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Role Assignment Problem

Problem:
How to assign n interchangeable robots to n targets in a one-to-one mapping
so that the makespan is minimized and collisions are avoided.

Makespan = time for all robots to reach their assigned target positions
(equivalent to the time for the the robot with the longest distance to travel to
reach its assigned target position)

ASSUMPTIONS:
No two robots or targets occupy the same position
Robots are treated as zero width point masses
Robots move at same constant speed along straight line paths to targets
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Role Assignment Problem

Required properties of a role assignment function to be CM Valid
(Collision-avoiding with Minimal-makespan):
1. Minimizing makespan - it minimizes the maximum distance from a robot to

target, with respect to all possible mappings
2. Avoiding collisions - robots do not collide with each other

Desirable but not necessary to be CM Valid:
3. Dynamically consistent - role assignments don’t change or switch as

robots move toward target positions

Not include a2 → p5 (longest possible distance), instead a1 → p3 (minimal
longest distance)
a1 → p1 and a2 → p2 would cause a collision between a1 and a2
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Role Assignment Problem

Bipartite Graph Perfect Matching
n! possible mappings
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Motivation

Scenarios for which the bottleneck is the time it takes for the last robot to
get to its target (e.g. robots procuring items for an order to be shipped)
Tasks requiring robots be synchronized when they start jobs at their target
positions (e.g. robots on an assembly line)
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Outline

SCRAM CM_Valid Role Assignment Function and Algorithmic
Implementation Analysis

I Minimum Maximal Distance Recursive (MMDR)

I Minimum Maximal Distance + Minimum Sum Distance2 (MMD+MSD2)

RoboCup Robot Soccer Domain Examples

I 3D Simulation League

I 2D Simulation League
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Minimum Maximal Distance Recursive (MMDR) Role Assignment
Function

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

Mapping cost = vector of distances sorted in decreasing order
Optimal mapping = lexicographically sorted lowest cost mapping
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Hungarian Algorithm

Finds a maximum/minimum weight (sum of weights) perfect
matching in a bipartite graph (solves the assignment problem)

Runs in O(n3) time

Can we transform MMDR into the assignment problem?
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MMDR O(n5) Algorithm

Goal:

Transform edge distances to be set of weights such that the weight of
any edge e is greater than the sum of weights of all edges with
distances less than e.

1. Transform edge distances to new weights

: 5 4 6

Sort edges in ascending order of distance

: 4 5 6

Set weights to be 2i where i is the index of an edge in this sorted list

1002 (4) > 0102 (2) + 0012 (1) = 0112 (3)
6 > 5 + 4

2. Run Hungarian algorithm with modified weights returns.
Returns MMDR mapping

Time: O(n2) bits weights X O(n3) Hungarian algorithm = O(n5)

Scales to 100s of robots
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Minimum Maximal Distance + Minimum Sum Distance2 (MMD+MSD2)
Role Assignment Function

Find a perfect matching M that:

1. Has a minimum-maximal edge

2. Minimizes the sum of distances squared

M′′ := {X ∈M | ‖X‖∞ = min
M∈M

(‖M‖∞)} (1)

M∗ := argmin
M∈M′′

(‖M‖22) (2)
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Polynomial Time Algorithm for MMD+MSD2

Minimal-maximum Edge Perfect Matching Algorithm: O(n3)
breadth-first search using Ford-Fulkerson algorithm to find the minimal
maximum length edge in a perfect matching.

1. Find minimal-maximum edge in perfect matching with weight w
using Minimal-maximum Edge Perfect Matching Algorithm
2. Remove all edges with weight greater than w from graph
3. Use Hungarian algorithm to compute perfect matching with min sum
of distances squared

Time: O(n3) Min-max Edge Alg. + O(n3) Hung. Alg. = O(n3)

Scales to 1000s of robots

O(n4), Sokkalingam and Aneja
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MMDR vs MMD+MSD2

Both minimize the makespan (longest distance any agent travels to
a target) but use different mesurement values to determine other
assignments of agents to targets

Both avoid collisions among agents

MMDR is dynamically consistent while
MMD+MSD2 is not dynamically consistent

Proof sketches of the above three properties are given in the appendix
of the paper

