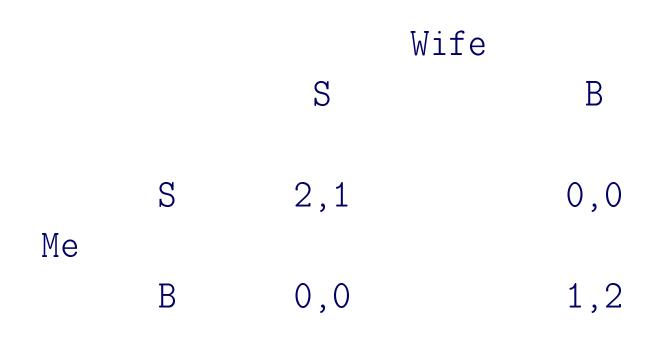
CS395T Agent-Based Electronic Commerce Fall 2006

Peter Stone

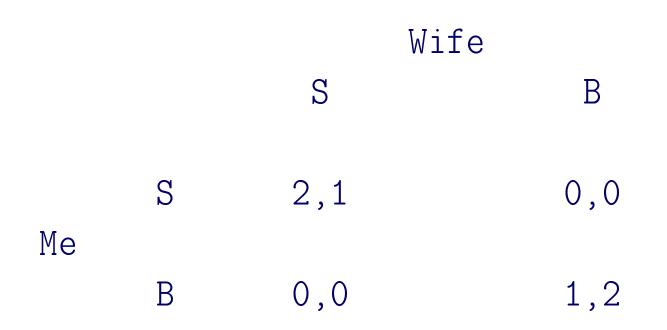
Department or Computer Sciences The University of Texas at Austin

Week 3b


Good Afternoon, Colleagues

Are there any questions?

Correlated Equilibria


Sometimes mixing isn't enough: Bach/Stravinsky

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky

Want only S,S or B,B - 50% each

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?
- What are the Nash equilibria?

Mechanism Design

• The rules of the game (what strategies are possible)

Mechanism Design

- The rules of the game (what strategies are possible)
- Defines a mapping from strategy to outcome

Mechanism Design

- The rules of the game (what strategies are possible)
- Defines a mapping from strategy to outcome
- Terms:
 - Efficient
 - (Weak) Budget balanced
 - Individual rationality
- "An ideal mechanism provides agents with a dominant strategy and also implements a solution to the multiagent distributed optimization problem" (p. 29, last paragraph of the section)

Relation to game theoryPlayer 2Action 1Action 1Action 14,82,0Player 1Action 2Action 26,20,8

• What's the mechanism in this game?

Relation to game theoryPlayer 2Action 1Action 1Action 14,82,0Player 1Action 2Action 26,20,8

- What's the mechanism in this game?
- What's an alternative mechanism?

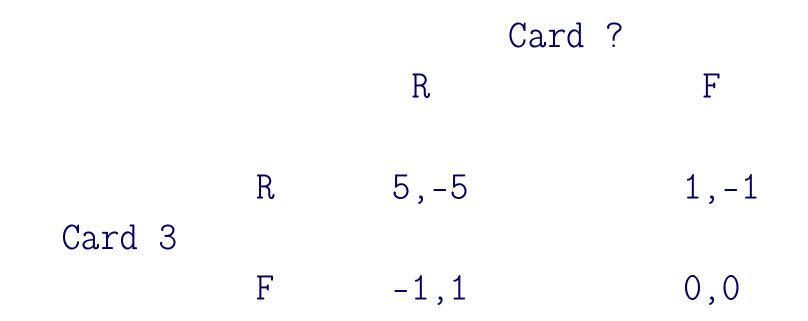
• Allows for uncertainty about opponent **type**

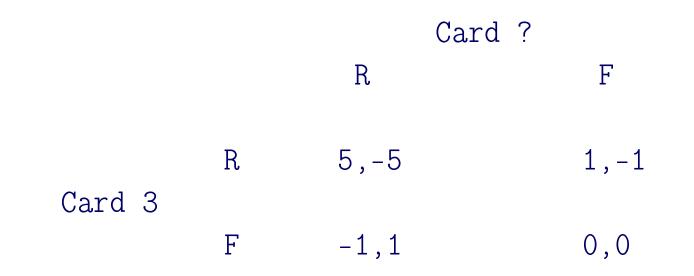
- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?
 - Is there a dominant strategy equilibrium?


- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?
 - Is there a dominant strategy equilibrium?
 - What if I tell you, I'll take what you tell me as your value and compute for you the correct thing to do given what other people bid?


- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

	Card ?			
		R	F	
Card 3	R	5,-5	1,-1	
	F	-1,1	0,0	
Card ?				
		R	F	
Card 1	R	-5,5	1,-1	
	F	-1,1	0,0	

• $3 \Rightarrow raise$

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

Ex ante vs. ex post

• Mechanism: each of you give me \$1, one gets \$100 back

Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back
- Individually rational?

Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back
- Individually rational?
- Ex ante, yes
- Ex post, no

Vickrey-Clarke-Groves

- Groves: efficient, stategy-proof
- Pivotal: individually-rational

	utility
camera alone	\$50
flash alone	10
both	100
tripod	20

Vickrey-Clarke-Groves

- Groves: efficient, stategy-proof
- Pivotal: individually-rational

	utility
camera alone	\$50
flash alone	10
both	100
tripod	20

	utility
camera	\$60
flash	20
tripod	30

- Assume quasi-linear values, etc.
- What is the allocation?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
- Why is it strategy proof?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
- Why is it strategy proof?
- What are choice set monotonic, negative externality, single-agent effects?

Computational considerations

• Why is this mechanism a burden on the bidders?

Impossibility/possibility results

• e.g. strategy-proof, efficient, inifividually rational, and (strong) budget-balanced impossible

• Iterated prisoner's dilemma with identity

- Iterated prisoner's dilemma with identity
- What if you play infinitely?

- Iterated prisoner's dilemma with identity
- What if you play infinitely?
- What if you play for a known finite amount of time?

- Iterated prisoner's dilemma with identity
- What if you play infinitely?
- What if you play for a known finite amount of time?
- Some strategies:
 - hawk (always Fink)
 - Grim trigger (cooperate until the other defects)
 - tit-for-tat
 - Joss (tit-for-tat with periodic defection)

• Bowling's tutorial slides

