
Ship Patrol:
Multiagent Patrol in Complex
Environmental Conditions

Noa Agmon1, Daniel Urieli2, and Peter Stone2

Abstract T
he problem of multiagent patrol has gained considerable attention during

the past decade, with the immediate applicability of the problem being one of
its main sources of interest. In this work we concentrate on frequency-based
patrol, in which the agents’ goal is to optimize a frequency criterion, namely,
minimizing the time between visits to a set of interest points. We consider
multiagent patrol in environments with complex environmental conditions
that affect the cost of traveling from one point to another. For example, in
marine environments, the travel time of ships depends on parameters such as
wind, water currents, and waves. We demonstrate that in such environments
there is a need to consider a new multiagent patrol strategy which divides the
given area into parts in which more than one agent is active, for improving
frequency. We show that in general graphs this problem is intractable, there-
fore we focus on simplified (yet realistic) cyclic graphs with possible inner
edges. Although the problem remains generally intractable in such graphs,
we provide a heuristic algorithm that is shown to significantly improve point-
visit frequency compared to other patrol strategies. For evaluation of our
work we used a custom developed ship simulator that realistically models
ship movement constraints such as engine force and drag and reaction of the
ship to environmental changes.

1 Department of Computer Science, Bar Ilan University, Israel
agmon@cs.biu.ac.il
2 Department of Computer Science, The University of Texas at Austin, USA
{urieli, pstone}@cs.utexas.edu

1

2 Noa Agmon, Daniel Urieli, and Peter Stone

1 Introduction

The problem of multiagent patrol has gained considerable attention during
the past decade [6, 10, 3, 8, 4, 2, 1], with the immediate applicability of
the problem being one of its main sources of interest. The problem is for-
mally described as repeatedly visiting some interest points in order to moni-
tor them. The points may either be in a discrete environment, a continuous
1-dimensional environment (along a line), or a continuous 2-dimensional en-
vironment (inside an area).1 The problem is usually divided according to the
perspective of the agents. In multiagent frequency-based patrol, the agents’
goal is to optimize some point-visit criterion, for example minimizing the
maximal time between visits to a point (e.g. [6, 8]). In multiagent adversarial
patrol the agents’ goal is to maximize their chances of detecting an adversary
that tries to penetrate through their patrol path undetected (e.g. [4, 1]).

In this work we concentrate on the continuous 2-dimensional frequency-
based multiagent patrol problem, with discrete points of interest, in complex
environmental conditions. In this problem, we are given a graph G = (V,E),
and we need to define patrol paths for a team of k agents that will minimize
the maximal time some vertex of the graph is left unvisited. The complexity
of the environment is expressed via the cost of travel between each pair of
vertices of the graph.

Consider the problem of ship patrol, i.e., patrol by agents (ships) in marine
environments. When designing algorithms for ships in such environments, it
is critical to consider the impact of the environment and the specifications of
the ship on the behavior of the ship that might also change over time. In our
case, we incorporate the shape and engine power of the ship, and environment
conditions such as water currents and winds in modeling the environment as
graphs, namely in its affect on the cost of travel between vertices of the graph.

Current strategies for multiagent patrol offer, roughly, two alternatives for
agents’ patrol paths. The first strategy, denoted herein as SingleCycle, is to
create one simple cyclic path that travels through the entire area (graph),
and to let all agents patrol along this cyclic path while maintaining uni-
form distance between them [8, 6]. The second strategy, denoted herein by
UniPartition, is to partition the area (graph) into k distinct subareas, where
each agent patrols inside one area.

We suggest a third, general, strategy, denoted by MultiPartition, in which
the graph is divided into m subgraphs, m ≤ k, such that a subteam of agents
jointly patrols in each subgraph. We define the problem of finding k (possibly
overlapping) paths for the agents such that the maximal time between any
two visits at a vertex is minimized, and show that the problem is NP-Hard.
The SingleCycle and UniPartition strategies, as special cases of MultiPartition,
are also intractable in general graphs.

1 Of course higher dimensions are also possible.

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 3

An additional version of the problem, in which the graph is to be divided
into m disjoint cycles, where the k agents are divided among the cycles, is
also intractable in general graphs. We therefore investigate the problem on a
special family of graphs, which are cyclic graphs with non intersecting short-
cuts (diagonals), called outerplanar graphs [5]. This simplified, yet realistic,
family of graphs have some characteristics that can be of help when look-
ing for optimal solutions to the multiagent patrol problem. For example, an
optimal SingleCycle strategy is unique and can be found in linear time. Un-
fortunately, the time complexity of the general problem of finding an optimal
MultiPartition strategy even in such graphs appears to be intractable as well.
We therefore suggest a heuristic algorithm HeuristicDivide for finding a parti-
tion of the graph into disjoint cycles in the outerplanar marine environment,
and a partition of the k agents among those cycles.

For evaluation of our work we used a custom developed ship simula-
tor, UTSeaSim, that was designed to realistically model ship movement
constraints in marine environments. UTSeaSim simulates the specifica-
tions of the ship, namely, the weight, engine power, and shape of the ship;
and how it is influenced by the environmental conditions, including wa-
ter, currents and winds. We first show that in a simple scenario in which
the optimal MultiPartition strategy is easily computable, it outperforms the
other two strategies (SingleCycle and UniPartition). We then show that in a
more complex environment, our heuristic algorithm HeuristicDivide, following
the MultiPartition strategy, performs significantly better than the tractable
SingleCycle strategy.

The book chapter is organized as follows. Section 2 describes previous work
in the research area of multiagent patrol. In Section 3 we describe the motiva-
tion behind the new definition of the MultiPartition strategy, originated in the
implementation of the ship-patrol problem in a realistic marine environment
simulator. We then provide a new formal definition of the multiagent patrol
problem along with its complexity in Section 4, and discuss the problem in
outerplanar graphs. In Section 6 we describe the ship simulator and the em-
pirical evaluation of the algorithms we discuss in the work. Last, we conclude
along with directions for future work in Section 7.

