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Abstract

In order to be fully robust and responsive to a dynamically
changing real-world environment, intelligent robots will need
to engage in a variety of simultaneous reasoning modalities.
In particular, in this paper we consider their needs to i) rea-
son with commonsense knowledge, ii) model their nondeter-
ministic action outcomes and partial observability, and iii)
plan toward maximizing long-term rewards. On one hand,
Answer Set Programming (ASP) is good at representing and
reasoning with commonsense and default knowledge, but is
ill-equipped to plan under probabilistic uncertainty. On the
other hand, Partially Observable Markov Decision Processes
(POMDPs) are strong at planning under uncertainty toward
maximizing long-term rewards, but are not designed to in-
corporate commonsense knowledge and inference. This pa-
per introduces the CORPP algorithm which combines P-
log, a probabilistic extension of ASP, with POMDPs to in-
tegrate commonsense reasoning with planning under uncer-
tainty. Our approach is fully implemented and tested on a
shopping request identification problem both in simulation
and on a real robot. Compared with existing approaches using
P-log or POMDPs individually, we observe significant im-
provements in both efficiency and accuracy.

1 Introduction

Intelligent robots are becoming increasingly useful across
a wide range of tasks. In real-world environments, intelli-
gent robots need to be capable of representing and reason-
ing with logical and probabilistic commonsense knowledge.
Additionally, due to the fundamental dynamism of the real
world, intelligent robots have to be able to model and rea-
son about quantitative uncertainties from nondeterministic
action outcomes and unreliable local observations. While
there are existing methods for dealing separately with either
reasoning with commonsense knowledge or planning under
uncertainty, to the best of our knowledge, there is no existing
method that does both.

Answer Set Programming (ASP) is a non-monotonic
logic programming language that is good at representing and
reasoning with commonsense knowledge (Gelfond and Kahl
2014). ASP in its default form cannot reason with probabil-
ities. A non-monotonic probabilistic logic (P-log) extends
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ASP by allowing both logical and probabilistic arguments in
its reasoning (Baral, Gelfond, and Rushton 2009). However,
ASP and its extensions are ill-equipped to plan toward max-
imizing long-term rewards under uncertainty. Partially ob-
servable Markov decision processes (POMDPs) generalize
Markov decision processes (MDPs) by assuming the partial
observability of underlying states (Kaelbling, Littman, and
Cassandra 1998). POMDPs can model the nondeterministic
state transitions and unreliable observations using probabil-
ities, and plan toward maximizing long-term rewards under
such uncertainties. However, POMDPs are not designed to
reason about commonsense knowledge. Furthermore, from a
practical perspective due to the computational complexity of
solving POMDPs, it is necessary to limit the modeled state
variables as much as possible.

This paper presents an algorithm called CORPP that
stands for combining COmmonsense Reasoning and Prob-
abilistic Planning. CORPP combines P-log with POMDPs
to, for the first time, integrate reasoning with (logical and
probabilistic) commonsense knowledge and planning under
probabilistic uncertainty. The key idea is to calculate pos-
sible worlds and generate informative priors for POMDP-
based planning by reasoning with logical and probabilis-
tic commonsense knowledge. In so doing, the logical rea-
soning component is able to shield state variables from the
POMDP that affect the priors, but that are irrelevant to the
optimal policy given the prior. The proposed approach has
been implemented and evaluated both in simulation and on
a physical robot tasked with identifying shopping requests
through spoken dialog. Results show significant improve-
ments on both efficiency and accuracy compared to existing
approaches using only P-log or POMDPs.

2 Background

This section briefly reviews the two substrate techniques
used in the paper (ASP and POMDPs) and POMDP-based
spoken dialog systems. In addition, the syntax of P-log, a
probabilistic extension of ASP, is described.

