Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination

Peter Stone

Director, Learning Agents Research Group Department of Computer Science The University of Texas at Austin

Joint work with

Gal A. Kaminka, Sarit Kraus, Bar Ilan University Jeffrey S. Rosenschein, Hebrew University

Teamwork

Teamwork

Small-sized League

Legged Robot League

Humanoid League

Teamwork

- Typical scenario: pre-coordination
 - People practice together
 - Robots given coordination languages, protocols
 - "Locker room agreement" (Stone & Veloso, '99)

• Ad hoc team player is an individual

Unknown teammates (programmed by others)

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate

- Ad hoc team player is an individual

 Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

- Ad hoc team player is an individual

 Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

- Ad hoc team player is an individual

 Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Challenge: Create a good team player

Illustration

An Individual

With Teammates

Made by Others

Heterogeneous

May not Communicate

May Have Different Capabilities

And/Or Maneuverability

May be a Previously Unknown Type

• Military and industrial settings

Human Ad Hoc Teams

- Military and industrial settings
 - Outsourcing

Human Ad Hoc Teams

- Military and industrial settings
 - Outsourcing
- Agents support human ad hoc team formation

(Just et al., 2004; Kildare, 2004)

Human Ad Hoc Teams

- Military and industrial settings
 - Outsourcing
- Agents support human ad hoc team formation

(Just et al., 2004; Kildare, 2004)

- Autonomous agents (robots) deployed for short times
 - Teams developed as cohesive groups
 - Tuned to interact well together

Create an autonomous agent that is able to efficiently and robustly collaborate with previously unknown teammates on tasks to which they are all individually capable of contributing as team members.

Create an autonomous agent that is able to efficiently and robustly collaborate with previously unknown teammates on tasks to which they are all individually capable of contributing as team members.

• Aspects can be approached theoretically

Create an autonomous agent that is able to efficiently and robustly collaborate with previously unknown teammates on tasks to which they are all individually capable of contributing as team members.

- Aspects can be approached theoretically
- Ultimately an empirical challenge

Empirical Evaluation

Evaluation: A Metric

Evaluation: A Metric

 Most meaningful when a0 and a1 have similar individual competencies

Evaluation: Domain Consisting of Tasks

Evaluation: Set of Possible Teammates

Evaluation: Draw a Random Task

Evaluation: Random Team, Check Comp

Evalution: Replace Random with a0

Evaluation: Then a1 — Evaluate Diff

Evaluation: Repeat

Evaluate(a_0 , a_1 , A, D)

- Initialize performance (reward) counters r_0 and r_1 for agents a_0 and a_1 respectively to $r_0 = r_1 = 0$.
- Repeat:
 - Sample a task d from D.
 - Randomly draw a subset of agents B, $|B| \ge 2$, from A such that $E[s(B,d)] \ge s_{min}$.
 - Randomly select one agent $b \in B$ to remove from the team to create the team B^- .
 - increment r_0 by $s(\{a_0\} \cup B^-, d)$
 - increment r_1 by $s(\{a_1\} \cup B^-, d)$
- If $r_0 > r_1$ then we conclude that a_0 is a better ad-hoc team player than a_1 in domain D over the set of possible teammates A.

• Assess capabilities of other agents (teammate modeling)

- Assess capabilities of other agents (teammate modeling)
- Assess the other agents' knowledge states

- Assess capabilities of other agents (teammate modeling)
- Assess the other agents' knowledge states
- Estimate effects of actions on teammates

- Assess capabilities of other agents (teammate modeling)
- Assess the other agents' knowledge states
- Estimate effects of actions on teammates
- Be prepared to interact with many types of teammates:
 - May or may not be able to communicate
 - May be more or less mobile
 - May be better or worse at sensing

- Assess capabilities of other agents (teammate modeling)
- Assess the other agents' knowledge states
- Estimate effects of actions on teammates
- Be prepared to interact with many types of teammates:
 - May or may not be able to communicate
 - May be more or less mobile
 - May be better or worse at sensing

A good team player's best actions will differ depending on its teammates' characteristics.