2 Related Work

The problem of multiagent patrol can be roughly divided into two problems:
multiagent frequency-based patrol (e.g. [10, 6, 8]), and multiagent patrol in
adversarial environments (e.g. [1, 4]). The problems differ in the objective
function that should be optimized, namely optimizing frequency-based crite-
ria or optimizing probability of detecting events controlled by an adversary
(respectively). In this work we focus on the problem of frequency-based pa-
trol, in which we aim at minimizing the time between two visits at a point.

4 Noa Agmon, Daniel Urieli, and Peter Stone

Mechado et al. [10] were the first to define the problem of multiagent pa-
trol in graph environments, and introduced the notion of idleness, meaning
the time between two visits in a vertex of the graph. They consider envi-
ronments with uniform length edges, and perform an empirical evaluation
of various architectures for multiagent patrol in different graphs. Generally,
they distinguish between reactive and cognitive agents, where the former
are locally-driven agents using minimal coordination (if any), and the latter
might try to use global state while deciding their next move. They did not
theoretically define nor evaluate the multiagent patrol problem on graphs,
nor did they consider complex environments.

The first theoretical analysis of the problem of multiagent patrol was given
by Chevaleyre [6]. Chevaleyre refers mainly to the worst idleness criterion,
which is the largest amount of time that some vertex remained unvisited
throughout the execution of the patrol algorithm. He discusses two possi-
ble strategies: a Cyclic strategy, in which one cyclic path travels through
the entire graph, and all agents follow this path (denoted by SingleCycle)
and a Partition-based strategy, in which the graph is partitioned into k dis-
tinct subgraphs (k being the number of agents), where each agent visits
one subgraph in a cyclic tour (denoted by UniPartition). He analyzes the
idleness criterion in each of these strategies, using an approximation algo-
rithm to the Traveling Salesman Problem (TSP) under the assumption that
the triangle inequality holds. In our work we redefine the multiagent patrol
problem in a more general form, in which the graph is possibly partitioned
into disjoint subgraphs, however agents can share a subgraph (denoted by
MultiPartition). In addition, we do not assume that the triangle inequality
holds (as in many realistic scenarios this assumption is not true). This gen-
eral definition includes also the two strategies proposed by Chevaleyre as
subcases, i.e., SingleCycle,UniPartition ⊆ MultiPartition.

Ahmadi and Stone [2] investigated the multiagent patrol problem in pri-
oritized environments, i.e., where different areas require different attention
from the agents. They suggest a new, learning-based method for determin-
ing the optimal patrol path for each robot, which is adapted to the different
constraints of the environment. In this work we consider nodes with uniform
priority, i.e., all nodes should have minimal possible idleness.

Multi-robot patrol in areas was considered by Elmaliach et al. [8], which
offered an optimal patrol algorithm using a cyclic strategy, i.e., one cyclic path
with minimal cost passes through the entire area, and all robots coordinatedly
travel along this path. Their solution assumes that the area and the size of
the robots meet several constraints, allowing them to find an optimal solution
(minimal cost cyclic path) in polynomial time.

Elmaliach et al. [9] considered the problem of frequency-based multi-
robot patrol along an open fence, where they evaluated their patrol algorithm
according to different frequency criteria. They offer a model for determining
the patrol path of the robots in this asymmetric environment, which takes into
account the motion model of the robots (acceleration and velocity changes,

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 5

and error in motion). This model results in a realistic cost of travel along
the fence. In our work we consider the case of uncertain cost of travel that
depends on the environment, and is updated during the patrol execution
(rather than fixed in advance given the physical constraints of the robots).
Moreover, both the general graph model and the restricted outerplanar graph
model pose a considerable challenge compared to the linear environment of
a fence, due to the number of new possibilities of patrol paths for the robots.

Recent work by Marier et al. [11] describe a solution to multiagent patrol
on graphs with non-uniform weights on the vertices of the graph, correspond-
ing to the importance of the node. They offer two algorithms for patrolling.
The first is reactive (based on consequences calculated for a very limited
horizon) and the second is based on an online heuristic algorithm for solv-
ing POMDPs. They describe the problem as information gain (rather than
idleness), and examine the performance of their heuristic algorithms with re-
spect to the known (or unknown) duration of the patrol. They do not consider
uncertainty in travel time, nor do they refer to the graph theoretic problem.

3 Motivation - Ship Patrol and Marine Environment

As surveyed in Section 2, the problem of multiagent patrol has become a
canonical problem in multiagent (and specifically multi-robot) systems in
the past several years. In this work, we investigate this problem in a realistic
ship simulator that we have designed in our lab and that introduces impor-
tant new travel-time constraints to the problem (a technical description of
the simulator is given in Section 6). The general problem defined in graph
environments requires a team of k agents to repeatedly visit all N nodes
of the given graph while minimizing the longest time a node has remained
unvisited by some robot. We first look into the simplest scenario found in
the literature, namely patrol in circular environments. In such environments,
the patrol path is linear and the algorithm that optimizes point-visit fre-
quency was shown to be an algorithm that requires all robots to travel in
a coordinated manner and maintain uniform (time) distance between each
neighboring pair of robots along the path (e.g. [6, 8]).

In marine environments, as in other complex realistic environments, two
factors have the most influence on the travel time of a ship: specifications
of the ship, and the conditions of the environment, namely the sea. When
designing an algorithm for such environments, we therefore have to take into
account these factors, that also might change during mission execution (the
patrol).

After implementing a simple scenario, in which three ships patrol along a
cyclic path in order to optimize point-visit frequency over a set of 10 points
(see Figure 1), we discovered several interesting phenomena. First and fore-
most, we saw that in environments in which the cyclic path is not along a

6 Noa Agmon, Daniel Urieli, and Peter Stone

perimeter of some closed structure (for example airports, prisons and military
bases), it is necessary to consider paths that create shortcuts between point
of interest, and allow traveling from one point to another that are not neces-
sarily along the cyclic path. Moreover, even in such environments (especially
military bases, factories and airports), there usually are roads going through
the closed area, creating shortcuts in transitions between points along the
perimeter. Second, when we applied different water current and wave condi-
tions, the cost of traveling (corresponding to travel time) along some edges of
the graph became very high, encouraging the use of the shortcuts for traveling
between points of interest. We examined solutions that exist in the literature
for defining optimal patrol paths for a team of robots, and found only the
SingleCycle and UniPartition solutions, which consider the entire cyclic path,
or divide the patrol paths into k areas, each under the responsibility of a
single agent (respectively).

