Iterative Repair Algorithm

The following is the algorithm for the schedule repairer written in a C-like pseudo-code.

Resolve-Conflicts ()

{

iterations = 1
conflicts = GetConflicts()

Loop while (length(conflicts) > 0 && iterations <= max-iterations) {

conflict = ChooseConflict(conflicts)
method = ChooseMethod(conflict)
case (method) {
‘move’
culprit = ChooseCulpritToMove(conflict)

duration = ChooseDuration(conflict, culprit)
start-time = ChooseStartTime(conflict,culprit,duration)
success = MoveCulprit(conflict,culprit,start-time)

‘add’
activity = ChooseActivityToAdd(conflict)

duration = ChooseDuration(conflict, activity)
start-time = ChooseStartTime(conflict,activity,duration)
success = AddActivity(conflict,activity,start-time)

‘delete’
culprit = ChooseCulpritToDelete(conflict)
success = DeleteCulprit(conflict,culprit)

}

progress = GetProgress()

if not(success || progress) then UndoLastAction()

conflicts = GetConflicts()
iterations = iterations + 1

}

of the systemis to find the best place to

schedulethe activities so as to maximize the

utility of the schedule. Inthe basic scheduler,
all choicesare maderandomlyfrom the list of

options unless otherwise specified.

The algorithm is a simple iterative loop ovbe
conflicts in the schedule.First, a conflict is
selectedfrom the list of currentconflicts. An
attemptis madeto resolvethe chosenconflict.
Next, a method for resolving the conflict is
chosen. The repair action will dependwhich
method has been selected. If “moveti®sen,
thena culprit must be picked from the list of

chosen time. Ithe repairerchoosedo “delete”

an activity, then it simply must choose an

activity to delete, and delete it. Aftdre chosen
action is performed, the schedule repairer
checks to see if progresss made.We define
progressas either decreasingthe number of

conflicts, decreasing theumberof culprits, or
decreasing the duration of the conflicts.

If the actiondid not succeedn resolving the
conflict, or progresswas not made, then the
actionis “undone.”Otherwise the new set of
conflicts are found, and the loop counter is
incremented.This processcontinuesuntil all

culprits in the conflict. A duration and start timeconflicts are resolved, or the loop counter

are chosenfor the culprit, and the culprit is
moved to the new location. If “add” is the
chosenmethod,then the repairermust decide
which activity type to instantiate. Again, a
durationand starttime mustbe chosenfor the
new activity, andthe activity is insertedat the

exceedsa user-definedmaximumbound. For
every choice point in the algorithm, where a
selection must be made from a list of
possibilities, the schedule repaireaifowedto
backtrack to that point. What this meanghsit
if a particular choice failghe schedulerepairer

may choose anothérom the list beforegiving
up. If all choicesfail, thena previousdecision
musthave beerincorrect,andthe repairercan
backtrackto the precedingchoice point. All

choice points, including the decision on
whether or not to backtrack, are heuristic
decisionsand may customizedto a particular
domain.

Schedule OptimizerFhe schedule optimizes
composed of additional knowledgeppliedby
the userand utilized by the other components
of the scheduler. There are three ways to
optimize a schedule: using preferemairistics
at search choice points ithe schedulerepairer,
specifying a set of “soft conflicts” for the
repairer,and using an evaluationfunction to
score results from multiple runs of teehedule
generator and repairer.

A preference heuristic, dsoft choice,” canbe
madeat any decisionin the repair search.For
example, when deciding where to move a
conflict causingactivity, the user might prefer
to movethat activityto a position closestto its
currentposition. This will help the scheduler
avoid unnecessaryisruption to the existing
scheduleThe existing scheduleafter all, may

most sciencespacecraftare mainly concerned
with collecting the largestumberof imagesas

possible.A simple evaluationwould give a

higher score t@chedulesvith greateramounts
of collecteddata.Oncewe havethe evaluation
function, we need to be abie produceseveral
different schedulesfrom the samegoals and

initial state.

