Lecture 10:
Observers and Kalman Filters
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Benjamin Kuipers



Stochastic Models of an

Uncertain World
x = F(xu) x = F(xug)
—
y = G(x) y = G(x¢)

e Actions are uncertain.

e Observations are uncertain.
* ¢~ N(,0;) are random variables



Observers

x = F(xug)
Yy = G( X, & )
The state x 1s unobservable.

The sense vector y provides noisy
information about X.

An observer X = Obs(y) is a process that
uses sensory history to estimate X.

Then a control law can be written

u=H (x)



Kalman Filter: Optimal Observer
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Estimates and Uncertainty

e Conditional probability density function
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Gaussian (Normal) Distribution

 Completely described by N(u, o)
— Mean u
— Standard deviation o, variance o~
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The Central Limit Theorem

 The sum of many random variables
— with the same mean, but

— with arbitrary conditional density functions,

converges to a Gaussian density function.

e If a model omits many small unmodeled
effects, then the resulting error should
converge to a Gaussian density function.



Estimating a Value

* Suppose there 1s a constant value x.

— Distance to wall; angle to wall; etc.
* At time ¢,, observe value z;, with variance (712
e The optimal2 estimate is x(¢,) =z with
variance O "
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A Second Observation

. . . 2
e At time ¢,, observe value z, with variance o,
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Update Mean and Variance

* Weighted average of estimates.

x(t,) = Az, + Bz, A+B=1

* The weights come from the variances.

— Smaller variance = more certainty
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From Weighted Average
to Predictor-Corrector

* Weighted average:
x(t,) = Az + Bz, =(1- K)z, + Kz,

e Predictor-corrector:
x(t,) =z, + K(z, — z))
= x(t,) + K(z, — x(¢,))

e This version can be applied “recursively”.



Predictor-Corrector
» Update best estimate given new data
x(t,) = x() + K(1,)(z, - X(1,))
2

O,
K(t2)= 2 2
O'l +()'2

e Update variance:
o’(t,) =0°(t) - K(1,)o°(t,)
=(1-K(1,)) 0" (1)



Static to Dynamic

 Now suppose x changes according to
x=F(x,ue)=u+e (N (0,0,))
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Dynamic Prediction

o Att, we know X(z,) Oz(tz)

* At 1, after the change, before an observation.
x(t;)=Xx(t,)+ u[t,—t,]
2, - 2 2
o(t;))=0(t,)+ 0, |t; - 1]

* Next, we correct this prediction with the
observation at time ;.



Dynamic Correction

. . . 2
* At time f; we observe z; with variance 0O

 Combine prediction with observation.
xX(t3) = X(6;) + K(8,)(z; = X(3))
07 (t;) = 1= K(1;))0° (1;)
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Qualitative Properties
xX(t;) = x(;) + K(1;)(z, = X(1;))
o’ (1)
az(t;) + (732

K(t3) =

. 2 .
* Suppose measurement noise O; 1s large.

— Then K(¢;) approaches 0, and the measurement
will be mostly 1gnored.

e Suppose prediction noise o’(t]) is large.

— Then K(¢;) approaches 1, and the measurement
will dominate the estimate.



Kalman Filter

Takes a stream of observations, and a
dynamical model.

At each step, a weighted average between
— prediction from the dynamical model

— correction from the observation.

The Kalman gain K(7) 1s the weighting,

— based on the variances () and ng
With time, K(¢) and o°(¢) tend to stabilize.



Simplifications

* We have only discussed a one-dimensional
system.

— Most applications are higher dimensional.

e We have assumed the state variable i1s
observable.

— In general, sense data give indirect evidence.

x=F(x,ue)=u+e¢
2=G(x¢6,) =x+¢,

* We will discuss the more complex case next.