In the example illustrated in Figure 1, we examined two scenarios. In the
first we had no currents or winds (a “clean” environment), and in the sec-
ond we introduced winds and currents, specifically currents between points
p2 and p3, and between points p6 and p7. The travel time between p2 and p3
and between p6 and p7 (in both directions) is, therefore, very high. The worst
idleness results we describe here are calculated by averaging the idleness of
each point along a 10 minute execution of the patrol in the simulator, and
choosing the point with highest average idleness value. In the first (clean)
environment, when the three ships executed the SingleCycle strategy, we got
an average worst idleness of 651 seconds. When dividing the set of 10 points
among the three ships, where one ship patrols along points p3, p4, p5, p6 in a
circular path, and the other two ships divide the remaining points between
them (the UniPartition strategy) we get worst idleness of 786 seconds. How-
ever, when looking closely at this example, it can be clearly seen that there
exists another possibility: letting one ship patrol along p3, p4, p5, p6, and hav-
ing the other two share the cycle p1, p2, p7, p8, p9, p10 and patrol, coordinat-
edly, with uniform time distance between them (the MultiPartition strategy).
By executing this algorithm, we got worst idleness of 614 seconds, a major
improvement compared to the previous two strategies. This improvement be-
comes more substantial when we examine the situation with currents. Now,
the SingleCycle strategy yields worst idleness of 795 seconds, the UniPartition
yields worst idleness of 792 seconds, and the MultiPartition strategy yields
worst idleness of 613 seconds (note that in the last two cases there is no
significant change from the clean environment, as the ships did not travel
through the stormy weather, i.e., where the strong currents are).

This example, along with other similar phenomena we have viewed in our
simulator, motivated us to redefine the problem of multiagent patrol in a more
general form, denoted as MultiPartition, and discuss possible solutions to the
problem in circular environments, but with additional shortcuts between the
points of interest.

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 7

Fig. 1 An example of a scenario handled by the simulator. The circles represent the points
of interest (nodes of the graph), and the drop shapes are the ships. The large grey shapes
are obstacles, and the drawn arrows indicate the direction of the water current.

4 Problem definition and complexity

In this section, we define the general problem of multiagent frequency based
patrol on general graphs. We describe the decision version of the problem,
where the input is the graph G = (V,E) (|V | = N), an integer k < N that
corresponds to the number of agents, and an integer f which is the maximal
worst idleness, i.e., the maximal requested idleness from all vertices of the
graph (similar to the definition in [6]). Formally, if fi denotes the idleness of
a vertex vi, then the worst idleness of the graph G, wi(G), guaranteed by an
Algorithm A is defined as wi(G) = max1≤i≤N{fi}.

Note that real world constraints dictate modeling the world with directed
graphs, i.e., the travel time from a vertex v to a vertex u is not necessarily the
same as that from u to v. However, we assume that the graph is symmetric,
i.e., if an edge exists from v to u, then an edge exists also from u to v
(not necessarily of the same cost). We therefore describe the general problem
on undirected graphs. Once a cycle is defined, the algorithms will decide
whether to go clockwise or counterclockwise along the cycle, depending on
the direction that has lower cost.

8 Noa Agmon, Daniel Urieli, and Peter Stone

4.1 Multiagent patrol in general graphs

Definition: Multiagent Graph Patrol (MGP)
Given a graph G = (V,E,C) where |V | = N , and ∀(vi, vj) ∈ E, cij ∈ C is
the associated cost of the edge, an integer k < N denoting the number of
agents, and a desired maximal worst idleness target f , is there a division of V
into m ≤ k cyclic paths V1, V2, . . . , Vm (not necessarily simple), each assigned
with ki agents such that all ki agents visit all vertices in Vi and

∑m
i=1 km = k,

such that the worst idleness wi(G) is at most f?
In the following theorem we show that the MGP problem is NP complete

for general k’s.

Theorem 1. The MGP problem is NP complete.

Proof. First, theMGP problem is inNP, since given a solution, i.e., a division
of the graph into m paths, it is possible to verify whether wi(G) is indeed f
using a variation of the Algorithm AssignKAgents. MGP is NP-Hard for gen-
eral k by a simple Turing reduction from the decision version of the graphical
traveling salesman problem (GTSP). Specifically, we can find whether there
exists a minimal tour of size at most f that travels through all nodes in the
graph at least once by solving the MGP problem given f as input, and k = 1.

In our work, we would like to consider a special case of the MGP problem,
in which each path V1, . . . , Vm is a simple cycle, i.e., it is a closed path with
no repeated vertices. Moreover, we restrict our attention to sets of distinct
paths that do not share any vertices, i.e, V = V1

⊕
V2

⊕
. . .

⊕
Vm (distinct

simple cycles). This problem handles restrictions that are more suitable for
realistic robotic environments, in which two requirements are met:

1. Two robots will not meet during the execution of the algorithm, thus will
not interfere with one another during the patrol.

2. Robots will not need to interact outside of their subteam, i.e., the pa-
trol algorithm requires only local coordination (unless the environment
changes the optimality of the current patrol algorithm). Moreover, if dif-
ferent human operators observe each subteam, it does not require con-
tinuous coordination among the human operators.

The formal definition of the problem is as follows.

Definition: Multiagent Cyclic Graph Patrol (MCGP)
Given a graph G = (V,E,C) where |V | = N , and ∀(vi, vj) ∈ E, cij ∈ C is
the associated cost of the edge, an integer k < N denoting the number of
agents and a desired maximal worst idleness target f , is there a division of
V into m ≤ k distinct simple cycles V = V1

⊕
V2

⊕
. . .

⊕
Vm, each cycle Vi

assigned with ki agents coordinatedly traveling along Vi and
∑m

i=1 km = k,
such that the worst idleness wi(G) is at most f?

