
Iterative Repair Algorithm

The following is the algorithm for the schedule repairer written in a C-like pseudo-code.

Resolve-Conflicts ()
{

iterations = 1
conflicts = GetConflicts()
Loop while (length(conflicts) > 0 && iterations <= max-iterations) {

conflict = ChooseConflict(conflicts)
method = ChooseMethod(conflict)
case (method) {
‘move’

culprit = ChooseCulpritToMove(conflict)
duration = ChooseDuration(conflict, culprit)
start-time = ChooseStartTime(conflict,culprit,duration)
success = MoveCulprit(conflict,culprit,start-time)

‘add’
activity = ChooseActivityToAdd(conflict)
duration = ChooseDuration(conflict, activity)
start-time = ChooseStartTime(conflict,activity,duration)
success = AddActivity(conflict,activity,start-time)

‘delete’
culprit = ChooseCulpritToDelete(conflict)
success = DeleteCulprit(conflict,culprit)

}
progress = GetProgress()
if not(success || progress) then UndoLastAction()
conflicts = GetConflicts()
iterations = iterations + 1

}
}

of the system is to find the best place to
schedule the activities so as to maximize the
utility of the schedule. In the basic scheduler,
all choices are made randomly from the list of
options unless otherwise specified.

The algorithm is a simple iterative loop over the
conflicts in the schedule. First, a conflict is
selected from the list of current conflicts. An
attempt is made to resolve the chosen conflict.
Next, a method for resolving the conflict is
chosen. The repair action will depend on which
method has been selected. If “move” is chosen,
then a culprit must be picked from the list of
culprits in the conflict. A duration and start time
are chosen for the culprit, and the culprit is
moved to the new location. If “add” is the
chosen method, then the repairer must decide
which activity type to instantiate. Again, a
duration and start time must be chosen for the
new activity, and the activity is inserted at the

chosen time. If the repairer chooses to “delete”
an activity, then it simply must choose an
activity to delete, and delete it. After the chosen
action is performed, the schedule repairer
checks to see if progress was made. We define
progress as either decreasing the number of
conflicts, decreasing the number of culprits, or
decreasing the duration of the conflicts.

If the action did not succeed in resolving the
conflict, or progress was not made, then the
action is “undone.” Otherwise, the new set of
conflicts are found, and the loop counter is
incremented. This process continues until all
conflicts are resolved, or the loop counter
exceeds a user-defined maximum bound. For
every choice point in the algorithm, where a
selection must be made from a list of
possibilities, the schedule repairer is allowed to
backtrack to that point. What this means is, that
if a particular choice fails, the schedule repairer

may choose another from the list before giving
up. If all choices fail, then a previous decision
must have been incorrect, and the repairer can
backtrack to the preceding choice point. All
choice points, including the decision on
whether or not to backtrack, are heuristic
decisions and may customized to a particular
domain.

Schedule Optimizer—The schedule optimizer is
composed of additional knowledge supplied by
the user and utilized by the other components
of the scheduler. There are three ways to
optimize a schedule: using preference heuristics
at search choice points in the schedule repairer,
specifying a set of “soft conflicts” for the
repairer, and using an evaluation function to
score results from multiple runs of the schedule
generator and repairer.

A preference heuristic, or “soft choice,” can be
made at any decision in the repair search. For
example, when deciding where to move a
conflict causing activity, the user might prefer
to move that activity to a position closest to its
current position. This will help the scheduler
avoid unnecessary disruption to the existing
schedule. The existing schedule, after all, may
have been produced by the user in an attempt to
optimize the schedule.

Preferences can also be expressed using what
we referred to as “soft conflicts.” A soft
conflict is a way of specifying a preferred value
for a particular resource, possibly at a particular
time. For example, having any scanned data
that has not been stored on the tape at the end
of the mission, is considered a soft conflict.
This is not a hard conflict, because the data is
not exceeding the buffer size. However, the
scientist would prefer that all of the data be
written to the tape at the mission’s end, rather
than leaving it in the on-board memory. After
the schedule repairer handles all of the hard
conflicts, it continues by iteratively addressing
all of the soft conflicts.