2.1 Answer Set Programming and P-log

An ASP program can be described as a five-tuple
〈Θ,O,F ,P,V〉 of sets. These sets contain names of the
sorts, objects, functions, predicates, and variables used in
the program, respectively. Variables and object constants are



terms. An atom is an expression of the form p(t̄) = true

or a(t̄) = y, where p is a predicate, a is a function, y is a
constant from the range of a or a variable, and t̄ is a vector
of terms. For example, alice is an object of sort person.
We can define a predicate prof and use prof(P) to identify
whether person P is a professor, where P is a variable.

A literal is an atom or its negation, where an atom’s nega-
tion is of the form p(t̄) = false or a(t̄) 6= y. In this pa-
per, we call p(t̄) and a(t̄) attributes, if there is no variable
in t̄. For instance, prof(alice) = true is a literal and we
can say the value of attribute prof(alice) is true. For
simplicity’s sake, we replace p(t̄) = true with p(t̄) and
p(t̄) = false with ¬p(t̄) in the rest of the paper. An ASP
program consists of a set of rules of the form:

l0 or · · · or lk ← lk+1, · · · ,lm, not lm+1, · · · , not ln.

where l’s are literals. Expressions l and not l are called
extended literals. Symbol not is a logical connective called
default negation; not l is read as “it is not believed that l is
true”, which does not imply that l is believed to be false. For
instance, not prof(alice) means it is unknown that alice
is a professor. A rule is separated by the symbol “←”. The
left side is called the head and the right side is called the
body. A rule is read as “head is true if body is true”. A rule
with an empty body is referred to as a fact.

Using default negation, ASP can represent (prioritized)
default knowledge with different levels of exceptions. De-
fault knowledge allows us to draw tentative conclusions by
reasoning with incomplete information and commonsense
knowledge. The rule below shows a simplified form of de-
faults that only allows strong exceptions that refute the de-
fault’s conclusion: for object X of property c, it is believed
that X has property p, if there is no evidence to the contrary.

p(X) ← c(X), not ¬p(X).

Traditionally, ASP does not explicitly quantify degrees
of uncertainty: a literal is either true, false or unknown.
P-log (Baral, Gelfond, and Rushton 2009) is an exten-
sion to ASP that allows random selections saying that if B
holds, the value of a(t̄) is selected randomly from the set
{X : q(X)}∩range(a), unless this value is fixed elsewhere:

random(a(t̄) : {X : q(X)})← B.

where B is a collection of extended literals; q is a predi-
cate. Finally, probability atoms (or pr-atoms) are statements
of the forms: pr(a(t̄) = y|B) = v, where v ∈ [0,1]. The pr-
atom states if B holds, the probability of a(t̄) = y is v.

Reasoning with an ASP program generates a set of pos-
sible worlds: {W0,W1, · · ·}, where each is in the form of an
answer set that includes a set of literals. The random selec-
tions and probability atoms enable P-log to calculate a prob-
ability for each possible world. Therefore, ASP and P-log
together enable one to draw inferences regarding possible
(and impossible) world states using the strong capabilities
of representing and reasoning with (logical and probabilis-
tic) commonsense knowledge. They are also useful for goal-
directed planning where the problem is to find sequences of
actions that lead from an initial state to possible worlds that
entail a goal state. However, to the best of our knowledge,
neither ASP nor P-log supports planning under uncertainty
toward maximizing long-term rewards.

2.2 Partially observable MDPs

A POMDP can be described as a six-tuple 〈S,A,T,Z,O,R〉,
where S defines all possible states of the world and a state
is described by a set of attributes and their values; A is a set
of actions—an action leads state transitions by changing the
value(s) of domain attribute(s); T : S ×A×S → [0,1] rep-
resents the probabilistic state transition; Z is a set of obser-
vations; O : S ×A×Z→ [0,1] is the observation function;
and R : S ×A→ R specifies the rewards.

Unlike MDPs, the current state can only be estimated
through observations in POMDPs. A POMDP hence main-
tains a belief state (or simply belief ), b, in the form of a
probability distribution over all possible states. The belief
update proceeds as follows:

b′(s′) =
O(s′,a,o)∑s∈S T (s,a,s′)b(s)

pr(o|a,b)
(1)

where s, a and o represent a state, an action and an obser-
vation respectively; and pr(o|a,b) is a normalizer. Solving
a POMDP produces a policy π : b 7→ a that maps beliefs to
actions in such a way that maximizes long-term rewards.

