Grounded Action Transformation for Robot Learning in Simulation

Josiah Hanna and Peter Stone

· 《 曰 》 《 圊 》 《 볼 》 《 볼 》 · '볼 · ' '의 《

Josiah Hanna and Peter Stone

Reinforcement Learning for Physical Robots

Learning on physical robots:

- Not data-efficient.
- Requires supervision.
- Manual resets.
- Robots break.
- Wear and tear make learning non-stationary.

Not an exhaustive list...

Reinforcement Learning in Simulation

Learning in simulation:

- Thousands of trials in parallel.
- No supervision and automatic resets.
- Robots never break or wear out.

Reinforcement Learning in Simulation

Learning in simulation:

- Thousands of trials in parallel.
- No supervision and automatic resets.
- Robots never break or wear out.



Policies learned in simulation often fail in the real world.

Notation

Environment $E = \langle S, A, c, P \rangle$

- Robot in state s ∈ S chooses action a ∈ A according to policy π.
 - Parameterized $\pi_{\boldsymbol{\theta}}$ denoted $\boldsymbol{\theta}$
- Environment, E, responds with a new state $S_{t+1} \sim P(\cdot|s, a)$.
- Cost function c defines a scalar cost for each (s, a).
- Goal is to find θ which minimizes:

$$J(oldsymbol{ heta}) := \mathbb{E}_{S_1, A_1, ..., S_L, A_L} \left[\sum_{t=1}^L c(S_t, A_t)
ight]$$

Grounded Action Transformation for Robot Learning in Simulation

3

(日) (同) (三) (三)

Simulator $E_{sim} = \langle S, A, c, P_{sim} \rangle$.

Identical to E but different dynamics (transition function).

Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation

э

イロト イ団ト イヨト イヨト

Simulator $E_{sim} = \langle S, A, c, P_{sim} \rangle$. Identical to *E* but different dynamics (transition function).

$$J_{\texttt{sim}}(oldsymbol{ heta}') > J_{\texttt{sim}}(oldsymbol{ heta}_0)
i J(oldsymbol{ heta}') > J(oldsymbol{ heta}_0)$$

Goal: Learn θ in simulation that also works on physical robot.

Grounded Action Transformation for Robot Learning in Simulation

э

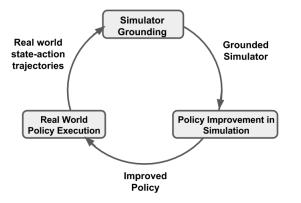
(日) (同) (日) (日)

Grounded Simulation Learning

Grounded Simulation Learning (GSL) is a framework for robot learning in simulation by modifying the simulator with real world data so that policies learned in simulation work in the real world [?].

- **1** Execute θ_0 on physical robot.
- 2 Ground simulator so θ_0 produces similar trajectories in simulation.
- 3 Optimize $J_{sim}(\theta)$ to find better θ' .
- **4** Test θ' on the physical robot.
- 5 $\theta_0 := \theta'$ and repeat.

Grounded Simulation Learning



Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation

2

・ロン ・四 と ・ ヨ と ・ ヨ と …

Grounding the Simulator

Assume P_{sim} is parameterized by ϕ .

d: Any measure of similarity between state transition distributions

Robot executes θ_0 and records dataset \mathcal{D} of (S_t, A_t, S_{t+1}) transitions.

$$\phi^{\star} = \underset{\phi}{\operatorname{argmin}} \sum_{(S_t, A_t, S_{t+1}) \in \mathcal{D}} d\left(P(\cdot | S_t, A_t), P_{\phi}(\cdot | S_t, A_t) \right)$$

Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation

э

(日) (同) (三) (

Grounding the Simulator

Assume P_{sim} is parameterized by ϕ .

d: Any measure of similarity between state transition distributions

Robot executes θ_0 and records dataset \mathcal{D} of (S_t, A_t, S_{t+1}) transitions.

$$\phi^{\star} = \underset{\phi}{\operatorname{argmin}} \sum_{(S_t, A_t, S_{t+1}) \in \mathcal{D}} d\left(P(\cdot | S_t, A_t), P_{\phi}(\cdot | S_t, A_t) \right)$$

How to define
$$\phi$$
?

Josiah Hanna and Peter Stone

- No random-access simulation modification required.
- Leaves underlying policy optimization unchanged.
- 3 Efficient simulator modification.

Grounded Action Transformation for Robot Learning in Simulation

э

Guided Grounded Simulation Learning

Farchy et al. presented a GSL algorithm and demonstrated a 26.7% improvement in walk speed on a Nao.

Two limitations of existing approach:

- Modification relied on assumption that desired joint positions achieved instantaneously in simulation.
- 2 Used expert knowledge to select which components of θ could be learned.

