A Brief Introduction to Linear Programming

Jeremy Stober

How do we answer the following problem?

- Suppose you run a refinery with the capacity to produce two products, fuel oil and gasoline.
- Fuel oil sells at a profit of \$0.40 a gallon and gasoline sells at a profit of \$0.50 a gallon.
- Both products are processed in three stages, though the time in each stage differs for each product.
- For each gallon of product, the following chart describes the time required at each stage.

	Stage A	Stage B	Stage C
Fuel Oil	1 min.	5 min.	3 min.
Gasoline	2 min.	4min.	1 min.

Problem Continued

- During each production run:
 - Stage A is available for 720 minutes
 - Stage B is available for 1800 minutes
 - Stage C is available for 900 minutes
- If stages can be allocated to the making of either type of product at all available times, what volume of fuel oil and gasoline production maximizes profit?

What is the function we are trying to maximize?

What is the function we are trying to maximize?

• Let

- x = gallons of fuel oil
- y = gallons of gasoline

What is the function we are trying to maximize?

• Let

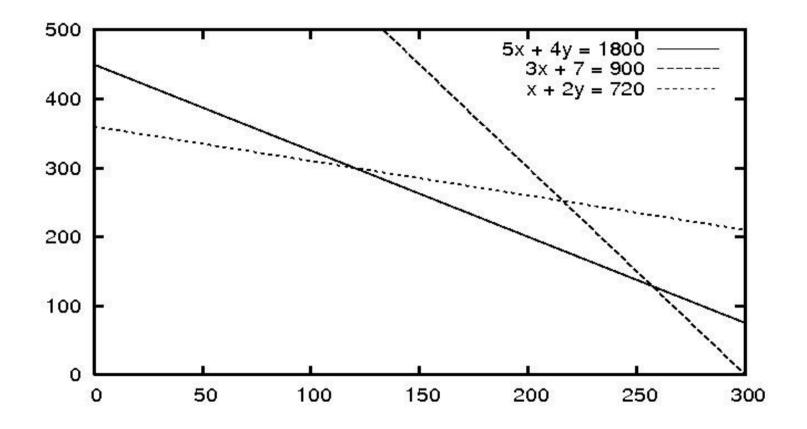
- x = gallons of fuel oil
- y = gallons of gasoline
- Profit = 40x + 50y

• Stage A: 1x + 2y ≤ 720

- Stage A: 1x + 2y ≤ 720
- Stage B: 5x + 4y ≤ 1800

- Stage A: 1x + 2y ≤ 720
- Stage B: 5x + 4y ≤ 1800
- Stage C: 3x + 1y ≤ 900

A Geometric View



• What points satisfy the constraints?

How might this apply to TAC-SCM?

A TAC SCM Example

- Suppose we have three orders for PCs
 - An order consists of (Quantity, Price)
 - { (30, 2000), (80, 1800), (100, 1500) }
- Suppose we only have 130 computers
- How might we formulate this as an linear programming problem?

Example Continued

- We want to maximize the value of the orders we choose to fill
- Suppose we denote an order by a variable that is 1 if we fill the order and 0 otherwise

Example Continued

- We want to maximize the value of the orders we choose to fill
- Suppose we denote an order by a variable that is 1 if we fill the order and 0 otherwise
- Revenue function:
 - (2000 * 30) x + (1800 * 80) y + (1500 * 100) z

Example Continued

- We want to maximize the value of the orders we choose to fill
- Suppose we denote an order by a variable that is 1 if we fill the order and 0 otherwise
- Revenue function:
 - (2000 * 30) x + (1800 * 80) y + (1500 * 100) z
- Constraints:
 - x, y, z must be 0 or 1 (integer programming problem)
 - $30x + 80y + 100z \le 130$

Some Questions to Think About

- Do optimal LP solutions always occur at vertices in the solution set?
- The LP presented here may remind you of solving for equilibria in mixed strategy games. Is there a connection?
- Are integer programming problems computationally harder or easier to solve than linear programming problems?

References

The first linear programming problem presented here was adapted from:

An Introduction to Linear Programming and the Theory of Games by A.M. Glicksman