The third approach to optimization involves
scoring several resulting schedules and
choosing the one with the highest score. The
evaluation function is domain dependent and
would have to be written separately for each
application. Some basic scoring, however, will
be similar across applications. For example,

most science spacecraft are mainly concerned
with collecting the largest number of images as
possible. A simple evaluation would give a
higher score to schedules with greater amounts
of collected data. Once we have the evaluation
function, we need to be able to produce several
different schedules from the same goals and
initial state.

This can be done by either changing the
heuristics or by running the scheduler with a
different random seed. Some heuristics may
work better than others, and it is often difficult
to tell which is the best for a particular
application. Therefore, it may be necessary to
resort to empirical tests. After running the
scheduler on different heuristics, we can
simply choose the set of heuristics which
generates the schedule with the highest score.
After choosing the heuristics, the scheduler can
be run many times with different random
seeds. At choice points where there is no
heuristic for choosing from the list of
possibilities, the scheduler makes a random
decision. With different random seeds, these
decisions will be different, and the resulting
schedule will be different. Using the evaluation
function, we can assign a score to each, and
choose the schedule with the highest score.
This procedure will not necessarily uncover the
optimum schedule, but it will help find a more
optimal schedule.

Heuristics—The general search and decision
making described above would be futile
without expert support and guidance.
Heuristics have been developed and
incorporated into DCAPS to help guide the
search to a valid and more optimal schedule.
This guidance knowledge comes from both
domain experts and scheduling experts. There
are three basic classes of heuristics used in
DCAPS: selection, pruning, and backtracking
heuristics.

Selection heuristics involve deterministically
sorting or selecting from a list of possibilities at
a choice point in the search. The selection is
usually based on some property of the objects
being considered. For example, when choosing
a culprit to move in order to resolve a power
conflict, one heuristic might choose the culprit
that uses the most amount of power. Using this
heuristic might resolve the conflict faster.

Another successful heuristic used in DCAPS
was one that sorted the possible locations for
activity placement by the number of conflicts
the activity would cause when placed in that
location. This basic approach has been referred
to as the “min-conflicts” heuristic [5]. The min-
conflicts algorithm we use is interesting, and it
is worthwhile to go into detail.

For each resource used by an activity, we
query the database for the legal times where the
activity can be placed without violating the
resource constraint. Then, each legal interval is
assigned an initial score of one. Next, we
intersect two sets of intervals that resulted from
two of the resources, using a special “scored”
interval intersection (see Figure 4). The scored
intersection of intervals A and B results in four
possibilities: an interval with a score of A for
positions where A exists and B does not, an
interval with a score of B where B exists and A
does not, an interval with a score of A plus the
score of B where the two intervals intersect, or
no interval where neither A nor B exist. The
result of this intersection is then intersected
with the third set of intervals.

This process continues until each set of
intervals for each resource has been intersected.
The result is a set of scored intervals, where the
score represents the number of resources that
will not be violated if the activity is placed in
that position. Using these intervals, we can
choose a position with the highest score, in
other words, the position with the fewest
conflicts.

Another class of heuristics used in DCAPS are
the pruning heuristics. These heuristics remove
some of the possibilities for a given selection in
attempt to make the choice easier and faster.

For example, after finding the scored intervals
for an activity, we may not want to try all
possible positions. One possibility is to only
try positions with the highest score or least
number of conflicts. This process may speed
up scheduling because the scheduler will only
try a few positions before realizing this attempt
is futile and giving up to try something
different. Too much pruning, however, may
remove possibilities that could be useful. In the
above example, some of the pruned intervals
may have included positions that, if the activity
was placed there, would have improved the
schedule. A more conservative approach might
be to prune only those intervals that would
cause more conflicts than are currently in the
schedule. These intervals cannot possibly be
positions that could improve the schedule.