Preliminary Theoretical Progress

- Aspects can be approached theoretically
- Ultimately an empirical challenge

Preliminary Theoretical Progress

- Aspects can be approached theoretically
- Ultimately an empirical challenge

Be prepared to interact with many types of teammates

Preliminary Theoretical Progress

- Aspects can be approached theoretically
- Ultimately an empirical challenge

Be prepared to interact with many types of teammates

- Minimal representative scenarios
 - One teammate, no communication
 - Fixed and known behavior

Scenarios

Cooperative iterated normal form game

(w/ Kaminka & Rosenschein—AMEC'09)

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

• Cooperative *k*-armed bandit

(w/ Kraus—AAMAS'10)

Scenarios

• Cooperative normal form game

M1	b_0	b_1	b_2
a_0	25	1	0
a_1	10	30	10
a_2	0	33	40

• Cooperative *k*-armed bandit

 \Longrightarrow

- Random value from a distribution
- Expected value μ

Arm_{*}

Arm₁

Arm_2

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs
 - If alone, always Arm_{*}

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs
 - If alone, always Arm_{*}
- Agent B: learner
 - Can only pull $\text{Arm}_1 \text{ or } \text{Arm}_2$

- Agent A: teacher
 - Knows payoff distributions
 - Objective: maximize expected sum of payoffs
 - If alone, always Arm_{*}
- Agent B: learner
 - Can only pull Arm₁ or Arm₂
 - Selects arm with highest observed sample average

Arm_{\ast}

Arm₁

 Arm_2

- Alternate actions (teacher first)
- Results of all actions fully observable (to both)

- Alternate actions (teacher first)
- Results of all actions fully observable (to both)
- Number of rounds remaining finite, known to teacher

- Alternate actions (teacher first)
- Results of all actions fully observable (to both)
- Number of rounds remaining finite, known to teacher

Objective: maximize expected sum of payoffs

Arm_{*}

 Arm_1

 Arm_2

- Arm₁ is sometimes optimal
- Arm₂ is never optimal

- Arm₁ is sometimes optimal
- Arm₂ is never optimal
- Optimal solution when arms have discrete distribution
- Interesting patterns in optimal action
- Extensions to more arms

- Arm₁ is sometimes optimal
- Arm₂ is never optimal
- Optimal solution when arms have discrete distribution
- Interesting patterns in optimal action
- Extensions to more arms
- Exploitation vs.

- Arm₁ is sometimes optimal
- Arm₂ is never optimal
- Optimal solution when arms have discrete distribution
- Interesting patterns in optimal action
- Extensions to more arms
- Exploitation vs. vs. teaching

Create an autonomous agent that is able to efficiently and robustly collaborate with previously unknown teammates on tasks to which they are all individually capable of contributing as team members.

1. Identify the full range of possible teamwork situations that a complete ad hoc team player needs to be capable of addressing (*D* and *A*).

- 1. Identify the full range of possible teamwork situations that a complete ad hoc team player needs to be capable of addressing (*D* and *A*).
- 2. For each such situation, find theoretically optimal and/or empirically effective algorithms for behavior.

- 1. Identify the full range of possible teamwork situations that a complete ad hoc team player needs to be capable of addressing (*D* and *A*).
- 2. For each such situation, find theoretically optimal and/or empirically effective algorithms for behavior.
- 3. Develop methods for identifying which type of teamwork situation the agent is currently in, in an online fashion.

- 1. Identify the full range of possible teamwork situations that a complete ad hoc team player needs to be capable of addressing (*D* and *A*).
- 2. For each such situation, find theoretically optimal and/or empirically effective algorithms for behavior.
- 3. Develop methods for identifying which type of teamwork situation the agent is currently in, in an online fashion.

• 2 and 3: the core technical challenges

- 1. Identify the full range of possible teamwork situations that a complete ad hoc team player needs to be capable of addressing (*D* and *A*).
- 2. For each such situation, find theoretically optimal and/or empirically effective algorithms for behavior.
- 3. Develop methods for identifying which type of teamwork situation the agent is currently in, in an online fashion.

- 2 and 3: the core technical challenges
- 1 : a knob to incrementally increase difficulty

Multiagent learning (Claus & Boutilier, '98),(Littman, '01),

(Conitzer & Sandholm, '03), (Powers & Shoham, '05), (Chakraborty & Stone, '08)

Opponent Modeling

- Intended plan recognition (Sidner, '85), (Lochbaum, '91), (Carberry, '01)
- SharedPlans (Grosz & Kraus, '96)
- Recursive Modeling (Vidal & Durfee, '95)

Human-Robot-Agent Teams

- Overlapping but different challenges, including HRI (Klein, '04)
- Out of scope

Much More pertaining to specific teammate characteristics

- Fulbright and Guggenheim Foundations
- Israel Science Foundation

- Ad hoc team player is an individual
 - Unknown teammates (programmed by others)
- May or may not be able to communicate
- Teammates likely sub-optimal: no control

Challenge: Create a good team player