Thus, POMDPs enable principled decision making under
uncertainty, but are ill-equipped to scale to large numbers of
domain variables or reason with commonsense knowledge.
Intuitively, we use ASP and P-log to represent the common-
sense knowledge that includes all domain attributes, and use
a POMDP to model a subset of attributes that are needed
for computing the action policy for a specific task. There-
fore, given a task, there can be many of the attributes that
contribute to calculating the priors for the POMDP, but are
irrelevant to the optimal policy of the POMDP given the
prior. The next section will describe how the reasoning com-
ponents shield such attributes from the POMDPs and more
generally a principled approach that enables scalable com-
monsense reasoning and planning under uncertainty by inte-
grating P-log with POMDPs.

2.3 POMDP-based Spoken Dialog Systems

A spoken dialog system (SDS) enables an agent to inter-
act with a human using speech, and typically has three key
components: spoken language understanding (SLU), dialog
management, and natural language generation (NLG). SLU
takes speech from humans and provides semantic represen-
tations to a dialog manager; the dialog manager uses the se-
mantic representations to update its internal state s and uses
a policy π to determine the next action; and NLG converts
the action back into speech. Despite significant improve-
ments in speech recognition over the past decades, it is still a
challenge to reliably understand spoken language, especially
in robotic domains. POMDPs have been used in dialog man-
agement to account for the uncertainties from SLU by main-
taining a distribution (as a POMDP belief state) over all pos-
sible user meanings. Solving a POMDP problem generates a
policy that maps the current belief state to an optimal action
(an utterance by the system). A recent paper reviews existing
POMDP-based spoken dialog systems (Young et al. 2013),
and Section 5 compares such systems with our approach.
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Figure 1: Overview of algorithm CORPP for combining common-
sense reasoning with probabilistic planning

3 The CORPP Algorithm

Both the possible worlds and POMDP states are described
using the same set of domain attributes. We say an attribute
e is partially observable, if e’s value can only be (unreliably)
observed using sensors. The values of attributes that are not
partially observable can be specified by facts, defaults, or
reasoning with values of other attributes. The value of an
attribute can be unknown. For instance, attribute current time
can be specified by facts. Similarly, identities of people as
facts can be available but not always. Current location (of a
robot) is partially observable, because self-localization relies
on sensors; and the value of attribute within if it is within
working hours now can be inferred from current time.

We propose algorithm CORPP for reasoning with com-
monsense and planning under uncertainty, as shown in Fig-
ure 1. The logical reasoner (LR) includes a set of logical
rules in ASP and takes defaults and facts (Section 3.1) as
input. The facts are collected by querying internal memory
and databases. It is possible that facts and defaults try to as-
sign values to the same attributes, in which case, default val-
ues will be automatically overwritten by facts. The output of
LR is a set of possible worlds {W0,W1, · · ·}. Each possible
world, as an answer set, includes a set of literals that specify
the values of attributes—possibly unknown.

The probabilistic reasoner (PR) includes a set of random
selection rules and probabilistic information assignments
(Section 3.2) in P-log and takes the set of possible worlds
as input. Reasoning with PR associates each possible world
with a probability {W0 : pr0, W1 : pr1, · · ·}.

Unlike LR and PR, the probabilistic planner (PP), in the
form of a POMDP, is specified by the goal of the task and the
sensing and actuating capabilities of the agent (Section 3.3).
The prior in Figure 1 is in the form of a distribution and
denoted by α . The ith entry in the prior, αi, is calculated
by summing up the probabilities of possible worlds that are
consistent with the corresponding POMDP state si. In prac-
tice, αi is calculated by sending a P-log query of this form:

?{si}|obs(l0), · · · ,obs(lm),do(lm+1), · · · ,do(ln).

where l’s are facts. If a fact l specifies the value of a random
attribute, we use obs(l). Otherwise we use do(l). Techni-
cally, do(l) adds l into a program before calculating the
possible worlds, while obs(l) is used to remove the calcu-
lated possible worlds that do not include literal l.