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 9

The MCGP is a special case of the MGP, in which the cyclic paths are
required to be disjoint, and each cycle is simple (with no repeated vertices).
The NP-Hardness proof resembles the proof for the MGP problem, thus we
conclude the following.

Corollary 1. The MCGP problem on general graphs is NP-Hard.

We can define the worst idleness in this problem as follows. If k′ agents
visit a cyclic path, denoted by V C , where V C = {vi1 , vi2 , . . . , vil}, vij ∈ V (G),
(vij , vij+1modl

) ∈ E(G), and denote the total weight of edges in the cycle by

w(V C) =
∑l

h=1 ciji(j+1modl)
, then ∀vij ∈ V C , fij = w(V C)

k′ . Therefore if G is

divided into m distinct cycles, where each cycle V C
i is visited by ki agents,

then wi(G) = max1≤i≤m{w(V C
i)

ki
}.

Algorithm AssignKAgents (described below) is given as input m cyclic
paths, an integer k corresponding to the number of agents, and a maximal
idleness f , and has to answer the question of whether k agents are sufficient
to guarantee a maximal idleness of f on the given graphs. It returns the
assignment of number of agents per graph (K = {k1, . . . , km} such that∑m

i=1 ki = k and ki agents are necessary to visit Gi in order to guarantee
minimal idleness f) and the maximal idleness guaranteed by this assignment
(floc). Denote the edges along the cyclic pathGi in clockwise direction byGcw

i

and in the counterclockwise direction by Gccw
i . The algorithm will work for

either symmetric directed graphs (in which it will refer to the direction with
minimal cost — either going clockwise or counterclockwise) or undirected
graphs (in which w(Gcw

i) = w(Gccw
i) where w() is the cycle weight, or length,

function).

Algorithm 1 < K, floc > = Algorithm AssignKAgents({G1, . . . , Gm}, k, f)
1: C ← 0, K ← ∅
2: for i← 1, . . . ,m do
3: wi ← min{w(Gcw

i), w(Gccw
i)}

4: ci ← argminGcw
i

,Gccw
i
{w(Gcw

i), w(Gccw
i)}

5: ki ← ⌈wi/f⌉
6: if ki > k then
7: Return ∅
8: K ← K

∪
ki, C ← C

∪
ci

9: k ← k − ki
10: floc ← max1≤i≤m{w(C[i])/K[i]}
11: Return K, floc

10 Noa Agmon, Daniel Urieli, and Peter Stone

4.2 The multiagent patrol problem in outerplanar
graphs

Motivated by the problem of multi-robot perimeter patrol (e.g. [1]), we ex-
amine the MCGP problem in circular environments. However, we add more
realistic considerations to the environment, namely adding possible shortcuts
between vertices that pass inside the circle. To avoid possible interference by
agents that travel along the edges, we require the inner edges not to intersect
one another. The resulting graph is planar, and moreover, it is a biconnected
outerplanar graph [5], i.e., it is a planar graph that is cyclic, and there are no
nodes that are inside the cycle (all nodes in the graph are on the same outer
face).

An example for such a graph is shown in Figure 2. In this example, if an
edge existed between v4 and v11, then the graph would not be planar (as
the edge (v5, v11) crosses the edges (v6, v12) and (v8, v12)). Also, if an edge
existed between v13 and v11, then the graph would remain planar, but would
not be outerplanar (as v12 is not adjacent to the outer surface anymore).

In the family of outerplanar graphs, several hard problems become very
easy to solve. For example finding a Hamiltonian cycle is done in linear time,
as the only possible simple cycle that visits all nodes in the graph is the ex-
ternal cycle. Therefore also finding the optimal SingleCycle strategy is done
in linear time, as the solution is unique. Another interesting characteristic of
outerplanar graphs is that every subgraph of an outerplanar graph is outer-
planar, thus a biconnected component of a subgraph of an outerplanar graph
also has a unique Hamiltonian cycle ([5]).

We draw a connection between disjoint cycles and biconnected components
in Lemma 1. Generally, a biconnected component in an outerplanar graph has
a unique Hamiltonian cycle, which is the outer-cycle that visits all vertices.
We would therefore like to find a way to use this property in order to find
disjoint cycles, as defined in the MultiPartition strategy. As a first step, we
look at the case of dividing the graph into two disjoint cycles. We show in the
lemma that in order to find such disjoint cycles, it is sufficient and required
(in the general case) to consider all biconnected components that are created
by the removal of two edges from the graph. We later use this property in
the heuristic algorithm for solving the MCGP problem in outerplanar graphs.

Consider the outerplanar graph G = (V,E) in Figure 2. We will demon-
strate why the removal of only one edge might not result in all disjoint cycles,
and how we can achieve either two or three disjoint cycles by removing every
pair of edges. First, by removing only one edge e ∈ E and computing the
biconnected components in the remaining graph G = (V,E \ {e}) it would
be impossible to get the division of the graph into the two disjoint cycles
V C
1 = (v9, v10, v11) and V C

2 = G \ V C
1 : Removing (v8, v9) would result in

the biconnected components {v9, v10, v11} and {v1, . . . , v8, v11, v12, . . . , v15},
which are not disjoint, thus their Hamiltonian cycles are not disjoint. The

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 11

v

v3

4v v5
6v

v7

8v v9

10v

v11

12v

v13

14v

v15

v

2

1

Fig. 2 An outerplanar graph: The vertices of the graph (points of interest for the agents

along the patrol) are all adjacent to one external face, and the inner edges (shortcuts) do
not intersect.

removal of (v8, v11) results in one biconnected component (thus cycle) G,
and the removal of (v11, v12) results in the cycles {v8, v9, v10, v11} and
{v1, . . . , v7, v8, v12, . . . , v15}, which are again not disjoint. Therefore by re-
moving only one edge we could not get the disjoint cycles V C

1 and V C
2 .

However, by removing (v8, v9) and (v8, v11), this division is achieved. Note
that the removal of the pair of edges (v2, v3) and (v4, v5) results in three
disjoint biconnected components (thus cycles): {v1, v2, v14, v15}, {v3, v4, v13}
and {v5, v6, . . . , v12}.