Finally, backtracking heuristics are used to help
determine when to continue working on the
same problem and when to move on to a
different problem. At each choice point, we
have a list of possibilities. If we try one
possibility, and it fails, we can continue and try
the next possibility, or move on to a different
choice point. Heuristics can be used to help
make two types of decisions about
backtracking: deciding on “action failures” and
deciding on “selection failures.” First, the
notion of an “action failure” is not clear and
requires an approximate definition. Success is
not simply resolving the chosen conflict.
When, resolving a conflict, and action attempt
may fix the chosen conflict, but cause several
other conflicts.

Therefore, success can be thought of as
improving the schedule. But how much? And
what defines an improvement? Our current
definition of progress includes observing the
change in the number of conflicts, the change
in the number of culprits, and the change in the
duration of the conflicts. Checking the progress
of an action can be used as a heuristic for
determining whether to accept the action, or try
a different one. The second opportunity for
heuristics comes when deciding if there is a
“selection failure.” While trying and failing on
a list of possibilities for a choice point, at some
point we must decide that the previous choice
was a failure. Heuristics can help with this
decision also.

Figure 4: Min-conflicts with scored interval intersection

 2 1 0 2 3 2

Legal Intervals

Scored
Intersection

Resource 1

Resource 2

Resource 3

6. SYSTEM INTEGRATION

DCAPS will be integrated into the End-to-End
Mission Operations System (EEMOS) that is
currently being developed for the DATA-
CHASER project as a prototype for the Pluto
Express EEMOS [6]. Currently the DATA-
CHASER EEMOS consists of seven parts:
Command and Control, Fault/Event Detection
Interaction Reaction (F/EDIR), DATA/IO (Data
handling), the Ground Database, the Graphical
User Interface, the software testbed, and finally
the planning and scheduling system (DCAPS).

The command and control system that we are
using, System Command Language (SCL, also
known as Spacecraft Command Language),
integrates procedural programming with a real-
time, forward-chaining, rule-based system.
DCAPS interfaces with SCL through DATA/IO
by sending script scheduling commands that
are to be scheduled either on the flight or
ground system. This interface is implemented
by mapping PI2 activities to SCL scripts that
were written prior to flight and can be
scheduled or event-triggered by activating
rules. These scheduling and rule activation
commands are then sent to DATA/IO which
forwards that list to the SCL Compiler. Once
compiled, the list is sent to the payload through
the next available uplink.

DCAPS is also interfaced with the ground
EEMOS database, O2. O2 is an object-oriented
database that will be used to store all mission
data and telemetry that is downlinked by the
payload. It will also store a command history.
Through DATA/IO, DCAPS will request
current payload status data in the form of
sensor values in the telemetry history. It will
also request lists of all commands uplinked
during a given time interval. These are used by
DCAPS to infer command completion status as
well as to get the current state of the payload so
that a new schedule can be created.

During mission operations, approximately
every four hours or so, DCAPS will be asked
by an operator to generate script scheduling
commands and rule activations for the next six
hours according to its schedule. Once this list is
finished, it is reviewed by the Mission
Operations staff on duty. If judged to be
correct, scheduling and rule activation

commands will be sent to DATA/IO during the
next available uplink window.

If during that six hour period there is a major
change in the NASA activities, DCAPS will
ask if the users want to update the schedule
script on-board. Due to the fact that SCL
currently has no scheduled script instance
identification, this will involve descheduling all
remaining scripts in the queue and then
rescheduling them. This is acceptable if the
user did not schedule any scripts independently
of DCAPS. If he/she did, and DCAPS
reschedules its list, the user’s scheduled
commands will be lost. If the user accepts it,
DCAPS will generate a updated list, ask the
user to verify it, and then deschedule rest of the
old list and schedule the new list. Future
versions of SCL will most likely support
scheduling instances, therefore alleviating these
problems.