Algorithm 1 The CORPP algorithm

Require: a task τ and a set of defaults D
Require: a policy π produced by POMDP solvers
1: collect facts µ in the world, and add µ and D into LR
2: reason with LR and calculate possible worlds: W
3: add the possible worlds into PR
4: for state si ∈ S do
5: create a query φi using si and add φi into PR
6: reason with PR, produce αi, and remove φi from PR
7: end for
8: initialize belief state in PP: b = α
9: repeat

10: make an observation z; and update belief b using Equation 1
11: select an action a using policy π
12: until s is term

The prior is used for initializing POMDP beliefs in PP.
Afterwards, the robot interacts with the world by continu-
ally selecting an action, executing the action, and making
observations in the world. A task is finished after falling into
a terminating state. CORPP is summarized in Algorithm 1.
We next use an illustrative problem to present more details.

Illustrative Problem: Shopping Request Identification In
a campus environment, the shopping robot can buy an item
for a person and deliver to a room, so a shopping request is
in the form of 〈item, room, person〉. A person can be either
a professor or a student. Registered students are authorized
to use the robot and professors are not unless they paid. The
robot can get access to a database to query about registration
and payment information, but the database may be incom-
plete. The robot can initiate spoken dialog to gather informa-
tion for understanding shopping requests and take a delivery
action when it becomes confident in the estimation. This task
is challenging for the robot because of its imperfect speech
recognition ability. The goal is to identify shopping requests,
e.g., 〈coffee, office1, alice〉, efficiently and robustly.

3.1 Logical Reasoning with ASP

Sorts and Objects: LR includes a set of sorts Θ :
{time,item,room,person} and a set of objects O:

time= {morning,noon,afternoon}.

item= {sandwich,coffee}.

room= {office1,office2,lab,conference}.

person= {alice,bob,carol,dan,erin}.

Variables: We define the set of variables V : {T,I,R,P},
using a construct #domain, which can be interpreted by pop-
ular ASP solvers.

#domain time(T). #domain item(I).

#domain room(R). #domain person(P).

Predicates: The set of predicates, P , includes:

place(P,R). prof(P). student(P). registered(P).

authorized(P). paid(P). task(I,R,P).

where place(P,R) represents person P’s working room is R,
authorized(P) states P is authorized to place orders, and a
ground of task(I,R,P) specifies a shopping request.



The following two logical reasoning rules state that pro-
fessors who have paid and students who have registered are
authorized to place orders.

authorized(P)← paid(P), prof(P).

authorized(P)← registered(P), student(P).

Since the database can be incomplete about the registra-
tion and payment information, we need default knowledge
to reason about unspecified variables. For instance, if it is
unknown that a professor has paid, we believe the professor
has not; if it is unknown that a student has registered, we
believe the student has not.

¬paid(P)← not paid(P), prof(P).

¬registered(P)← not registered(P), student(P).

ASP is strong in default reasoning in that it allows priori-
tized defaults and exceptions at different levels (Gelfond and
Kahl 2014). LR has the Closed World Assumption (CWA)
for some predicates, e.g., the below rule guarantees that the
value of attribute authorized(P) must be either true or
false (cannot be unknown):

¬authorized(P)← not authorized(P).

To identify a shopping request, the robot always starts with
collecting all available facts, e.g.,

prof(alice). prof(bob). prof(carol). student(dan).

student(erin). place(alice,office1).

place(bob,office2). place(erin,lab).

If the robot also observes facts of paid(alice), paid(bob)
and registered(dan), reasoning with the above defaults
and rules will imply that alice, bob and dan are autho-
rized to place orders. Thus, LR can generate a set of possible
worlds by reasoning with the rules, facts and defaults.