Lemma 1. Given a biconnected outerplanar graph G = (V,E), each division
of G into two disjoint biconnected components can be achieved by removing
one pair of edges and computing the biconnected components of the remain-
ing graph. If removing one pair of edges, the number of remaining disjoint
biconnected components (excluding disconnected vertices) will not exceed 3.

Proof. We first show that two disjoint biconnected components V C
1 =

{v1, . . . , vl} and V C
2 = {u1, . . . , uh} in an outerplanar graph G can be con-

nected by either two or three edges. First, assume that V C
1 and V C

2 are
connected by only one edge (vi, uj), vi ∈ V C

1 and uj ∈ V C
2 . Therefore both

vi and uj are articulation vertices (their removal disconnects the graph),
contradicting the nonseparability characteristic of the biconnected graph G.

We now show that V C
1 and V C

2 cannot be connected by more than three
edges. Without loss of generality, assume that both V C

1 and V C
2 vertices are

ordered clockwise in ascending order, and that V C
1 is left of V C

2 . Therefore,
since G is outerplanar, two edges connecting V C

1 and V C
2 are necessarily

(vi, uj) and (vi+1, uj+1). Moreover, there cannot be any other edge (v, u)

12 Noa Agmon, Daniel Urieli, and Peter Stone

connecting V C
1 and V C

2 such that v /∈ {vi, vi+1} and u /∈ {uj , uj+1}, otherwise
some vertex v′i ∈ V C

1 and/or u′
j ∈ V C

2 are not adjacent to the outer face,
contradicting the outerplanar definition of G. Therefore the only possible
edges connecting the two disjoint components are between vertices vi, vi+1

and uj , uj+1. Since an outerplanar graph cannot have a subgraph that is a
clique of size 4 [5], and since necessarily (vi, vi+1) ∈ E, (uj , uj+1) ∈ E and
we’ve shown that (vi, uj), (vi+1, uj+1) ∈ E, then there could exist only one
more edge connecting the two components: either (vi, uj+1) or (vi+1, uj), but
not both.

Since two disjoint biconnected components can be connected by at most
three edges, by removing every possible pair of edges from the graph, at some
point we will necessarily remove two of the connecting edges of V C

1 and V C
2 ,

resulting in two disjoint biconnected components. Moreover, the removal of
one edge can result in dividing the graph into two disjoint components only
if these components are connected by only two edges. Therefore, removing a
pair of edges can result in up to three biconnected components (cycles) and
no more than that.

This lemma results in the fact that finding two disjoint cycles (and possibly

3) in a graph can be done efficiently in time complexity of at most
(|E|

2

)
. Since

finding the partition of k into two (or three) components is done efficiently
as well, the MCGP problem can be solved optimally in polynomial time if m
is restricted to be 2.

Corollary 2. In an outerplanar graph G = (V,E), finding a division of
the graph into up to two disjoint simple cycles V C

1 and V C
2 such that

V = V C
1

⊕
V C
2 and wf(G) (for any value of k) is minimized can be done in

polynomial time, using Algorithm DivideTo2Cycles.

Algorithm DivideTo2Cycles receives as input the graph G = (V,E) and
the maximal frequency criterion f that should be met, and returns the best
division of the graphs into two components such that the division results
in maximal idleness of at most f . If no such division exists, it returns the
empty set. Note that in order to get all possible divisions of G into two
disjoint cyclic paths, the algorithm should be given the value f = w(G)/k.
The algorithm removes all possible pairs of edges from the original graph,
and computes the biconnected components of the remaining graph. For those
biconnected components, it checks whether there is an assignment of k into
those biconnected components such that the maximal idleness of the graph
is at most f , using Algorithm AssignKAgents. By Corollary 2, the algorithm
examines all possibilities of dividing the graph into two cycles (which has
time complexity of O(|E|2)). Since checking all possibilities of partitioning
the number k into at most 3 components is polynomial in k, and determining
the idleness is linear in |E|, then the total time complexity of Algorithm
DivideTo2Cycles is O(|E|3).

As shown by de Mier and Noy [7], the number of cycles in a maximal
outerplanar graph is exponential in the number of vertices of the graph, thus

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 13

Algorithm 2 S = Algorithm DivideTo2Cycles(G = (V,E), f, k)

1: S ← ∅
2: for Every pair of edges ei = (vi, ui) and ej = (vj , uj), ei, ej ∈ E do
3: E′ ← E \ {ei, ej}
4: U ← biconnected components of G′ = (V,E′)
5: if < K, floc >= AssignKAgents(U, k, f)! = ∅ then
6: floc ← optimal assignment of k agents to U
7: S ← S

∪
{< U,K, floc >}

8: Return S[i] for which floc is minimal

if we need to examine all possible sets that generate a direct sum of V it
will result in at least an exponential time complexity. We therefore believe
(although not proven) that theMCGP problem, also in the simple biconnected
outerplanar environment, is intractable, as the number of all possibilities of
the division of the graph into up to k subgraphs grows exponentially with k.

We therefore describe a heuristic algorithm, Algorithm HeuristicDivide, for
finding a division of the graph into disjoint cycles.

4.3 Heuristic algorithm for multiagent patrol in
outerplanar graphs

We describe in this section a heuristic algorithm, Algorithm HeuristicDivide,
for finding a set of any number of disjoint cycles in an outerplanar graph
(based on Algorithm DivideTo2Cycles), and dividing the k agents between
these disjoint cycles in a way that aims to find a low overall maximal idleness.

The algorithm applies algorithm DivideTo2Cycles once, then further applies
itself recursively on each element of the set of disjoint biconnected compo-
nents that yield lowest idleness. In this way it performs a greedy heuristic
search and halts once it completes all possible divisions up to k cycles. The al-

gorithm receives as input the graph G, the number of agents k, and f = w(G)
k .

Note that once the cycles, the direction of travel along the cycles, and
the division of the agents among the cycles are determined, it is only left to
distribute the agents along the cycles (number of agents per cycle as deter-
mined by the algorithm), and require the agents in each cycle to maintain
uniform distance between them and continue traveling coordinatedly along
their circular path.