This can be done by either changing the
heuristicsor by running the schedulerwith a
different random seed. Some heuristics may
work better than othergndit is often difficult

to tell which is the best for a particular
application.Therefore,it may be necessaryo

resort to empirical tests. After running the
scheduler on different heuristics, we can
simply choose the set of heuristics which

generateshe schedulewith the highestscore.
After choosing the heuristics, tisehedulercan
be run many times with different random
seeds. At choice points where there is no
heuristic for choosing from the list of

possibilities, the schedulermakes a random
decision.With different random seeds,these
decisionswill be different, and the resulting
schedule will be different. Usintpe evaluation
function, wecan assigna scoreto each, and

have been produced by the user in an atteémpt choosethe schedulewith the highest score.

optimize the schedule.

Preferencesanalso be expressedising what
we referred to as “soft conflicts.” A soft
conflict is a way of specifying a preferrediue

This procedure will not necessarimcoverthe
optimum scheduleyut it will help find a more
optimal schedule.

Heuristics—The general searchand decision

for a particular resource, possibly at a particulamaking described above would be futile

time. For example,having any scanneddata
that hasnot beenstoredon the tapeat the end

of the mission,is considereda soft conflict.

This is not a hard conflict, becausehe datais

not exceedingthe buffer size. However, the

scientistwould prefer that all of the data be

written to the tapeat the mission’s end, rather
thanleavingit in the on-boardmemory. After

the schedulerepairer handlesall of the hard

conflicts, it continuesby iteratively addressing
all of the soft conflicts.

The third approachto optimization involves
scoring several resulting schedules and
choosingthe one with the highestscore. The
evaluationfunction is domain dependentand
would haveto be written separatelyfor each
application. Some basic scorirtipwever,will

be similar acrossapplications. For example,

without expert support and guidance.
Heuristics have been developed and
incorporatedinto DCAPS to help guide the
searchto a valid and more optimal schedule.
This guidance knowledge comes from both

domainexpertsand schedulingexperts.There
are three basic classesof heuristics used in

DCAPS: selection,pruning, and backtracking
heuristics.

Selection heuristics involve deterministically
sorting or selecting from a list of possibilitias
a choice point in the search.The selectionis

usually basedon somepropertyof the objects

being considered. For example, when choosing

a culprit to move in orderto resolvea power
conflict, one heuristicmight choosethe culprit
that uses the most amount of power. Ugimg
heuristic might resolve the conflict faster.

Legal Intervals

Resource 1 I I I I I
— I 1 —

1 1 1 1 1
Resource 2 I I I I I

X | —

[} I 1 1 I
Resource 2 ! I ! ! |

i - |

1 1 1 1
Scored . p— ,)
Intersection 2 1 0 2 3 2

Figure 4: Min-conflicts with scored interval intersecti

Another successfulheuristic used in DCAPS
was one that sortedthe possiblelocationsfor
activity placementby the number of conflicts
the activity would causewhen placedin that
location. This basic approattasbeenreferred
to as the “min-conflicts” heuristic [5]. Thain-
conflicts algorithm wause isinteresting,andit
is worthwhile to go into detail.

For each resourceused byan activity, we

guery the database for the legal timdserethe

activity can be placed without violating the

resource constraint. Then, edebalintervalis

assignedan initial score of one. Next, we

intersect two sets of intervals thatsultedfrom

two of the resourcesusinga special“scored”

interval intersectior{seeFigure 4). The scored
intersection of intervals A and resultsin four

possibilities:an interval with a scoreof A for

positionswhere A existsand B doesnot, an

interval with a score of B where B existed A

does not, an interval withscoreof A plusthe

score of B where th&wo intervalsintersect,or

no interval where neither A nor B exist. The

result of this intersectionis then intersected
with the third set of intervals.

This process continues until each set of

intervals for each resource has been intersect
The result is a set of scored intervals, where thiﬂ

scorerepresentgshe numberof resourceghat
will not be violated if the activity is placedin
that position. Using these intervals, we can
choosea position with the highestscore, in
other words, the position with the fewest
conflicts.

Another class oheuristicsusedin DCAPS are
the pruning heuristics. The$seuristicsremove
some of the possibilities for a given selection
attemptto makethe choice easierand faster.