MMD+MSD2 is faster to compute
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Role Assignment Function Properties
Function Properties

Function Min. Makespan No Collisions Dyn. Consistent
MMD+MSD2 Yes Yes No

MMDR Yes Yes Yes
MSD2 No Yes No
MSD No No No

Random No No No
Greedy No No No

Assigning 10 robots to 10 targets on a 100 X 100 grid
Function Avg. Makespan Avg. Distance Distance StdDev

MMD+MSD2 45.79 27.38 10.00
MMDR 45.79 28.02 9.30
MSD2 48.42 26.33 10.38
MSD 55.63 25.86 12.67

Random 90.78 52.14 19.38
Greedy 81.73 28.66 18.95

MSD: Minimize sum of distances between robots and targets.
MSD2: Minimize sum of distances2 between robots and targets.

Greedy: Assign robots to targets in order of shortest distances.
Random: Random assignment of robots to targets.
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Role Assignment Functions Video

Click to start

Yellow robots moving to green targets turn red if they collide
Robot paths turn light blue if robot switches targets
(not dynamically consistent)
Background turns green when all robots have reached targets
(makespan completed)

Patrick MacAlpine (2015) 12


raf2fast.mov
Media File (video/quicktime)



2013 RoboCup 3D Simulation Domain

Teams of 11 vs 11 autonomous simulated robots play soccer
Realistic physics using Open Dynamics Engine (ODE)
Robots modeled after Aldebaran Nao robot
Robot receives noisy visual information about environment
Robots can communicate with each other over limited bandwidth channel
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RoboCup 3D Positioning Video

Click to start

Each position is shown as a color-coded number corresponding to the robots’s uniform
number assigned to that position. Robots update their role assignments and move to

new positions as the ball or a robot is beamed (moved) to a new location.

Key component to winning competition 3 of the past 4 years!
Patrick MacAlpine (2015) 14
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RoboCup 2D

Click to start

Yellow team (SCRAM (MMD+MSD2)) vs red team (static)

Modified base Agent2D team using static role assignment to instead use SCRAM role
assignment functions. Teams using MMDR and MMD+MSD2 beat the team using static
role assignment by an average goal difference of 0.118 (+/- 0.025) and 0.105 (+/-
0.024) respectively over 10,000 games.
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SCRAM Summary

SCRAM minimizes the makespan or longest distance any robot has
to travel

SCRAM avoids collisions between robots

SCRAM role assignment algorithms run in polynomial time and
scales to 1000s of robots

SCRAM is effective in complex RoboCup domains
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Future Work

Task specialization where robots can only be assigned to a subset
of target position

Heterogeneous robots moving at different varying speeds

Have robots also avoid known fixed obstacles and model robots as
having true mass instead of zero width point mass

I Concurrent Assignment and Planning of Trajectories (CAPT), Turpin et al.

Make algorithms distributed
I Auction algorithms

Patrick MacAlpine (2015) 17



More Information

More information, C++ implementations of SCRAM role assignment
algorithms, and videos at:

http://tinyurl.com/aaai15scram
Email: patmac@cs.utexas.edu

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported in part by
grants from the National Science Foundation (CNS-1330072, CNS- 1305287) and ONR (21C184-01).
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Role Assignment Algorithm Analysis

Time and space complexities
Algorithm Time Complexity Space Complexity

MMD+MSD2 O(n3) O(n2)
MMDR O(n4) O(n4) O(n2)
MMDR O(n5) O(n5) O(n3)
MMDR dyna O(n22(n−1)) O(n

( n
n/2

)
)

brute force O(n!n) O(n)

Running time in milliseconds for different values of n
Algorithm n = 10 n = 20 n = 100 n = 300 n = 103 n = 104

MMD+MSD2 0.016 0.062 1.82 21.2 351.3 115006
MMDR O(n4) 0.049 0.262 17.95 403.0 14483 —
MMDR O(n5) 0.022 0.214 306.4 40502 — —
MMDR dyna 0.555 2040 — — — —
brute force 317.5 — — — — —
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MMDR O(n4) Algorithm [Sokkalingam and Aneja 1998]

Alternate between:
1. Finding minimal-maximum edge in perfect matching
2. Computing minimum sum 0-1 edge weight matchings (using the
Hungarian algorithm)

