TacTex'13: A Champion Adaptive Power Trading Agent

Daniel Urieli Peter Stone

Department of Computer Science The University of Texas at Austin {urieli,pstone}@cs.utexas.edu

AAAI 2014

The Smart Grid Vision

• "Grid 2030" - vision for a smart-grid

 Major challenge: aligning supply-demand in the presence of renewable, intermittent generation

- AI: a main building block
- Smart-grid: new challenges for Al [Ramchurn et. al 2012]

The Smart Grid Vision

• "Grid 2030" - vision for a smart-grid

 Major challenge: aligning supply-demand in the presence of renewable, intermittent generation

• AI: a main building block

• Smart-grid: new challenges for Al [Ramchurn et. al 2012]

The Smart Grid Vision

• "Grid 2030" - vision for a smart-grid

 Major challenge: aligning supply-demand in the presence of renewable, intermittent generation

- AI: a main building block
- Smart-grid: new challenges for AI [Ramchurn et. al 2012]

The Power Trading Agent Competition (Power TAC)

• Grid 2030 milestone:

"Customer participation in power markets through demand-side management and distributed generation"

Power TAC (Power Trading Agent Competition)

- Uses a rich smart grid simulation platform
- Focuses on retail power markets structure and operation
- Competitors: autonomous broker agents

The Power Trading Agent Competition (Power TAC)

• Grid 2030 milestone:

"Customer participation in power markets through demand-side management and distributed generation"

Power TAC (Power Trading Agent Competition)

- Uses a rich smart grid simulation platform
- Focuses on retail power markets structure and operation
- Competitors: autonomous broker agents

The Power Trading Agent Competition (Power TAC)

• Grid 2030 milestone:

"Customer participation in power markets through demand-side management and distributed generation"

Power TAC (Power Trading Agent Competition)

- Uses a rich smart grid simulation platform
- Focuses on retail power markets structure and operation
- Competitors: autonomous broker agents

Approach

Application domain: autonomous energy-trading

• In this domain:

- An agent is deployed into an unknown environment
- The agent is expected to make robust, real-time decisions
- Environment is realistic \implies complex
- To perform robustly, agent need to:
 - Learn
 - Predict
 - Plan
 - Adapt
- A natural approach: Reinforcement Learning

Approach

Application domain: autonomous energy-trading

In this domain:

- An agent is deployed into an unknown environment
- The agent is expected to make robust, real-time decisions
- Environment is realistic => complex
- To perform robustly, agent need to:
 - Learn
 - Predict
 - Plan
 - Adapt
- A natural approach: Reinforcement Learning

- In this domain:
 - An agent is deployed into an unknown environment
 - The agent is expected to make robust, real-time decisions
 - Environment is realistic ⇒ complex
- To perform robustly, agent need to:
 - Learn
 - Predict
 - Plan
 - Adapt
- A natural approach: Reinforcement Learning

- In this domain:
 - An agent is deployed into an unknown environment
 - The agent is expected to make robust, real-time decisions
 - Environment is realistic ⇒ complex
- To perform robustly, agent need to:
 - Learn
 - Predict
 - Plan
 - Adapt
- A natural approach: Reinforcement Learning

- In this domain:
 - An agent is deployed into an unknown environment
 - The agent is expected to make robust, real-time decisions
 - Environment is realistic ⇒ complex
- To perform robustly, agent need to:
 - Learn
 - Predict
 - Plan
 - Adapt
- A natural approach: Reinforcement Learning

- In this domain:
 - An agent is deployed into an unknown environment
 - The agent is expected to make robust, real-time decisions
 - Environment is realistic ⇒ complex
- To perform robustly, agent need to:
 - Learn
 - Predict
 - Plan
 - Adapt
- A natural approach: Reinforcement Learning

Reinforcement Learning in the Smart Grid

• Reinforcement Learning (RL):

• Our domains require from an RL agent:

- Sample-efficiency
- Computationally-efficiency
- Handle high-dimensional continuous state
- Handle continuous-actions and/or delayed-actions
- Handle possible non-stationarity

Combination that was not addressed by past RL algorithms

UT Austin L earning A gents R esearch G roup

Reinforcement Learning in the Smart Grid

• Reinforcement Learning (RL):

• Our domains require from an RL agent:

- Sample-efficiency
- Computationally-efficiency
- Handle high-dimensional continuous state
- Handle continuous-actions and/or delayed-actions
- Handle possible non-stationarity