7. SUMMARY AND RELATED WORK

Iterative algorithms have been applied to a wide
range of computer science problems such as
traveling salesman [7] as well as Artificial
Intelligence Planning [8,9,10,11]. Iterative
repair algorithms have also been used for a
number of scheduling systems. The
GERRY/GPSS system [1,12] uses iterative
repair with a global evaluation function and
simulated annealing to schedule space shuttle
ground processing activities. The Operations
Mission Planner (OMP) [13] system used
iterative repair in combination with a historical
model of the scheduler actions (called
chronologies) to avoid cycling and getting
caught in local minima. Work by Johnston and
Minton [5] shows how the min-conflicts
heuristic can be used not only for scheduling
but for a wide range of constraint satisfaction
problems. The OPIS system [14] can also be
performing iterative repair. However, OPIS is
more informed in the application of its repair
methods in that it applies a set of analysis
measures to classify the bottleneck before
selecting a repair method.

In summary, DCAPS represents a significant
advance from several perspectives. First, from
a mission operations perspective, DCAPS is
important in that it significantly reduces the
amount of effort and knowledge required to

generate command sequences to achieve
mission operations goals. Second, from the
standpoint of Artificial Intelligence
applications, DCAPS represents a significant
application of planning and scheduling
technology to the complex, real-world problem
of spacecraft commanding. Third, from the
standpoint of Artificial Intelligence Research,
DCAPS mixed initiative approach to initial
schedule generation, iterative repair, and
schedule optimization represents a novel
approach to solving complex planning and
scheduling problems.

ACKNOWLEDGMENTS

This work was performed by the Jet
Propulsion Laboratory, California Institute of
Technology, under contract with the National
Aeronautics and Space Administration.

REFERENCES

[1] M. Zweben, B. Daun, E. Davis, and M. Deale,
“Scheduling and Rescheduling with Iterative Repair,” in
Intelligent Scheduling, Morgan Kaufman, San
Francisco, 1994.

[2] DATA-CHASER Documents, Annual Report.

[3] G. Rabideau, S. Chien, T. Mann, C. Eggemeyer, P.
Stone, and J. Willis, “DCAPS User’s Manual,” JPL
Technical Document D-13741, 1996.

[4] W. Eggemeyer, “Plan-IT-II Bible”, JPL Technical
Document, 1995.

[5] M. Johnston and S. Minton, “Analyzing a Heuristic
Strategy for Constraint Satisfaction and Scheduling,” in
Intelligent Scheduling, Morgan Kaufman, San
Francisco, 1994.

[6] S. Siewert and E. Hansen, “A Distributed
Operations Automation Testbed to Evaluate System
Support for Autonomy and Operator Interaction
Protocols,” 4th International Symposium on Space
Mission Operations and Ground Data Systems, ESA,
Forum der Technik, Munich, Germany, September,
1996.

[7] S. Lin and B. Kernighan, “An Effective Heuristic for
the Traveling Salesman Problem,” Operations Research
Vol. 21, 1973.

[8] S. Chien and G. DeJong, "Constructing Simplified
Plans via Truth Criteria Approximation," Proceedings
of the Second International Conference on Artificial
Intelligence Planning Systems, Chicago, IL, June
1994, pp. 19-24.

[9] K. Hammond, “Case-based Planning: Viewing
Planning as a Memory Task,” Academic Press, San
Diego, 1989.

[10] R. Simmons, “Combining Associational and
Causal Reasoning to Solve Interpretation and Planning
Problems,” Technical Report, MIT Artificial
Intelligence Laboratory, 1988.

[11] G. Sussman, “A Computational Model of Skill
Acquisition,” Technical Report, MIT Artificial
Intelligence Laboratory, 1973.

[12] M. Deale, M. Yvanovich, D. Schnitzius, D.
Kautz, M. Carpenter, M. Zweben, G. Davis, and B.
Daun, “The Space Shuttle Ground Processing System,”
in Intelligent Scheduling, Morgan Kaufman, San
Francisco, 1994.