3.2 Probabilistic Reasoning with P-log

PR includes a set of random selection rules describing pos-
sible values of random attributes:

random(curr time). curr time : time.

random(req item(P)). req item : person→ item.

random(req room(P)). req room : person→ room.

random(req person). req person : person.

For instance, the second rule above states that if the deliv-
ery is for person P, the value of req item is randomly se-
lected from the range of item, unless fixed elsewhere. The
following two pr-atoms state the probability of delivering
for person P to P’s working place (0.8) and the probability
of delivering coffee in the morning (0.8).

pr(req room(P) = R | place(P,R)) = 0.8.

pr(req item(P) = coffee|curr time= morning) = 0.8.

Such random selection rules and pr-atoms allow us to rep-
resent and reason with commonsense with probabilities. Fi-
nally, a shopping request is specified as follows:

task(I,R,P)←req item(P) = I, req room(P) = R,

req person= P, authorized(P).

PR takes queries from PP and returns the joint probability.
For instance, if it is known that Bob, as a professor, has paid
and the current time is morning, a query for calculating the
probability of 〈sandwich,office1,alice〉 is of the form:

?{task(sandwich,office1,alice)} | do(paid(bob)),

obs(curr time= morning).

The fact of bob having paid increases the uncertainty in esti-
mating the value of req person by bringing additional pos-
sible worlds that include req person= bob.

3.3 Probabilistic planning with POMDPs

A POMDP needs to model all partially observable attributes
relevant to the task at hand. In the shopping request identifi-
cation problem, an underlying state is composed of an item,
a room and a person. The robot can ask polar questions such
as “Is this delivery for Alice?”, and wh-questions such as
“Who is this delivery for?”. The robot expects observations
of “yes” or “no” after polar questions and an element from
the sets of items, rooms, or persons after wh-questions. Once
the robot becomes confident in the request estimation, it can
take a delivery action that deterministically leads to a termi-
nating state. Each delivery action specifies a shopping task.

• S : Si×Sr×Sp ∪ term is the state set. It includes a Carte-
sian product of the set of items Si, the set of rooms Sr, and
the set of persons Sp, and a terminal state term.

• A :Aw∪Ap∪Ad is the action set. Aw = {ai
w,a

r
w,a

p
w} in-

cludes actions of asking wh-questions. Ap = Ai
p ∪A

r
p ∪

Ap
p includes actions of asking polar questions, where Ai

p,

Ar
p and Ap

p are the sets of actions of asking about items,
rooms and persons respectively.Ad includes the set of de-
livery actions. For a ∈ Ad , we use s⊙ a to represent that
the delivery of a matches the underlying state s (i.e., a
correct delivery) and use s⊘a otherwise.

• T : S×A×S → [0,1] is the state transition function. Ac-
tion a ∈ Aw ∪Ap does not change the state and action
a ∈Ad results in the terminal state term deterministically.

• Z : Zi∪Zr∪Zp∪{z
+
,z−} is the set of observations, where

Zi, Zr and Zp include observations of action item, room
and person respectively. z+ and z− are the positive and
negative observations after polar questions.

• O : S ×A× Z → [0,1] is the observation function. The
probabilities of O are empirically hand-coded, e.g., z+ and
z− are more reliable than other observations. Learning the
probabilities is beyond the scope of this paper.

• R : S ×A→ R is the reward function. In our case:

R(s,a) =















−rp, if s ∈ S, a ∈ Ap

−rw, if s ∈ S, a ∈ Aw

−r−d , if s ∈ S, a ∈ Ad , s⊘a

r+d , if s ∈ S, a ∈ Ad , s⊙a

(2)

where we use rw and rp to specify the costs of asking wh-

and polar questions. r−d is a big cost for an incorrect deliv-

ery and r+d is a big reward for a correct one. Unless other-

wise specified, rw = 1, rp = 2, r−d = 100, and r+d = 50.