For example after finding the scoredintervals
for an activity, we may not want to try all

possiblepositions. One possibility is to only

try positionswith the highestscore or least
numberof conflicts. This processmay speed
up schedulingbecausehe schedulemwill only

try a few positiondbeforerealizingthis attempt
is futile and giving up to try something
different. Too much pruning, however, may
remove possibilities that could be usetul.the
aboveexample,someof the pruned intervals
may have included positions thdtthe activity
was placedthere, wouldhave improved the
schedule. Amore conservativeapproachmight
be to prune only those intervals that would

causemore conflicts than are currently in the
schedule.Theseintervals cannot possibly be
positions that could improve the schedule.

Finally, backtracking heuristics are used to help

determinewhen to continue working on the

same problem and when to move on to a

different problem. At each choice point, we

have a list of possibilities. If we try one

possibility, and it fails, we can continue aing

the next possibility, ormove on to a different

choice point. Heuristics can be usedto help

make two types of decisions about
backtracking:decidingon “action failures” and

deciding on “selection failures.” First, the

notion of an “action failure” is not clear and

requiresan approximatedefinition. Success is
not simply resolving the chosen conflict.

When, resolvinga conflict, and action attempt
may fix the chosenconflict, but causeseveral
other conflicts.

Therefore, successcan be thought of as
improving the schedule But how much?And
what defines an improvement?Our current

egﬁfinition of progressincludes observingthe

angein the numberof conflicts, the change
the number of culprits, and tlohangein the

duration of the conflicts. Checking the progress

of an action can be used asa heuristic for
determining whether to accept thetion, or try
a different one. The second opportunity for
heuristicscomeswhen deciding if thereis a
“selectionfailure.” While trying andfailing on
a list of possibilities for a choigeoint, at some
point we mustdecidethat the previouschoice
was a failure. Heuristics can help with this
decision also.

6. SYSTEM INTEGRATION

DCAPSwill beintegratednto the End-to-End
Mission OperationsSystem (EEMOS) that is
currently being developed for the DATA-

CHASER projectas a prototypefor the Pluto
Express EEMOS [6]. Currently the DATA-

CHASER EEMOS consists of seven parts:
Commandand Control, Fault/Event Detection
Interaction Reaction (F/EDIRPATA/IO (Data
handling), theGround Databasethe Graphical

User Interface, the software testbed, and finall
the planning and scheduling system (DCAPS)

The commandand control systemthat we are
using, System Command Language (S&lsp
known as SpacecraftCommand Language),
integrates procedurgrogrammingwith a real-
time, forward-chaining, rule-based system.
DCAPS interfaces with SCL throudbATA/IO

by sendingscript schedulingcommandsthat
are to be scheduledeither on the flight or

ground system. This interfaceis implemented
by mappingPI2 activitiesto SCL scriptsthat
were written prior to flight and can be
scheduled or event-triggered by activating
rules. These scheduling and rule activation
commandsare then sentto DATA/IO which
forwardsthat list to the SCL Compiler. Once
compiled, the list is sent to thpayloadthrough
the next available uplink.

DCAPS is also interfaced with the ground
EEMOS database, O2. G2 an object-oriented
databasehatwill be usedto storeall mission
dataand telemetrythat is downlinked by the
payload.It will alsostorea commandhistory.
Through DATA/IO, DCAPS will request
current payload status data in the form of
sensorvaluesin the telemetryhistory. It will
also requestlists of all commandsuplinked
during a given time intervallheseareused by
DCAPS to infer commandompletionstatusas
well as to get the current state of {hegyloadso
that a new schedule can be created.

During mission operations, approximately
everyfour hoursor so, DCAPSwill be asked
by an operatorto generatescript scheduling
commands andule activationsfor the next six

commands will besentto DATA/IO during the
next available uplink window.

If duringthatsix hourperiod thereis a major
changein the NASA activities, DCAPS will
askif the userswant to updatethe schedule
script on-board. Due to the fact that SCL
currently has no scheduled scriptinstance
identification, this will involvedeschedulingll
remaining scripts in the queue and then
reschedulingthem. This is acceptableif the
¥iser did not schedule amsgriptsindependently
‘'of DCAPS. If he/she did, and DCAPS
reschedulesits list, the user's scheduled
commandswill be lost. If the useracceptsit,
DCAPS will generatea updatedlist, ask the
user to verify it, and then deschedule reghef
old list and schedulethe new list. Future
versions of SCLwill most likely support
scheduling instances, therefore alleviatihgse
problems.

