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Stochastic Models of an
Uncertain World

• Actions are uncertain.
• Observations are uncertain.
•  εi ~ N(0,σi) are random variables
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Observers

• The state x is unobservable.
• The sense vector y provides noisy

information about x.
• An observer                       is a process that

uses sensory history to estimate x.
• Then a control law can be written
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Kalman Filter: Optimal Observer
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Estimates and Uncertainty
• Conditional probability density function



Gaussian (Normal) Distribution
• Completely described by N(µ,σ)

– Mean µ
– Standard deviation σ,  variance σ 2
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The Central Limit Theorem

• The sum of many random variables
– with the same mean, but
– with arbitrary conditional density functions,

    converges to a Gaussian density function.

• If a model omits many small unmodeled
effects, then the resulting error should
converge to a Gaussian density function.



Estimating a Value
• Suppose there is a constant value x.

– Distance to wall; angle to wall; etc.
• At time t1, observe value z1 with variance
• The optimal estimate is                  with

variance
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A Second Observation
• At time t2, observe value z2 with variance
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Merged Evidence



Update Mean and Variance
• Weighted average of estimates.

• The weights come from the variances.
– Smaller variance = more certainty
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From Weighted Average
to Predictor-Corrector

• Weighted average:

• Predictor-corrector:

• This version can be applied “recursively”.
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Predictor-Corrector
• Update best estimate given new data

• Update variance:
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Static to Dynamic
• Now suppose x changes according to
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Dynamic Prediction

• At t2 we know
• At t3 after the change, before an observation.

• Next, we correct this prediction with the
observation at time t3.
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Dynamic Correction
• At time t3 we observe z3 with variance
• Combine prediction with observation.
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Qualitative Properties

• Suppose measurement noise         is large.
– Then K(t3) approaches 0, and the measurement

will be mostly ignored.
• Suppose prediction noise              is large.

– Then K(t3) approaches 1, and the measurement
will dominate the estimate.
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Kalman Filter
• Takes a stream of observations, and a

dynamical model.
• At each step, a weighted average between

– prediction from the dynamical model
– correction from the observation.

• The Kalman gain K(t) is the weighting,
– based on the variances            and

• With time, K(t) and           tend to stabilize.
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Simplifications
• We have only discussed a one-dimensional

system.
– Most applications are higher dimensional.

• We have assumed the state variable is
observable.
– In general, sense data give indirect evidence.

• We will discuss the more complex case next.
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