Consider an example where Si = {coffee,sandwich}, Sr =
{lab}, and Sp = {alice,bob}. The state set will be specified
as: S = {coffee lab alice, . . . , term} with totally five states,
where each state corresponds to a possible world specified
by a set of literals (a task in our case), and term corresponds
to the possible world with no task. The corresponding ac-
tion setA will have 12 actions with |Aw|= 3, |Ap|= 5, and
|Ad |= 4. Observation set Z will be of size |Z|= 7 including
z+ and z− for polar questions.

Given a POMDP, we calculate a policy using state-of-the-
art POMDP solvers, e.g., APPL (Kurniawati, Hsu, and Lee
2008). The policy maps a POMDP belief to an action toward
maximizing the long-term rewards. Specifically, the policy
enables the robot to take a delivery action only if it is confi-
dent enough about the shopping request that the cost of ask-
ing additional questions is not worth the expected increase
in confidence. The policy also decides what, for whom and
where to deliver. There are attributes that contribute to cal-
culating the POMDP priors but are irrelevant to the opti-
mal policy given the prior. The reasoning components shield
such attributes, e.g., curr time, from the POMDPs.

CORPP enables the dialog manager (for identifying shop-
ping requests) to combine commonsense reasoning with
probabilistic planning. For instance, reasoning with the com-
monsense rule of “people usually buy coffee in the morning”
and the fact of current time being morning, our robot prefers
“Would you want to buy coffee?” to a wh-question such as
“What item do you want?” in initiating a conversation. At
the same time, the POMDP-based planner ensures the ro-
bustness to speech recognition errors.

4 Experiments

The CORPP algorithm has been implemented both in sim-
ulation and on real robots. The experiments in simulation
focus on comparisons based on results of large numbers of
simulated trials. Experimentation on real robots was more
limited and results were more informal. Experiments were
designed to evaluate the following hypotheses: (I) shopping
requests can be efficiently and accurately identified using
the POMDP-based probabilistic planner (PP); (II) combin-
ing PP with the logical reasoner (LR) improves the perfor-
mance; and (III) CORPP performs the best in both accuracy
and efficiency by combining LR, PR, and PP.

Defined Information Gathering Policies: We first define
three straightforward policies that gather information in a
pre-defined way. They serve as comparison points represent-
ing easy-to-define hand-coded policies. Defined-1 allows
the robot to take actions from Aw; Defined-2 allows actions
from Ap; and Defined-3 allows actions from Aw ∪Ap. We
further define a round as taking all allowed actions, once for
each. In the end of a trial, the robot finds the shopping re-
quest (corresponding to state s) that it is most certain about
and then takes action a ∈ Ad to maximize the probability of
s⊙a (defined in Section 3.3).

Probabilistic Knowledge at Different Levels: The robot
does not necessarily have full and/or accurate probabilistic
commonsense knowledge. We distinguish the probabilistic
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Figure 2: POMDP-based probabilistic planner (PP) performs bet-
ter than the defined baseline policies in efficiency and accuracy
(Hypothesis-I); and combining PP with logical reasoner (LR) fur-
ther improves the performance (Hypothesis-II).

knowledge provided to the robot based on its availability
and accuracy. All: the robot can get access to the knowledge
described in Section 3.1 and 3.2 in a complete and accurate
way. Limited: the accessibility to the knowledge is the same
as “All” except that current time is hidden from the robot. In-
accurate: the accessibility to the knowledge is the same as
“All” except that the value of current time is always wrong.

4.1 Simulation Experiments

All three hypotheses were evaluated extensively in simula-
tion, where action costs are defined in Section 3.3. Each data
point in the figures in this section is the average of at least
10,000 simulated trials.

To evaluate Hypothesis-I (POMDP-based PP), we com-
pared the POMDP-based probabilistic planner against the
three defined information gathering policies—all start with
uniform α meaning that all worlds are equally probable. The
defined policies can gather information by taking multiple
rounds of actions. The results are shown as the hollow mark-
ers in Figure 2. The POMDP-based PP enables the shopping
requests to be correctly identified in more than 90% of the
trials with costs of about 14.3 units on average (black hol-
low square) with the imperfect sensing ability. In contrast,
the defined policies need more cost (e.g., about 44 units
for Defined-2) to achieve comparable accuracy (red hollow
circle). Therefore, POMDP-based planning enables efficient
and accurate information gathering and behavior in identify-
ing shopping requests.