7. SUMMARY AND RELATED WORK

Iterative algorithms have been applied twide
rangeof computerscienceproblemssuch as
traveling salesman[7] as well as Atrtificial
Intelligence Planning [8,9,10,11]. lIterative
repair algorithms have also beenused for a
number of scheduling systems. The
GERRY/GPSSsystem [1,12] uses iterative
repair with a global evaluation function and
simulatedannealingto schedulespaceshuttle
ground processingactivities. The Operations
Mission Planner (OMP) [13] system used
iterative repairin combinationwith a historical
model of the scheduler actions (called
chronologies)to avoid cycling and getting
caught in local minima. Work by Johnstand
Minton [5] shows how the min-conflicts
heuristic can be usednot only for scheduling
but for a wide rangeof constraintsatisfaction
problems. The OPIS system[14] can also be
performing iterative repairHowever, OPIS is
more informed in the applicationof its repair
methodsin that it applies a set of analysis
measuresto classify the bottleneck before
selecting a repair method.

In summary,DCAPS representsa significant

hours according to its schedule. Once this list iadvance from several perspectivéstst, from

finished, it is reviewed by the Mission
Operations staff on duty. If judged to be
correct, scheduling and rule activation

a mission operationsperspective DCAPS is
importantin that it significantly reducesthe
amountof effort and knowledgerequired to

generate command sequencesto achieve
mission operationsgoals. Second,from the
standpoint of Artificial Intelligence
applications,DCAPS representsa significant
application of planning and scheduling
technology to theomplex,real-world problem
of spacecraftcommanding. Third, from the
standpointof Atrtificial Intelligence Research,
DCAPS mixed initiative approachto initial

schedule generation, iterative repair, and
schedule optimization represents a novel
approachto solving complex planning and
scheduling problems.

ACKNOWLEDGMENTS

This work was performed by the Jet
PropulsionLaboratory, California Institute of
Technology,under contractwith the National
Aeronautics and Space Administration.

REFERENCES

[1] M. Zweben,B. Daun, E. Davis, and M. Deale,
“Scheduling and Rescheduling with IteratiRepair,”in
Intelligent Scheduling Morgan Kaufman, San
Francisco, 1994.

[2] DATA-CHASER Documents, Annual Report.

[3] G. Rabideau, S. Chien, T. Mann, C. Eggemefer,
Stone, and J. Willis, “DCAPS User’'s Manual,” JPL
Technical Document D-13741, 1996.
[4] W. Eggemeyer;Plan-IT-Il Bible”, JPL Technical
Document, 1995.

[5] M. Johnston and S. Minton, “Analyzing Heuristic
Strategy for Constraint Satisfaction aBdheduling,”in
Intelligent Scheduling Morgan Kaufman, San
Francisco, 1994.

[6] S. Siewert and E. Hansen, “A Distributed
OperationsAutomation Testbedto Evaluate System
Support for Autonomy and Operator Interaction
Protocols,” 4th International Symposiumon Space
Mission Operationsand Ground Data SystemsESA,
Forum der Technik, Munich, Germany, September,
1996.

[7] S. Lin and B. Kernighan, “An Effective Heuristic for
the Traveling Salesmaroblem,” OperationsResearch
Vol. 21, 1973.

[8] S. ChienandG. DeJong,"ConstructingSimplified

Plansvia Truth Criteria Approximation," Proceedings
of the SecondInternational Conferenceon Artificial

Intelligence Planning Systems Chicago, IL, June
1994, pp. 19-24.

[9] K. Hammond, “Case-basedPlanning: Viewing
Planningas a Memory Task,” Academic Press, San
Diego, 1989.

[10] R. Simmons, “Combining Associational and
Causal Reasoning Solve Interpretationand Planning
Problems,” Technical Report, MIT Artificial
Intelligence Laboratory, 1988.

[11] G. Sussman,"”A ComputationalModel of Skill
Acquisition,” Technical Report, MIT Atrtificial
Intelligence Laboratory, 1973.

[12] M. Deale, M. Yvanovich, D. Schnitzius, D.
Kautz, M. CarpenterM. Zweben,G. Davis, and B.
Daun, “The Space ShuttleroundProcessingsystem,”
in Intelligent Scheduling Morgan Kaufman, San
Francisco, 1994.

