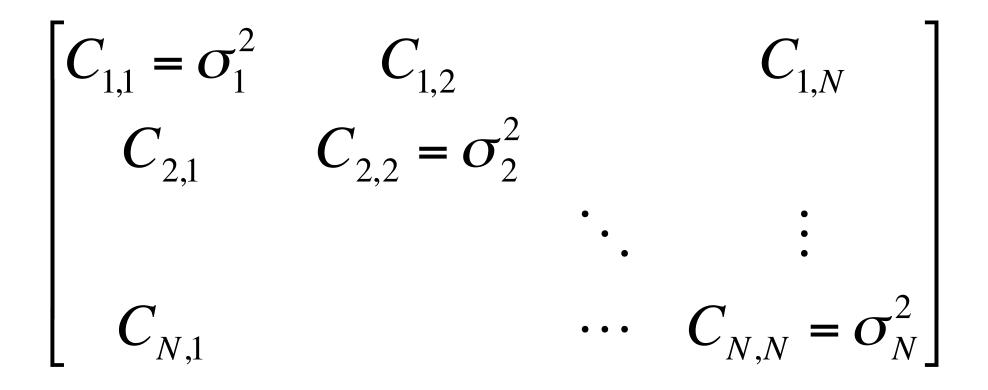
is a biased estimate of the population variance. An unbiased estimator is:

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

• **But**: "If the difference between N and N–1 ever matters to you, then you are probably up to no good anyway …" [Press, et al]

Covariance Matrix

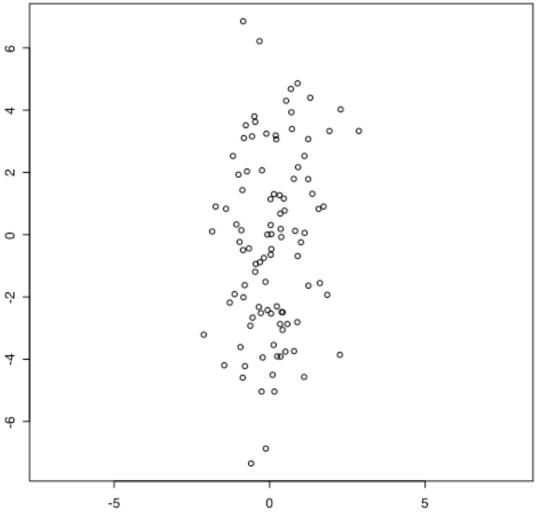
- Along the diagonal, C_{ii} are variances.
- Off-diagonal C_{ij} are essentially correlations.



Independent Variation

- *x* and *y* are Gaussian random variables (*N*=100)
- Generated with $\sigma_x = 1 \quad \sigma_y = 3$
- Covariance matrix:

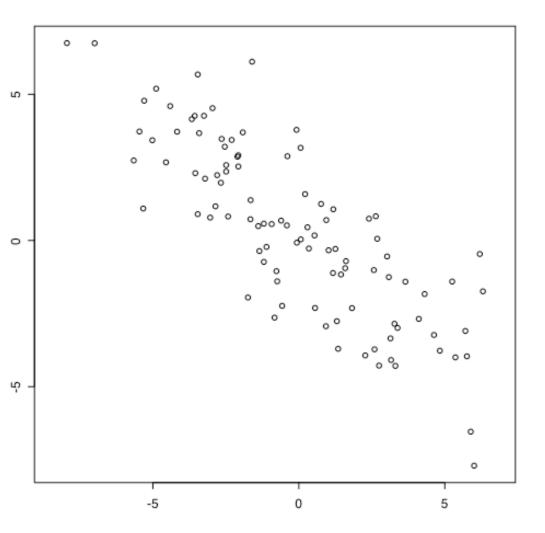
$$C_{xy} = \begin{bmatrix} 0.90 & 0.44 \\ 0.44 & 8.82 \end{bmatrix}$$



Dependent Variation

- *c* and *d* are random variables.
- Generated with c=x+y d=x-y
- Covariance matrix:

$$C_{cd} = \begin{bmatrix} 10.62 & -7.93 \\ -7.93 & 8.84 \end{bmatrix}$$



Discrete Kalman Filter

• Estimate the state $\mathbf{x} \in \mathfrak{R}^n$ of a linear stochastic difference equation

$$\mathbf{x}_k = \mathbf{A}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{u}_k + \mathbf{w}_{k-1}$$

- process noise w is drawn from $N(0,\mathbf{Q})$, with covariance matrix \mathbf{Q} .
- with a measurement $\mathbf{z} \in \Re^m$

$$\mathbf{Z}_k = \mathbf{H}\mathbf{X}_k + \mathbf{V}_k$$

- measurement noise v is drawn from $N(0,\mathbf{R})$, with covariance matrix **R**.
- A, Q are $n \ge n$. B is $n \ge l$. R is $m \ge m$. H is $m \ge n$.