Time complexity of Algorithm HeuristicDivide:
The time complexity of HeuristicDivide is defined by two components: The
depth of the search and the time to process each level of the search tree.
Since at each step we deepen the recursion we lose at least one vertex (as
the minimal division to two distinct cycles is to a vertex v and to a cyclic
graph G\{v}), the depth of the tree is at most k−1. The time complexity of

14 Noa Agmon, Daniel Urieli, and Peter Stone

Algorithm 3 Algorithm HeuristicDivide(G = (V,E), f, k)

1: ResSet← DivideTo2Cycles(G, f, k)

2: if ResSets = ∅ then
3: Return G
4: CurChoice = argmin<Ui,Ki,fi>∈ResSet{fi}
5: Return

∪
Gi∈U(CurChoice)

HeuristicDivide(Gi,Ki, fi)

AssignKAgents is linear in the number of edges, and the complexity of finding
biconnected components is also linear in outerplanar graphs. Therefore the
complexity of examining each pair of edges is O(|E|). When we go down in
the recursion, if E is divided into up to three disjoint biconnected components
E1, E2 and E3, then we have complexity of O(|E1|2 + |E2|2 + |E3|2) where
0 ≤ |E1| ≤ |E2| ≤ |E3| < |E| and |E1| + |E2| + |E3| = |E|. Therefore, since
O(|E1|2 + |E2|2 + |E3|2) < O(|E|2) it leads to a total time complexity of
O(k|E2|).

5 UTSeaSim

UTSeaSim2 is an open-source, custom-designed naval surface navigation
simulator. It uses realistic 2D physical models of marine environments and
sea vessels, and runs both in GUI and in non-GUI modes. UTSeaSim is
written in python, and has a flexible design that allows to easily extend it
and plug-in new functionality. Figure 3 shows a snapshot taken during a
GUI-based simulation.

Fig. 3 UTSeaSim’s GUI visualization of navigating ships (2d, top-view).

The simulator’s core contains three main modules: a Sea Environment
module, a Ship module, and a Decision-Making module. The sea environ-

2 http://www.cs.utexas.edu/~UTSeaSim

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 15

ment module includes models of winds, water currents, waves, and obstacles.
The ship module models all relevant aspects of a ship, including the ship’s
physical properties, sensing capabilities, and ship actuators. The decision-
making module implements an agent that controls a ship autonomously, as
well as communicating with other agents to coordinate strategies. At each
time step, the agent receives the perceptions sensed by the ship, processes
them to update its current world state, and decides on control actions for
the ship based on its current world state and its decision-making strategy.
The following sections describe the simulation flow and the main simulation
modules.

5.1 Simulation Flow

We start with describing the high-level flow of computation, including the
inputs and outputs of the simulator. A simulator’s run simulates a specific
task, which is defined in a task definition file. The simulator’s high-level flow
can be described as follows:

• Load the task and task-related data from a task definition file.
• Load environmental model from input configuration files.
• Initialize ships and ship-controlling agents for the loaded task, based on

command-line flags.
• Run simulation for n steps. A simulation step advances the world state

as a result of agents’ actions and exogenous changes in the environment.
Simulation can run both in GUI and in non-GUI modes, depending on a
command-line flag.

• Write simulation results to file. In general, results could be any simu-
lation data that is of interest to the user and can be gathered during
the simulation. The type of results to be written are determined by a
command-line flag.

In a typical simulation, autonomous ships are navigating in the sea, exe-
cuting some task. Each simulation step simulates the world change after one
second. During the simulation, data is gathered and is written to output files.
Below are the inputs and outputs of a simulation.

5.1.1 Inputs

The inputs to the simulator are environmental conditions and a task definition
file:

• Environmental conditions: Environmental conditions are defined in
text-based files that choose and parametrize an environmental model, in-
cluding water current directions and speeds and wind speeds, in different

16 Noa Agmon, Daniel Urieli, and Peter Stone

geographic areas. Customizing new environmental models can easily be
done through text files.

• Task definition file: The task definition file contains a choice to exe-
cute one of the supported tasks (an open list that can be easily extended),
along with any task-related data, such as patrol points, initial ship posi-
tions, and any other task-dependent data.

5.1.2 Outputs

In general, the simulation can output any data that is gathered during the
ship navigation simulation. Currently, it can output:

• Traversal Times Graph Data: Contains all the patrol nodes, along
with a list of the travel times between pairs of points.

• Point Visit-Frequencies: This data is gathered during a multi-agent
patrol, and maps each patrol node to the average frequency in which it
was visited by the patrolling ships.

5.2 Main Simulator Modules

In this section we describe in more detail the core simulation modules.

5.2.1 Sea Environment Module

The sea environment implements different models of winds and currents that
affects the ship’s motion. The environment conditions model is currently en-
capsulated inside a Sea class. This class is nothing but a container for Wind,
WaterCurrents, Waves and Obstacles classes. Each of the first three classes
has only one function: getSpeedVectorInLocation(), which returns, for location
(x,y), the speed vector of the wind, water, or the waves respectively. Currently
a few simple models are implemented, in which the wind is static and con-
stant, and also the currents are static and constant, but can be different in
different geographic areas of the sea. The fourth class, namely Obstacles, is a
container of polygon-shaped obstacles.

5.2.2 Ship Module

The ship module models the ships’ physical properties, motion modeling and
perception capabilities. The Ship class has properties like mass, length, engine
force, and proportionality constants that affect the computation of the drag
forces and accelerations operating on the ship.

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 17

Ship’s Perception Capabilities

Our sensing model for the environment is encapsulated inside a ship. The
simulator sends its full world state to the ship, and the ship, depending on
it’s model, extracts from it only the data that it percepts can give it, and
send it to the agent that controls the ship. In general, any perception module
can be plugged into any ship.

Ship’s Motion Model

At every simulation step, we compute the ship’s state in the next time step,
based on the current world state (the environment), the ship’s engine and
steering, and the time passed. Currently, we approximate ship movement
using the following model:

• For forward motion, we model forward force that operates on the ship by
the engine, and a drag, which is quadratic in the ship’s speed.

