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Reinforcement Learning for Physical Robots

Learning on physical robots:

Not data-efficient.

Requires supervision.

Manual resets.

Robots break.

Wear and tear make
learning non-stationary.

Not an exhaustive list...
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Reinforcement Learning in Simulation

Learning in simulation:

Thousands of trials in
parallel.

No supervision and
automatic resets.

Robots never break or
wear out.

Policies learned in simulation often fail in the real world.
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Notation

Environment E = 〈S,A, c ,P〉
Robot in state s ∈ S chooses action a ∈ A according to
policy π.

Parameterized πθ denoted θ

Environment, E , responds with a new state
St+1 ∼ P(·|s, a).

Cost function c defines a scalar cost for each (s, a).

Goal is to find θ which minimizes:

J(θ) := ES1,A1,...,SL,AL

[
L∑

t=1

c(St ,At)

]
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Learning in Simulation

Simulator Esim = 〈S,A, c ,Psim〉.
Identical to E but different dynamics (transition function).

Jsim(θ′) > Jsim(θ0) ; J(θ′) > J(θ0)

Goal: Learn θ in simulation that also works on physical robot.
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Grounded Simulation Learning

Grounded Simulation Learning (GSL) is a framework for robot
learning in simulation by modifying the simulator with real
world data so that policies learned in simulation work in the
real world [?].

1 Execute θ0 on physical robot.

2 Ground simulator so θ0 produces similar trajectories in
simulation.

3 Optimize Jsim(θ) to find better θ′.

4 Test θ′ on the physical robot.

5 θ0 := θ′ and repeat.
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Grounded Simulation Learning
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Grounding the Simulator

Assume Psim is parameterized by φ.

d : Any measure of similarity between state transition
distributions

Robot executes θ0 and records dataset D of (St ,At , St+1)
transitions.

φ? = argmin
φ

∑
(St ,At ,St+1)∈D

d (P(·|St ,At),Pφ(·|St ,At))

How to define φ?
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Advantages of GSL

1 No random-access simulation modification
required.

2 Leaves underlying policy optimization
unchanged.

3 Efficient simulator modification.
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Guided Grounded Simulation Learning

Farchy et al. presented a GSL algorithm and demonstrated a
26.7% improvement in walk speed on a Nao.

Two limitations of existing approach:

1 Modification relied on assumption that desired joint
positions achieved instantaneously in simulation.

2 Used expert knowledge to select which components of θ
could be learned.
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Grounded Action Transformations

Goal: Eliminate simulator-dependent assumption of earlier
work.

φ? = argmin
φ

∑
(St ,At ,St+1)∈D

d (P(·|St ,At),Pφ(·|St ,At))

Replace robot’s action at with an action that produces a more
“realistic” transition.
Learn this action as a function gφ(st , at).
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Grounded Action Transformation

Figure : Modifiable simulator induced by gat.
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Grounded Action Transformation

X : the set of robot joint configurations.

Learn two functions:

Robot’s dynamics: f : S ×A → X
Simulator’s inverse dynamics: f −1sim : S × X → A.

Replace robot’s action at with ât := f −1sim(st , f (st , at)).
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Grounded Action Transformations

Figure : Modifiable simulator induced by gat.

Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation 14



GAT Implementation

f and f −1sim learned with supervised learning.

Record sequence St ,At , ... on robot and in simulation.

Supervised learning of g :

f −1sim : (St ,At)→ Xt+1

f : (St ,Xt+1)→ At

Smooth modified actions:

g(st , at) := αf −1sim(st , f (st , at)) + (1− α)at

Josiah Hanna and Peter Stone

Grounded Action Transformation for Robot Learning in Simulation 15



Supervised Implementation

Forward model trained with 15 real world trajectories of
2000 time-steps.

Inverse model trained with 50 simulated trajectories of
1000 time-steps.
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Empirical Results

Applied GAT to learning fast bipedal walks for the Nao robot.

Task: Walk forward towards a target.

θ0: University of New South Wales Walk Engine.

Simulator: SimSpark Robocup3D Simulator and OSRF
Gazebo Simulator.

Policy optimization with cma-es stochastic search
method.
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Empirical Results

(a) Softbank Nao (b) Gazebo Nao (c) SimSpark Nao
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Empirical Results
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Empirical Results

Simulation to Nao:

Method Velocity (cm/s) % Improve
Initial policy 19.52 0.0
SimSpark, first iteration 26.27 34.58
SimSpark, second iteration 27.97 43.27
Gazebo, first iteration 26.89 37.76

SimSpark to Gazebo:

Method % Improve Failures Best Gen.
No Ground 11.094 7 1.33

Noise-Envelope 18.93 5 6.6
gat 22.48 1 2.67
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Conclusion

Contributions:

1 Introduced Grounded Action Transformations algorithm
for simulation transfer.

2 Improved walk speed of Nao robot by over 40 %
compared to state-of-the-art walk engine.

Future Work:

Extending to other robotics tasks and platforms.

When does grounding actions work and when does it not?

Reformulating learning g :

f and f −1sim minimize one-step error but we actually care
about error over sequences of states and actions.
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Thanks for your attention!
Questions?
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