Full details of algorithm are explained in our paper

Time: O(n4)
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2013 RoboCup 3D Simulation Domain

Teams of 11 vs 11 autonomous agents play soccer
Realistic physics using Open Dynamics Engine (ODE)
Agents modeled after Aldebaran Nao robot
Agent receives noisy visual information about environment
Agents can communicate with each other over limited bandwidth channel
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RoboCup 3D Role Assignment Function Evaluation

Average goal difference across 1000 games against the top 3 teams at
RoboCup 2013

Function 1. Apollo3d 2. UT Austin
Villa

3. FCPortugal

MMDR 0.710 (0.027) 0.007 (0.013) 0.469 (0.024)
MMD+MSD2 0.698 (0.027) 0.000 ( self ) 0.465 (0.023)

Static 0.604 (0.027) -0.012 (0.016) 0.356 (0.024)
Greedy 0.530 (0.028) -0.044 (0.016) 0.315 (0.024)
Greedy
Offense

0.670 (0.027) -0.039 (0.016) 0.435 (0.024)

Static: Role assignments fixed based on player’s uniform number.

Greedy: Assign robots to targets in order of shortest distances.

Greedy Offense: Similar to previous work in the 3D sim domain, assign closest robots
to roles in order of most offensive positions.
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CM Validation of Role Assignment Function MMDR

Minimizes the longest distance (Property 1) as lexicographical
ordering of distance tuples sorted in descending order ensures this.

Triangle inequality will prevent two agents in a mapping from
colliding (Property 2)

MMDR is dynamically consistent

Proof sketches of the above three properties are given in the appendix
of the paper

Patrick MacAlpine (2015) 24



CM Validation of MMD+MSD2 Role Assignment Function

MMD+MSD2 minimizes the longest distance traveled by any agent
(Property 1) as we are only considering perfect matchings with
minimal longest edges

Triangle inequality will prevent two agents in a mapping from
colliding (Property 2)

MMD+MSD2 is not dynamically consistent (Property 3) as
distances squared do not decrease at a constant rate

Proof sketches of the above three properties are given in the appendix
of the paper
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CM Validation of Role Assignment Function MMDR
Minimizes the longest distance (Property 1) as lexicographical
ordering of distance tuples sorted in descending order ensures this.
Triangle inequality will prevent two agents in a mapping from
colliding (Property 2), as switching the two agents’ targets reduces
the maximum distance either must travel.

MMDR is dynamically consistent (Property 3) as, under assumption
all agents move toward their targets at the same constant rate,
lowest cost lexicographical ordering of chosen mapping is
preserved because distances between any agent and target will not
decrease any faster than the distance between an agent and the
target it is assigned to.
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CM Validation of MMD+MSD2 Role Assignment Function

MMD+MSD2 minimizes the longest distance traveled by any agent
(Property 1) as we are only considering perfect matchings with
minimal longest edges

Triangle inequality will prevent two agents in a mapping from
colliding (Property 2), as switching the two agents’ targets reduces,
but never increases, the distance one or both must travel thereby
reducing the sum of distances squared.
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MMD+MSD2 Dynamic Consistency
MMD+MSD2 is not dynamically consistent (Property 3) as distances
squared do not decrease at a constant rate, but in fact decrease at
faster rates for longer distances. This allows for the distance between
an agent and target that the agent is not assigned to travel toward to
decrease faster than the distance to the target it is assigned to. The
sum of distances squared for non-MMD+MSD2 mappings can thus
become less than the current MMD+MSD2 mapping.
Example:
Moving from 5 meters to 4 meters: 52 − 42 = 9
Moving from 4 meters to 3 meters: 42 − 32 = 7
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Minimal-maximum Edge Perfect Matching Algorithm
Find perfect matching with minimum longest edge across all perfect
matchings (bottleneck assignment problem).