[13] E. Biefeld and L. Cooper, “Bottleneck Identification
Using Proces€hronologies, Proceedingsf the 1991
International Joint Conference on Atrtificisthtelligence
Sydney, Australia, 1991.

[14] S. Smith, “OPIS: A Methodology anfirchitecture
for Reactive Scheduling,” in Intelligent Scheduling
Morgan Kaufman, San Francisco, 1994.

Gregg Rabideau is a
Member of the Technical
Staff in the Artificial
Intelligence Group at the
Jet Propulsion
Laboratory, California
Institute of Technology.
His main focus is in
researchand development
of planning and
schedulingsystemsfor automatedspacecraft
commanding.Projects include planning and
schedulingfor the first deep-spacenission of
NASA’s New Millennium Program, and for
design trades analysis for the Pluto Express
project. Gregg holds both a B.S. and M.S.
degree in Computer Science from the
University of lllinois where he specializedin
Artificial Intelligence.

Steve Chien is

Technical Group

Supervisor of the Artificial
Intelligence Group of the

Jet Propulsion
Laboratory, California

Institute of Technology
where he leads efforts in

researchand development
of automated planningnd

schedulingsystems. He is also an adjunct
assistant professor in the Department of
Computer Science at the University of
SouthernCalifornia. He holdsB.S., M.S.,
and Ph.D. degreesin ComputerSciencefrom
the University of lllinois. His research
interests are in the areas of planning and
scheduling,operationsresearch,and machine
learning.

Tobias Mann was born
in Spokane, Washington jm
and is currently an
undergraduate at the
University of Washington
in both the Computer f
Science and Philosophy
departments.He has a
wife and a two-year old
son. His interestsinclude
planning and scheduling, machine learning,
bicycling, and really good coffee.

William “Curt” Eggemeyer graduated
from WashingtonUniversityin St. Louis with
a BA majoring in geology. 16978, he became
a JPL employeeand began working on the
Voyager project as a spacecraft sequence
engineer.He demonstratedhe applicability of
utilizing artificial intelligence (Al)techniquedo
the sequenceprocesswith the generation of
Voyager Uranus encountersequencesith a
program called DEVISER, developed by
Steven Vere, in 1983-1984He codevelopea
prototype, Plan-IT, further advancing
sequencing software tool concepts. From
1991-1992,he reworkedPlan-IT into a more
capable an robustequencingool, called Plan-
IT-2, that is presentlybeing used by DATA-
CHASER, Galileo, and Mars Pathfinder
projects.

Jason Willis is a
currently pursuing a
Master's Degree in
Aerospace Engineering
specializingin spacecraft
systems from the
University of Colorado
Boulder, where he also
received his B.S. in
Aerospace engineering. '

He has worked at the Colorado Space Grant
College for the past three years first as
Electrical Integration Team Lead on the
ESCAPEIl shuttle payloadthe was launched
on STS-66. He is currently the hardware
systems engineer for the DATA-CHASER
project.

Sam Siewert is a
graduate researclassistant
with Colorado Space |
Grant College. He s
working on a Ph.D. in
Computer Scienceat the
University of Colorado
Boulder where he receivet
his M.S. in Computer
Science in 1993. He

receivedhis B.S. in AerospaceEngineering
from the University of Notre Dame in 1989,
worked three years for McDonnell-Douglas
Astronautics Corporation in Guidance,
Navigation andControl developingsimulation,
space environment models, and guidance
systems software fdhe SpaceStationand the

Aeroassist Flight Experiment. During thiaine,
he also worked for McDonnell-Douglas at
JohnsonSpaceCenterin the Shuttle Mission
Control Center, developingshuttle ascentand
entry monitoring and cockpit avionics
visualization software, before returning to
graduate school.

Peter Stoneis a Ph.D.
candidate in Computer
Science at Carnegie
Mellon University
(CMU). He completechis
undergraduate education
in Mathematics with a
concentration inComputer
Scienceat the University
of Chicagoin 1993. His

interests are in the areasf multiagentsystems,
collaborativeand adversarialmachinelearning,

and planning, especially in multiagent, real-

time environments.