To evaluate Hypothesis-II (LR and PP), the POMDP-
based PP and the three defined policies are next combined
with LR that incorporates the logical reasoning rules, de-
faults, and facts (Section 3.1)—results are shown as the solid
markers in Figure 2. Without PR, we can only assume all
logically possible worlds to be equally probable in calculat-
ing the prior α . We can see the combination of LR and the
POMDP-based PP performs better than the combination of
LR and the three defined planning policies—see the solid
markers. Furthermore, comparing to the corresponding hol-
low markers, we can see adding LR improves the perfor-
mance of both PP and the defined policies. Specifically, LR
enables the POMDP-based PP to reduce the average cost to
about 10.5 units without hurting the accuracy. LR reduces
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Figure 3: CORPP performs better than the other approaches in
both efficiency and accuracy (Hypothesis-III).

the number of possible worlds for PP (from 40 to 24 in
our case), which enables POMDP solvers to calculate more
accurate action policies in reasonable time (an hour in our
case) and reduces the uncertainty in state estimation.

To evaluate Hypothesis-III (LR, PR and PP), we provide
the probabilistic commonsense knowledge (Section 3.2) to
the robot at different completeness and accuracy levels—
learning the probabilities is beyond the scope of this paper.
Experimental results are shown in Figure 3. Each set of ex-
periments has three data points because we assigned differ-
ent penalties to incorrect identifications in PP (r−d equals 10,
60 and 100). Generally, a larger penalty requires the robot to
ask more questions before taking a delivery action. POMDP-
based PP without commonsense reasoning (blue rightward
triangle) produced the worst results. Combining LR with PP
(magenta leftward triangle) improves the performance by re-
ducing the number of possible worlds. Adding inaccurate
probabilistic commonsense in PR (green upward triangle)
hurts the accuracy significantly when the penalty of incor-
rect identifications is small. Reasoning with limited prob-
abilistic commonsense in PR requires much less cost and
results in higher (or at least similar) accuracy on average,
compared to planning without PR. Finally, the proposed al-
gorithm, CORPP, produced the best performance in both ef-
ficiency and accuracy. We also find that the POMDP-based
PP enables the robot to recover from inaccurate knowledge
by actively gathering more information—compare the right
ends of the “limited” and “inaccurate” curves.

For completeness, we evaluated the performance of pure
reasoning (LR and PR): information gathering actions are
not allowed; the robot uses all knowledge to determine the
most likely shopping request (in case of a tie, it randomly
chooses one from the most likely ones). The reasoning takes
essentially no time and the average accuracy is only 0.193.

4.2 Robot Experiments

We have also implemented the proposed approach on a phys-
ical robot shown in Figure 4. The robot is built on top of a
Segway Robotic Mobility Platform. It uses a Hokuyo URG-
04LX laser rangefinder and a Kinect RGB-D camera for
navigation and sensing, and Sphinx-4 (Walker et al. 2004)
for speech recognition. The software modules run in a Robot
Operating System (ROS) (Quigley et al. 2009). After the
proposed approach determines the parameters of the shop-
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Figure 5: Belief change in an illustrative trial.

ping request, it is passed to a hierarchical task planner for
creating a sequence of primitive actions that can be directly
executed by the robot (Zhang et al. 2014b).

Figure 4: Robot platform
(SegBot) used in experiments.