Ford-Fulkerson algorithm finds max cardinality matching with
augmenting paths

1. Sort edges in ascending order of distance
2. Do until a perfect matching has been found

Add next edge with lowest distance to bipartite graph
Run breadth-first search of Ford-Fulkerson

Time: O(n2) breadth-first search X n edges = O(n3)
Space: Breadth-first search of Ford-Fulkerson = O(n2)
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Recursive Property of Role Assignment Function MMDR

Theorem
Let A and P be sets of n agents and positions respectively. Denote the mapping m :=
MMDR(A,P). Let m0 be a subset of m that maps a subset of agents A0 ⊂ A to a
subset of positions P0 ⊂ P. Then m0 is also the mapping returned by MMDR(A0,P0).

Translation: Any subset of a lowest cost mapping is itself a lowest
cost mapping

If within any subset of a mapping a lower cost mapping is found,
then the cost of the complete mapping can be reduced by
augmenting the complete mapping with that of the subset’s lower
cost mapping
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Dynamic Programming Algorithm for Role Assignment Function MMDR

{P1} {P2,P1} {P3,P2,P1}

A1→P1 A1→P2, MMDR(A2→P1) A1→P3, MMDR({A2,A3}→{P1,P2})
A2→P1 A1→P2, MMDR(A3→P1) A2→P3, MMDR({A1,A3}→{P1,P2})
A3→P1 A2→P2, MMDR(A1→P1) A3→P3, MMDR({A1,A2}→{P1,P2})

A2→P2, MMDR(A3→P1)
A3→P2, MMDR(A1→P1)
A3→P2, MMDR(A2→P1)

Begin evaluating mappings of 1 agent and build up to n agents
Only evaluate mappings built from subset mappings returned by
MMDR
Evaluates n2n−1 mappings
Time complexity = O(n22(n−1)), space complexity = O( n

( n
n/2

)
)
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Dynamic Programming Algorithm for Role Assignment

HashMap bestRoleMap = ∅
Agents = {a1, ..., an}
Positions = {p1, ..., pn}
for k = 1 to n do

for all a in Agents do
S =

(n−1
k−1

)
sets of k − 1 agents from Agents − {a}

for all s in S do
Mapping m0 = bestRoleMap[s]
Mapping m = (a→ pk ) ∪mo

bestRoleMap[{a} ∪ s] = mincost(m, bestRoleMap[{a} ∪ s])
return bestRoleMap[Agents]

As
(n−1

k−1

)
agent subset mapping combinations are evaluated for mappings of each

agent assigned to the kth position, the total number of mappings computed for each of
the n agents is thus equivalent to the sum of the n − 1 binomial coefficients. That is,

n∑
k=1

(
n − 1
k − 1

)
=

n−1∑
k=0

(
n − 1

k

)
= 2n−1
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Hungarian Algorithm

Finds a maximum weight perfect matching in a bipartite graph
(solves the assignment problem)
Runs in O(n3) time
Potential function: pot(s) + pot(t) ≤ cost(es,t)

Perfect matching consists of tight edges: pot(s)+pot(t) = cost(es,t)

Perfect matching M:
∑

v∈M
pot(v) =

∑
e∈M

cost(e)

Can we transform MMDR (lexicographic bottleneck assignment
problem) into the assignment problem?
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Attempt at MMDR O(n4) Algorithm
Use Minimal-maximum Edge Perfect Matching Algorithm to recursively
find each maximum edge in a perfect matching of graphs with edges
having weight less than the last minimal-maximum edge weight found.

LOOP n times:
1. Find minimal-maximum edge e in perfect matching with weight w
2. Save edge e and remove its endpoints from graph 3. Remove all
edges with weight greater than w from graph

Time: O(n3) Min-max Edge Perfect Matching Alg. X n edges = O(n4)

Can fail when there are multiple perfect matchings with the same
maximum edge weight!
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Minimal-maximum Edge Perfect Matching Algorithm
Find perfect matching with minimum longest edge across all perfect
matchings (bottleneck assignment problem).