Grounded Action Transformations

Goal: Eliminate simulator-dependent assumption of earlier work.

$$\phi^{\star} = \underset{\phi}{\operatorname{argmin}} \sum_{(S_{t}, A_{t}, S_{t+1}) \in \mathcal{D}} d\left(P(\cdot | S_{t}, A_{t}), P_{\phi}(\cdot | S_{t}, A_{t})\right)$$

Replace robot's action \mathbf{a}_t with an action that produces a more "realistic" transition.

Learn this action as a function $g_{\phi}(\mathbf{s}_t, \mathbf{a}_t)$.

Grounded Action Transformation for Robot Learning in Simulation

э

∃→ < ∃→</p>

Grounded Action Transformation

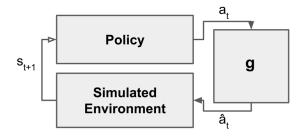


Figure : Modifiable simulator induced by GAT.

Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation

メロト メロト メヨト

3 x 3

Grounded Action Transformation

 \mathcal{X} : the set of robot joint configurations.

Learn two functions:

- Robot's dynamics: $f : S \times A \rightarrow X$
- Simulator's inverse dynamics: $f_{sim}^{-1} : S \times X \to A$.

Replace robot's action \mathbf{a}_t with $\hat{\mathbf{a}}_t := f_{sim}^{-1}(\mathbf{s}_t, f(\mathbf{s}_t, \mathbf{a}_t))$.

Grounded Action Transformation for Robot Learning in Simulation

• • • • • • • • • • • • •

Grounded Action Transformations

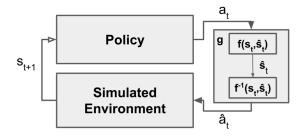


Figure : Modifiable simulator induced by GAT.

Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation

2

GAT Implementation

- f and f_{sim}^{-1} learned with supervised learning.
 - Record sequence $S_t, A_t, ...$ on robot and in simulation.
 - Supervised learning of g:

■
$$f_{sim}^{-1} : (S_t, A_t) \to X_{t+1}$$

■ $f : (S_t, X_{t+1}) \to A_t$

Smooth modified actions:

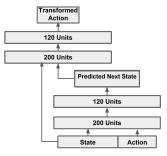
$$g(\mathbf{s}_t, \mathbf{a}_t) := \alpha f_{\texttt{sim}}^{-1}(\mathbf{s}_t, f(\mathbf{s}_t, \mathbf{a}_t)) + (1 - \alpha)\mathbf{a}_t$$

Grounded Action Transformation for Robot Learning in Simulation

3

イロト イポト イヨト イヨト

Supervised Implementation



- Forward model trained with 15 real world trajectories of 2000 time-steps.
- Inverse model trained with 50 simulated trajectories of 1000 time-steps.

Grounded Action Transformation for Robot Learning in Simulation

3

(日) (同) (三) (三)

Applied GAT to learning fast bipedal walks for the Nao robot.

- Task: Walk forward towards a target.
- θ_0 : University of New South Wales Walk Engine.
- Simulator: SimSpark Robocup3D Simulator and OSRF Gazebo Simulator.
- Policy optimization with CMA-ES stochastic search method.

.∃ ▶ . ∢

Empirical Results

(a) Softbank Nao

(b) Gazebo Nao

(c) SimSpark Nao

<ロ> <同> <同> <同> < 同>

Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation

3

Empirical Results

Josiah Hanna and Peter Stone

Empirical Results

Simulation to Nao:

Method	Velocity (cm/s)	% Improve
Initial policy	19.52	0.0
SimSpark, first iteration	26.27	34.58
SimSpark, second iteration	27.97	43.27
Gazebo, first iteration	26.89	37.76

SimSpark to Gazebo:

Method	% Improve	Failures	Best Gen.
No Ground	11.094	7	1.33
Noise-Envelope	18.93	5	6.6
GAT	22.48	1	2.67

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ▼ の Q @

Josiah Hanna and Peter Stone

Conclusion

Contributions:

- I Introduced Grounded Action Transformations algorithm for simulation transfer.
- Improved walk speed of Nao robot by over 40 % compared to state-of-the-art walk engine.

Future Work:

- Extending to other robotics tasks and platforms.
- When does grounding actions work and when does it not?
- Reformulating learning g:
 - f and f⁻¹_{sim} minimize one-step error but we actually care about error over sequences of states and actions.

(a)

Thanks for your attention! Questions?

Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation

2

・ロト ・回ト ・ヨト ・ヨト

Alon Farchy, Samuel Barrett, Patrick MacAlpine, and Peter Stone.

Humanoid robots learning to walk faster: From the real world to simulation and back.

In Twelth International Conference on Autonomous Agents and Multiagent Systems, 2013.

Grounded Action Transformation for Robot Learning in Simulation

э

A (1) > A (1) > A