Combination that was not addressed by past RL algorithms

Reinforcement Learning in the Smart Grid

• Reinforcement Learning (RL):

• Our domains require from an RL agent:

- Sample-efficiency
- Computationally-efficiency
- Handle high-dimensional continuous state
- Handle continuous-actions and/or delayed-actions
- Handle possible non-stationarity
- Combination that was not addressed by past RL algorithms

Power TAC: Game Description

Power TAC: Broker Operation Cycle

Power TAC Game State

0

Imbalance

UT Austin Learning Agents Research Group

game-params

Power TAC 2013 Competition Results

• Our agent, TACTEX'13, won the Power TAC 2013 finals:

Broker	7-broker	4-broker	2-broker	Total (not normalized)
TacTex	-705248	13493825	17853189	30641766
cwiBroker	647400	12197772	13476434	26321606
MLLBroker	8533	3305131	9482400	12796064
CrocodileAgent	-361939	1592764	7105236	8336061
AstonTAC	345300	5977354	5484780	11807435
Mertacor	-621040	1279380	4919087	5577427
INAOEBroker02	-76112159	-497131383	-70255037	-643498580

Learning Agents Research Group

Learning Agents \mathbf{r} esearch Group

TacTex'13: Tariff Market Strategy

Learning Agents **R**esearch **G**roup

TacTex'13: Tariff Market Strategy

• Available actions: tariff publications

- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

Available actions: tariff publications

- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive

• Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

- Available actions: tariff publications
- Tariff: contract for selling/buying energy
 - E.g.: [type=consumption, rates=(rate1, rate2,...), signup-fee=none,...]
- Rate: energy prices per time and/or quantity
 - Rate types: fixed, time-of-use (TOU), real-time (RT)...
 - Fixed: [fixed=true, price=7cent/kWh]
 - TOU: [(time1=Mon-Fri 7am-6pm, price=8cent/kWh), (time2=Sat, ...), ...]
 - RT: [expected/min/max-price=7/5/8 cent/kWh, rate-notice=3 hours...]
- Customers subscribe to tariffs they find attractive
 - Cheap, minimizes inconvenience...

TACTEX uses a utility-based approach

• Optimizes long-term utility (= profits)

• Core computation:

"if I publish tariff t, how would it affect my long-term utility?"

- TACTEX uses a utility-based approach
 - Optimizes long-term utility (= profits)
- Core computation:

"if I publish tariff t, how would it affect my long-term utility?"

- Considering only fixed-rate tariffs
 - More attractive to customers
 - Optimizing one future price instead of a sequence

- Estimate future customers demand
- Estimate future wholesale costs
- Select price that maximizes profits

• Considering only fixed-rate tariffs

- More attractive to customers
- Optimizing one future price instead of a sequence

• Estimate future customers demand

- Estimate future wholesale costs
- Select price that maximizes profits

- Considering only fixed-rate tariffs
 - More attractive to customers
 - Optimizing one future price instead of a sequence

• Estimate future customers demand

- Estimate future wholesale costs
- Select price that maximizes profits

- Considering only fixed-rate tariffs
 - More attractive to customers
 - Optimizing one future price instead of a sequence

- Estimate future customers demand
- Estimate future wholesale costs
- Select price that maximizes profits

- Considering only fixed-rate tariffs
 - More attractive to customers
 - Optimizing one future price instead of a sequence

- Estimate future customers demand
- Estimate future wholesale costs
- Select price that maximizes profits

Publish tariff if expected to increase utility

- Considering only fixed-rate tariffs
 - More attractive to customers
 - Optimizing one future price instead of a sequence

- Estimate future customers demand
- Estimate future wholesale costs
- Select price that maximizes profits

Publish tariff if expected to increase utility

TacTex'13: Wholesale Market Strategy

Learning Agents **R**esearch **G**roup

TacTex'13: Wholesale Market Strategy

Available actions: bid submissions

• Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]

• Bids cleared in a double auction:

- Day ahead market \implies 24 auctions for each timeslot
- Need to:
 - Buy energy cheaply
 - Avoid imbalance costs \implies buy all needed energy

Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

- Day ahead market \implies 24 auctions for each timeslot
- Need to:
 - Buy energy cheaply
 - Avoid imbalance costs \implies buy all needed energy

Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

- Day ahead market \implies 24 auctions for each timeslot
- Need to:
 - Buy energy cheaply
 - Avoid imbalance costs \implies buy all needed energy

Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

- Day ahead market ⇒ 24 auctions for each timeslot
- Need to:
 - Buy energy cheaply
 - ullet Avoid imbalance costs \Longrightarrow buy all needed energy

Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

- Day ahead market ⇒ 24 auctions for each timeslot
- Need to:
 - Buy energy cheaply
 - Avoid imbalance costs \implies buy all needed energy

Available actions: bid submissions

- Bid: [needed-amount=2mWh, limit=25\$/mWh, when=5pm]
- Bids cleared in a double auction:

- Day ahead market ⇒ 24 auctions for each timeslot
- Need to:
 - Buy energy cheaply
 - Avoid imbalance costs \implies buy all needed energy

• Per timeslot: estimate future demand

- Minimize cost for satisfying this demand
- Online RL bidding algorithm:

- Per timeslot: estimate future demand
- Minimize cost for satisfying this demand
- Online RL bidding algorithm:

- Per timeslot: estimate future demand
- Minimize cost for satisfying this demand
- Online RL bidding algorithm:

- Per timeslot: estimate future demand
- Minimize cost for satisfying this demand
- Online RL bidding algorithm:

MDP States: {0, 1, ..., 24, *success*}

limit-price $\in \mathbb{R}$

Controlled Experiments - Ablation Analysis

Round-Robin 2-agent tournament between:

- B: baseline agent
- U1: adding tariff-market strategy
- U9_MDP: adding wholesale-market strategy
- U9_MDP_LWR: adding LWR customer prediction

Each pair played 200 games with similar conditions

	В	U1	U9_MDP
U9_MDP_LWR	1278.3 (43.2)	708.9 (35.6)	34.2 (23.2)
U9_MDP	966.4 (40.5)	592.6 (22.2)	
U1	547.4 (27.7))		

Ablation Analysis Using Available Finalist Agents

4-agent games using 3 available finalist agents

Broker	Cash
cwiBroker	340.9 (8.4)
Mertacor	-276.2 (40.2)
CrocodileAgent	-287.1 (14.5)
В	-334.6 (8.0)

Broker	Cash
U9_MDP	389.9 (13.3)
cwiBroker	138.3 (8.7)
CrocodileAgent	-333.3 (17.0)
Mertacor	-494.1 (29.6)

Cash
315.4 (9.3)
135.3 (12.3)
-372.1 (17.0)
-485.5 (28.1)

Broker	Cash
U9_MDP_LWR	350.8 (13.3)
cwiBroker	132.4 (9.0)
CrocodileAgent	-336.9 (17.3)
Mertacor	-566.1 (26.8)

Tariff and Wholesale strategies improve performance

- LWR customer prediction reduces performance
 - Should relax LWR's extrapolation assumptions?

Ablation Analysis Using Available Finalist Agents

4-agent games using 3 available finalist agents

Broker	Cash
cwiBroker	340.9 (8.4)
Mertacor	-276.2 (40.2)
CrocodileAgent	-287.1 (14.5)
В	-334.6 (8.0)

Broker	Cash
U9_MDP	389.9 (13.3)
cwiBroker	138.3 (8.7)
CrocodileAgent	-333.3 (17.0)
Mertacor	-494.1 (29.6)

Broker	Cash
cwiBroker	315.4 (9.3)
U1	135.3 (12.3)
CrocodileAgent	-372.1 (17.0)
Mertacor	-485.5 (28.1)

Broker	Cash
U9_MDP_LWR	350.8 (13.3)
cwiBroker	132.4 (9.0)
CrocodileAgent	-336.9 (17.3)
Mertacor	-566.1 (26.8)

- Tariff and Wholesale strategies improve performance
- LWR customer prediction reduces performance
 - Should relax LWR's extrapolation assumptions?

Related Work: Power Trading Agents

- RL for tariff publications [Peters-2013]
 - Offline preference learning
- Market Bidding MDP [Kuate-2013]
 - Uses a different MDP representation
- Tariff Publication MDP [Reddy-2011]
 - More restrictive setup
- The Power TAC Platform and Competition [Ketter-2013]

- TacTex'13: utility-optimizing broker agent
- Interdependent optimization problems
 - Utility-maximizing tariff strategy:

• Online reinforcement learning bidding algorithm:

- Outlook
 - Investigating other tariff, wholesale and balancing strategies
 - Impact on the smart grid and customer behaviors

 $L_{\text{earning}} A_{\text{gents}} R_{\text{esearch}} G_{\text{roup}}$