• For turning, there is a rotational torque that is applied by the rudder, and
is proportional to the ship’s speed, and to the projection of the rudder
on the lateral direction. There is also a rotational drag force, that is
quadratic in the ship’s angular speed.

• Based on the above forces and the ship’s mass, we compute the forward
and angular accelerations.

• Then, based on the average forward and angular speed in a given time
step, computed using the above accelerations, we infer the turn radius,
and based on that, compute the ship position at the end of this time-step.

Some approximations we make:

• Although the angular acceleration depends on forward speed, which keeps
being changed, we still assume constant forward speed (the avg. speed in
this time step) during the computation of angular acceleration.

• Forward acceleration computation does not take into account the effects
of turning which might slow it down.

• Forward acceleration depends on the drag, which is changing with speed
change, but we approximate the drag based on the initial speed of a time
step

A ship’s response to the sea conditions is computed inside the ship itself.
Each ship has a function getOffsetByEnvConditions() that is responsible for
computing the ship’s offset resulting from the ship’s previous state and the
environmental conditions in its (x,y) location. Currently the computation is
done based on the ship’s orientation, the wind direction, and the currents
direction. The environmental effects model is somewhat simplistic: the wind
and the current just offsets the ship in their direction, proportionally to their
speed, each with a different proportionality constant.

18 Noa Agmon, Daniel Urieli, and Peter Stone

5.2.3 Decision Making Module

The decision making module is encapsulated inside an Agent class. An agent
repeatedly processes percepts, updates its belief about the world state and
uses its decision making strategy to choose actions to take (usually steering
and engine commands to the ship). In order to make decisions, the agent can
use a communication module to communicate with other agents. The agent
is composed of two main parts: its world model (class AgentWorldModel) and
its decision making strategy (class AgentStrategy). In order to implement a
new agent, one simply needs to inherit one or both of these interface classes.
We will briefly describe them next, along with some other features of the
decision making module.

World Model

The world model is responsible for processing the percepts coming in from
the ship, and for building a state of the world, possibly in an incremen-
tal manner based on the agents beliefs and perceptions. As an example for
an agent world model, a world model that is currently implemented is the
AgentWorldModelCompleteWorld, which models a fully observable environ-
ment. This model assumes that the ship has perfect perceptions and that
it receives the complete world state every cycle, so no belief maintenance is
needed. In the future, we will add world models with partial observability
and sensing of the environment.

Decision Making Strategy

The decision making strategy uses the existing world state that is built and
maintained by an AgentWorldModel class, and use it to decide on actions,
based on the agent’s goals. Two examples for decision making strategies are
a cyclic patrol strategy, and a dynamic, coordinated patrol, with the options
of ships joining or leaving the patrol.

Communication

An agent can communicate with other agents for planning and executing its
task. The interface function getOutgoingMsg() is used by the simulation en-
vironment to extract an agent’s outgoing messages and deliver them to the
specified recipients. Delivering is done by calling the recipient’s receiveMsg()
function. Besides sending a message to another agent, an agent can send a
message to the simulation environment itself, usually to report some statis-
tics.

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 19

Obstacle Avoidance

Obstacle avoidance behavior is built into the navigation-related decision
making. When a ship starts its navigation towards the next way point,
it checks whether the path is blocked by obstacles. If the path is not
blocked, the ship navigates directly to the point, using a PID controller
(http://en.wikipedia.org/wiki/PID_controller) for the steering and
engine commands. If the path is blocked, an RRT algorithm (http://msl.
cs.uiuc.edu/rrt/) computes a bypass and navigates through it.

Rules of the sea

The decision making module has a basic implementation of obeying the rules
of the sea. In brief, a ship computes whether there is a potential collision on
its navigation path, and in case needed, the ship takes a preventive action.
The preventive action is in general: if there are no ships on the right then
turn right, otherwise stop.

6 Empirical evaluation

We evaluated HeuristicDivide under realistic marine environment using the
UTSeaSim Simulator. In the following section we describe the experimen-
tal setting and the empirical results from executing the patrol algorithms
described above.

In our experiments, we examined several different environments. Due to
space constraints, we describe one interesting environment, in which the
graph is outerplanar with a large number of possible division of the graph into
disjoint cycles. The marine environment was implemented inUTSeaSim, and
illustrated in Figure 4 (distances are shown in meters). In this environment,
N = |V | = 36, and the number of ships (k) varies from 1 to 30. Although
the points of interest are arranged in two straight lines, this environment can
become equivalent to many realistic cases by controlling the currents between
nodes thus controlling the edge lengths. Moreover, this environment can rep-
resent a man-made group of points of interest, for instance a sequence of oil
rigs.

We examined four different scenarios, where in each one the sea conditions
were different. In the first environment (denoted as Sea Condition 0), there
were no currents and the cost of traveling between two points correlates to the
geographical distance. We then gradually added more currents to the system
with three different strengths - Sea Condition 1, 2 and 3, for weak, medium
and strong, respectively, where their directions was as shown in Figure 4. We
ran Algorithm HeuristicDivide initially with the worst idleness of ∞ and let it

20 Noa Agmon, Daniel Urieli, and Peter Stone

Fig. 4 The evaluation environment.

find the best division it can. We then simulated the patrol-division returned
by the algorithm for 20,000 seconds (333 minutes), and reported the worst
node-idleness, i.e., the highest average time between consecutive node visits,
for any node. Note that in all the results, lower values are better.

Figure 5 shows the worst idleness resulting from HeuristicDivide when run-
ning on sea conditions 0–3. Note that in Sea Condition 0 (no currents) the
algorithm always returned the SingleCycle strategy, which is indeed the best
division for the case of no currents. As expected, the worst idleness becomes
higher as the sea conditions become rougher.

Fig. 5 The worst idleness returned from Algorithm HeuristicDivide in the four different
sea conditions examined.