[13] E. Biefeld and L. Cooper, “Bottleneck Identification
Using Process Chronologies,” Proceedings of the 1991
International Joint Conference on Artificial Intelligence,
Sydney, Australia, 1991.

[14] S. Smith, “OPIS: A Methodology and Architecture
for Reactive Scheduling,” in Intelligent Scheduling,
Morgan Kaufman, San Francisco, 1994.

Gregg Rabideau is a
Member of the Technical
Staff in the Artificial
Intelligence Group at the
Jet Propulsion
Laboratory, California
Institute of Technology.
His main focus is in
research and development
of planning and
scheduling systems for automated spacecraft
commanding. Projects include planning and
scheduling for the first deep-space mission of
NASA’s New Millennium Program, and for
design trades analysis for the Pluto Express
project. Gregg holds both a B.S. and M.S.
degree in Computer Science from the
University of Illinois where he specialized in
Artificial Intelligence.

Steve Chien is
Technical Group
Supervisor of the Artificial
Intelligence Group of the
Jet Propulsion
Laboratory, California
Institute of Technology
where he leads efforts in
research and development
of automated planning and
scheduling systems. He is also an adjunct
assistant professor in the Department of
Computer Science at the University of
Southern California. He holds B.S., M.S.,
and Ph.D. degrees in Computer Science from
the University of Illinois. His research
interests are in the areas of planning and
scheduling, operations research, and machine
learning.

Tobias Mann was born
in Spokane, Washington
and is currently an
undergraduate at the
University of Washington
in both the Computer
Science and Philosophy
departments. He has a
wife and a two-year old
son. His interests include
planning and scheduling, machine learning,
bicycling, and really good coffee.

William “Curt” Eggemeyer graduated
from Washington University in St. Louis with
a BA majoring in geology. In 1978, he became
a JPL employee and began working on the
Voyager project as a spacecraft sequence
engineer. He demonstrated the applicability of
utilizing artificial intelligence (AI) techniques to
the sequence process with the generation of
Voyager Uranus encounter sequences with a
program called DEVISER, developed by
Steven Vere, in 1983-1984. He codeveloped a
prototype, Plan-IT, further advancing
sequencing software tool concepts. From
1991-1992, he reworked Plan-IT into a more
capable an robust sequencing tool, called Plan-
IT-2, that is presently being used by DATA-
CHASER, Galileo, and Mars Pathfinder
projects.

Jason Willis is a
currently pursuing a
Master's Degree in
Aerospace Engineering
specializing in spacecraft
systems from the
University of Colorado
Boulder, where he also
received his B.S. in
Aerospace engineering.
He has worked at the Colorado Space Grant
College for the past three years first as
Electrical Integration Team Lead on the
ESCAPE II shuttle payload the was launched
on STS-66. He is currently the hardware
systems engineer for the DATA-CHASER
project.

Sam Siewert is a
graduate research assistant
with Colorado Space
Grant College. He is
working on a Ph.D. in
Computer Science at the
University of Colorado
Boulder where he received
his M.S. in Computer
Science in 1993. He
received his B.S. in Aerospace Engineering
from the University of Notre Dame in 1989,
worked three years for McDonnell-Douglas
Astronautics Corporation in Guidance,
Navigation and Control developing simulation,
space environment models, and guidance
systems software for the Space Station and the

Aeroassist Flight Experiment. During that time,
he also worked for McDonnell-Douglas at
Johnson Space Center in the Shuttle Mission
Control Center, developing shuttle ascent and
entry monitoring and cockpit avionics
visualization software, before returning to
graduate school.

Peter Stone is a Ph.D.
candidate in Computer
Science at Carnegie
Mellon University
(CMU). He completed his
undergraduate education
in Mathematics with a
concentration in Computer
Science at the University
of Chicago in 1993. His
interests are in the areas of multiagent systems,
collaborative and adversarial machine learning,
and planning, especially in multiagent, real-
time environments.