Estimates and Errors

- $\hat{\mathbf{x}}_k \in \mathfrak{R}^n$ is the estimated state at time-step k.
- $\hat{\mathbf{x}}_k^- \in \mathfrak{R}^n$ after prediction, before observation.
- Errors: $\mathbf{e}_k^- = \mathbf{x}_k \hat{\mathbf{x}}_k^-$

$$\mathbf{e}_k = \mathbf{x}_k - \hat{\mathbf{x}}_k$$

- Error covariance matrices: $\mathbf{P}_{k}^{-} = E[\mathbf{e}_{k}^{-}\mathbf{e}_{k}^{-T}]$ $\mathbf{P}_{k}^{-} = E[\mathbf{e}_{k}^{-}\mathbf{e}_{k}^{T}]$
- Kalman Filter's task is to update $\hat{\mathbf{X}}_k = \mathbf{P}_k$

Time Update (Predictor)

• Update expected value of **x**

$$\hat{\mathbf{x}}_k^- = \mathbf{A}\hat{\mathbf{x}}_{k-1} + \mathbf{B}\mathbf{u}_k$$

- Update error covariance matrix \mathbf{P} $\mathbf{P}_{k}^{-} = \mathbf{A}\mathbf{P}_{k-1}\mathbf{A}^{T} + \mathbf{Q}$
- Previous statements were simplified versions of the same idea:

$$\hat{x}(t_3^-) = \hat{x}(t_2) + u[t_3 - t_2]$$

$$\sigma^2(t_3^-) = \sigma^2(t_2) + \sigma_{\varepsilon}^2[t_3 - t_2]$$

Measurement Update (Corrector)

• Update expected value

$$\hat{\mathbf{x}}_{k} = \hat{\mathbf{x}}_{k}^{-} + \mathbf{K}_{k}(\mathbf{z}_{k} - \mathbf{H}\hat{\mathbf{x}}_{k}^{-})$$

- *innovation* is $\mathbf{z}_{k} - \mathbf{H}\hat{\mathbf{x}}_{k}^{-}$

- Update error covariance matrix $\mathbf{P}_k = (\mathbf{I} - \mathbf{K}_k \mathbf{H}) \mathbf{P}_k^-$
- Compare with previous form

$$\hat{x}(t_3) = \hat{x}(\bar{t_3}) + K(t_3)(z_3 - \hat{x}(\bar{t_3}))$$

$$\sigma^2(t_3) = (1 - K(t_3))\sigma^2(\bar{t_3})$$

The Kalman Gain

- The optimal Kalman gain \mathbf{K}_k is $\mathbf{K}_k = \mathbf{P}_k^{-} \mathbf{H}^T (\mathbf{H} \mathbf{P}_k^{-} \mathbf{H}^T + \mathbf{R})^{-1}$ $= \frac{\mathbf{P}_k^{-} \mathbf{H}^T}{\mathbf{H} \mathbf{P}_k^{-} \mathbf{H}^T + \mathbf{R}}$
- Compare with previous form $K(t_3) = \frac{\sigma^2(t_3)}{\sigma^2(t_3) + \sigma_3^2}$

Extended Kalman Filter

• Suppose the state-evolution and measurement equations are non-linear:

$$\mathbf{x}_{k} = f(\mathbf{x}_{k-1}, \mathbf{u}_{k}) + \mathbf{w}_{k-1}$$
$$\mathbf{z}_{k} = h(\mathbf{x}_{k}) + \mathbf{v}_{k}$$

- process noise w is drawn from $N(0,\mathbf{Q})$, with covariance matrix \mathbf{Q} .
- measurement noise v is drawn from $N(0,\mathbf{R})$, with covariance matrix **R**.

The Jacobian Matrix

- For a scalar function y=f(x), $\Delta y = f'(x)\Delta x$
- For a vector function y=f(x),

$$\Delta \mathbf{y} = \mathbf{J} \Delta \mathbf{x} = \begin{bmatrix} \Delta y_1 \\ \vdots \\ \Delta y_n \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} (\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n} (\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} (\mathbf{x}) & \cdots & \frac{\partial f_n}{\partial x_n} (\mathbf{x}) \end{bmatrix} \cdot \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix}$$

Linearize the Non-Linear

• Let \mathbf{A} be the Jacobian of f with respect to \mathbf{x} .

$$\mathbf{A}_{ij} = \frac{\partial f_i}{\partial x_j} (\mathbf{x}_{k-1}, \mathbf{u}_k)$$

- Let **H** be the Jacobian of *h* with respect to **x**. $\mathbf{H}_{ij} = \frac{\partial h_i}{\partial x_j} (\mathbf{x}_k)$
- Then the Kalman Filter equations are almost the same as before!

EKF Update Equations

- Predictor step: $\hat{\mathbf{x}}_{k}^{-} = f(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k})$ $\mathbf{P}_{k}^{-} = \mathbf{A}\mathbf{P}_{k-1}\mathbf{A}^{T} + \mathbf{Q}$
- Kalman gain: $\mathbf{K}_{k} = \mathbf{P}_{k}^{T}\mathbf{H}^{T}(\mathbf{H}\mathbf{P}_{k}^{T}\mathbf{H}^{T} + \mathbf{R})^{-1}$
- Corrector step: $\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + \mathbf{K}_k(\mathbf{z}_k h(\hat{\mathbf{x}}_k^-))$ $\mathbf{P}_k = (\mathbf{I} - \mathbf{K}_k \mathbf{H})\mathbf{P}_k^-$

"Catch The Ball" Assignment

- State evolution is linear (almost).
 - What is **A**?

- **B**=0.

- Sensor equation is non-linear.
 - What is y=h(x)?
 - What is the Jacobian $\mathbf{H}(\mathbf{x})$ of *h* with respect to \mathbf{x} ?
- Errors are treated as additive. Is this OK?
 - What are the covariance matrices **Q** and **R**?

TTD

• Intuitive explanations for APA^T and HPH^T in the update equations.