We present the belief
change in an illustrative
trial in Figure 5, where i, r
and p are item, room and
person respectively. i0 is
sandwich and i1 is coffee.
The robot first read its in-
ternal memory and collected
a set of facts such as the
current time was “morning”,
p0’s office is r0 and p1’s
office is r1. Reasoning with
commonsense produced a
prior shown in the top-left
of Figure 5, where the most
possible two requests were
〈i1,r0, p0〉 and 〈i1,r1, p1〉.
The robot took the first action to confirm the item to be
coffee. After observing a “yes”, the robot further confirmed
p1 and r1. Finally, it became confident in the estimation
and successfully identified the shopping request. Therefore,
reasoning with domain knowledge produced an informative
prior, based on which the robot could directly focus on
the most likely attribute values, and ask corresponding
questions. In contrast, when starting from a uniform prior,
the robot would have needed at least six actions before the
delivery action. A demo video is available by this link:
http://youtu.be/2UJG4-ejVww

5 Related Work

Logical and probabilistic reasoning: Researchers have
developed algorithms and frameworks that combine logi-
cal and probabilistic reasoning, e.g., probabilistic first-order
logic (Halpern 2003), Markov logic network (Richardson
and Domingos 2006), and Bayesian logic (Milch et al.
2005). However, algorithms based on first-order logic for
probabilistic reasoning have difficulties in representing or
reasoning with commonsense knowledge. P-log (Baral, Gel-
fond, and Rushton 2009) can do logical and probabilistic



reasoning with commonsense but has difficulties to plan to-
ward maximizing long-term rewards.

Planning with POMDPs: POMDPs have been applied to
a variety of probabilistic planning tasks (Young et al. 2013;
Zhang, Sridharan, and Washington 2013). However, exist-
ing POMDP-based planning work does not readily sup-
port representation of or reasoning with rich commonsense
knowledge. Furthermore, from a practical perspective, the
state variables modeled by POMDPs have to be limited
to allow real-time operation. This makes it challenging to
use POMDPs in large, complex state-action spaces, even
if hierarchical decomposition and approximate algorithms
have been applied (Zhang, Sridharan, and Washington 2013;
Kurniawati, Hsu, and Lee 2008).

The illustrative example problem in this paper is a Spo-
ken dialog system (SDS). POMDP-based SDSs have been
shown to be more robust and efficient than traditional work
using deterministic flowchart-based action policies (Roy,
Pineau, and Thrun 2000). A recent paper reviews existing
techniques and applications of POMDP-based SDSs (Young
et al. 2013). Similar to other POMDP-based applications,
such SDSs are ill-equipped to represent and reason with
commonsense knowledge.

Combining ASP with POMDPs: Existing work investi-
gated generating priors by inference with domain knowledge
using ASP for POMDP-based planning (Zhang, Sridharan,
and Bao 2012). However, this work did not have a proba-
bilistic reasoner to reason with probabilistic commonsense
knowledge. Furthermore, the logical reasoner in that work
did not calculate possible worlds for POMDPs. An action
language has been combined with POMDP-based planning
toward reasoning with qualitative and quantitative domain
descriptions (Zhang et al. 2014a). The use of the action lan-
guage limits the capability of reasoning with commonsense
knowledge in that work.

6 Conclusions and Future Work
This paper presents the CORPP algorithm that, for the first
time, integrates reasoning with (logical and probabilistic)
commonsense knowledge and planning under probabilis-
tic uncertainty. Answer Set Programming, a non-monotonic
logic programming language, is used to reason with logical
commonsense knowledge. P-log, a probabilistic extension
of ASP, further enables reasoning with probabilistic com-
monsense knowledge. POMDPs are used to plan under un-
certainty toward maximizing long-term rewards. The com-
plementary features of ASP and POMDPs ensure efficient,
robust information gathering and behavior in robotics. Ex-
perimental results on a shopping request identification prob-
lem show significant improvements on both efficiency and
accuracy, compared with existing approaches using P-log or
POMDPs individually.

One direction of future investigation is to apply CORPP to
problems of larger scales by programming with P-log using
SCOU grammar (more strict but not fully declarative) (Zhu
2012) and using N-best and/or factorized POMDPs (Young
et al. 2013). Another possible direction is to apply CORPP
to a team of intelligent robots with a shared knowledge base.
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