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 21

In order to evaluate the performance of our algorithm, we compared its
worst idleness with the worst idleness of the following:

1-Loop The result of the SingleCycle strategy, i.e., a patrol algorithm that
instructs all ships to patrol around the cycle while maintaining uniform
distance between adjacent pairs.

k+1 Incremental change. In this case, we assumed the HeuristicDivide algo-
rithm was computed for k ships, and upon the arrival of a new ship it is
added to the cycle with highest worst idleness (for the best improvement
in idleness). This is compared to running HeuristicDivide with k+ 1 ships,
and the goal is to check whether HeuristicDivide, as a heuristic algorithm,
does better than just a straightforward increment.

k-1 Decremental change. In this case, we assumed the HeuristicDivide algo-
rithm was computed for k+1 ships, and a ship needs to be removed from
the system. We assume that in this case a ship is removed from the cycle
with best worst idleness (for minimal increase in the worst idleness). This
is compared to running HeuristicDivide with k−1 ships, again with the goal
of checking whether HeuristicDivide does better than just a straightforward
adjustment.

The results are shown in Figures 6, 7 and 8 for Sea Conditions 1, 2 and 3,
respectively. Note that since for Sea Condition 0 HeuristicDivide’s solution is
always the SingleCycle strategy, for every given k HeuristicDivide’s solution is
identical to the 1−loop, k + 1 and k − 1 solutions.

Fig. 6 The results of HeuristicDivide, 1−loop, k + 1 and k − 1 in Sea Condition 1 (weak
currents).

22 Noa Agmon, Daniel Urieli, and Peter Stone

Fig. 7 The results of HeuristicDivide, 1−loop, k+1 and k−1 in Sea Condition 2 (medium
currents).

Fig. 8 The results of HeuristicDivide, 1−loop, k + 1 and k − 1 in Sea Condition 3 (strong

currents).

Ship Patrol: Multiagent Patrol in Complex Environmental Conditions 23

In Sea Conditions 2 and 3, algorithm HeuristicDivide performs statistically
significantly (using paired t-test) better than the 1−loop algorithm and the
incremental k + 1 and decremental k − 1 cases, with p-values < 0.002 for
Sea Condition 3 (in all cases) and p-value < 0.04 for Sea Condition 2 (in
all cases). In Sea Condition 1, although the results are generally better, no
significant results are achieved. Interestingly, there are some cases in which
1−loop slightly outperforms HeuristicDivide, even though HeuristicDivide (the-
oretically) does not divide a cycle into smaller cycles unless it improves the
worst idleness. The reason for that lies in the fact that deciding whether to
break a big cycle into smaller cycles is done using an estimation of the cost
of traveling along an edge, by averaging across simulations of ships patrolling
along the edges of arbitrary paths, which are usually different then the paths
found by HeuristicDivide’s solution. For instance, consider the case where the
final solution requires a 180◦ turn towards the next point. The physics of the
ship movement dictates the ship to travel in an arc, which makes the path
to the next point longer than its estimate. We leave the incorporation of the
cost of traveling along angular paths in HeuristicDivide to future work.

7 Conclusions

In this work we introduced a new class of strategies for the frequency-based
multiagent patrol problem suitable for multiagent patrol in complex environ-
mental conditions. In this new strategy class, which we call MultiPartition, a
graph is divided into disjoint cycles in which a subteam of the agents travel
coordinatedly such that the maximal time between visits to interest points is
minimized. This strategy class is a generalization of existing strategies that
either create one cyclic path throughout the entire graph (SingleCycle strate-
gies) or divide the graph into k disjoint subgraphs (k being the number of
agents), where each agent patrols in its own subgraph—the UniPartition strat-
egy. We showed that finding an optimal strategy to the problem is NP-Hard
in the general case, and also intractable in a realistic simplified family of out-
erplanar graphs. We then introduced a heuristic algorithm that divides the
outerplanar graph into disjoint cycles. We evaluated our heuristic algorithm
in a custom-developed ship simulator that realistically models ship movement
constraints such as engine force and drag, and reaction of the ship to environ-
mental changes. Results indicate that this algorithm significantly improves
the frequency of visits compared to other known patrol strategies.

This work opens up several directions for the future. First, it would be
interesting to consider the problem of multiagent patrol in prioritized envi-
ronments, i.e., where vertices of the graph should be visited with different
frequencies. Second, we intend to add more learning methods for determin-
ing the cost of travel, especially in prioritized environments. From a larger

24 Noa Agmon, Daniel Urieli, and Peter Stone

perspective, this work raises the challenge of finding effective heuristics for
the MultiPartition problem on general graphs.

References

1. N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter patrol in adversarial
settings. In Proc. of ICRA’08, 2008.

2. M. Ahmadi and P. Stone. A multi-robot system for continuous area sweeping tasks.
In Proc. of ICRA’06, 2006.

3. A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Corruble, and
Y. Chevaleyr. Recent advances on multi-agent patrolling. Lecture Notes in Com-
puter Science, 3171:474–483, 2004.

4. N. Basilico, N. Gatti, and F. Amigoni. Leader-follower strategies for robotic patrolling
in environments with arbitrary topologies. In Proc. of AAMAS’09, 2009.

5. G. Chartrand and F. Harary. Planar permutation graphs. Annales de l’institut Henri
Poincare’ (B) Probabilite’s et Statistiques, 3(4):433–438, 1967.

6. Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. In Proc. of
IAT’04, 2004.

7. A. de Mier and M. Noy. On the maximum number of cycles in outerplanar and series-
parallel graphs. Electronic Notes in Discrete Mathematics, 31:489–493, 2009.

8. Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol under fre-
quency constraints. Annals of Math and Artificial Intelligence journal (AMAI), 57(3—
4):293—320, 2009.

9. Y. Elmaliach, A. Shiloni, and G.A. Kaminka. A realistic model of frequency-based

multi-robot fence patrolling. In Proc. of AAMAS’08, pages 63–70, 2008.
10. A. Machado, G. Ramalho, J.D. Zucker, and A. Drogoul. Multi-agent patrolling: An

empirical analysis of alternative architectures. In Proc. of MABS’02, pages 155–170,
2003.

11. J.S. Marier, C. Besse, and B. Chaib-draa. Solving the continuous time multiagent
patrol problem. In Proc. of ICRA’10, 2010.