Ford-Fulkerson algorithm finds max cardinality matching with
augmenting paths

1. Sort edges in ascending order of distance
2. Do until a perfect matching has been found

Add next edge with lowest distance to bipartite graph
Run breadth-first search of Ford-Fulkerson

Time: O(n2) breadth-first search X n edges = O(n3)
Space: Breadth-first search of Ford-Fulkerson = O(n2)
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MMDR O(n4) Algorithm [Sokkalingam and Aneja 1998]
Alternate between finding minimal-maximum edge in perfect matching and computing
minimum sum 0-1 edge weight matchings to find number of minimal-maximum edges.
numEdgesLeft := n
LOOP:
1. Find minimal-maximum edge in perfect matching with length w
2. Compute 0-1 weight max sum perfect matching M with Hungarian algorithm where
∀e ∈ Edges

{
|e| <w: cost(e) := 0; |e| =w: cost(e) := 1; |e| >w: cost(e) :=∞

3. Compute number of edges left to find based on number of edges of length w in M
numLongestEdges :=

∑
e∈matching

cost(e)

numEdgesLeft := numEdgesLeft− numLongestEdges
If numEdgesLeft = 0 return M
4. Remove non-tight edges from Edges
Insight: All perfect matchings of tight edges have exactly length w numLongestEdges
5. Set weights of new found longest edges to -1
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1. Find minimal-maximum edge in perfect matching with length w
2. Compute 0-1 weight max sum perfect matching M with Hungarian algorithm where
∀e ∈ Edges

{
|e| <w: cost(e) := 0; |e| =w: cost(e) := 1; |e| >w: cost(e) :=∞

3. Compute number of edges left to find based on number of edges of length w in M
numLongestEdges :=

∑
e∈matching

cost(e)

numEdgesLeft := numEdgesLeft− numLongestEdges
If numEdgesLeft = 0 return M
4. Remove non-tight edges from Edges
Insight: All perfect matchings of tight edges have exactly length w numLongestEdges
5. Set weights of new found longest edges to -1
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MMDR O(n4) Algorithm [Sokkalingam and Aneja 1998]

Alternate between finding minimal-maximum edge in perfect matching and computing
minimum sum 0-1 edge weight matchings to find number of minimal-maximum edges.
numEdgesLeft := n
LOOP:
1. Find minimal-maximum edge in perfect matching with length w
2. Compute 0-1 weight max sum perfect matching M with Hungarian algorithm where
∀e ∈ Edges

{
|e| <w: cost(e) := 0; |e| =w: cost(e) := 1; |e| >w: cost(e) :=∞

3. Compute number of edges left to find based on number of edges of length w in M
numLongestEdges :=

∑
e∈matching

cost(e)

numEdgesLeft := numEdgesLeft− numLongestEdges
If numEdgesLeft = 0 return M
4. Remove non-tight edges from Edges
Insight: All perfect matchings of tight edges have exactly length w numLongestEdges
5. Set weights of new found longest edges to -1

Time: (O(n3) Min-max Edge Alg. + O(n3) Hung. Alg.) X n edges = O(n4)
Space: Breadth-first search of Ford-Fulkerson = O(n2)

Patrick MacAlpine (2015) 36



Other Role Assignment Functions

Minimum Sum Distance (MSD)
Both mappings of (A1→P1,A2→P2) and (A1→P2,A2→P1) have a sum of distances
value of 8. The mapping (A1→P2,A2→P1) will result in a collision and has a longer
maximum distance of 6 than the mapping (A1→P1,A2→P2) whose maximum distance
is 4. Once a mapping is chosen and the agents start moving the sum of distances of
the two mappings will remain equal which could result in thrashing between the two.

Minimum Sum Distance Squared (MSD2)
The mapping (A1→P1,A2→P2) has a path distance squared sum of 19 which is less
than the mapping (A1→P2,A2→P1) for which this sum is 27. MMDR will choose the
mapping with the greater sum as its maximum path distance is

√
17 which is less than

the other mapping’s maximum path distance of
√

18.
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Voting Coordination System

Each agent broadcasts ball position, own position, and suggested
role mapping during allotted time slot
Sliding window stored of mappings received over last n time slots
evaluated and mapping with the most number of votes is chosen
If two mappings both have greatest number of votes then tie
breaker goes to mapping with most recent vote received

Synchronization: With voting system = 100%, without = 36%
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RoboCup 2D Drop-In Player Game

Click to start

Yellow players 4 and 11 from UTAustinVilla use SCRAM (MMD+MSD2)

Adding SCRAM to Agent2D improved performance in the challenge from an average
goal difference of 1.473 (+/-0.157) with static role assignments to 1.659 (+/-0.153) with
SCRAM.
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