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Abstract

This paper focuses on two commonly used path assign-
ment policies for agents traversing a congested network: self-
interested routing, and system-optimum routing. In the self-
interested routing policy each agent selects a path that op-
timizes its own utility, while in the system-optimum routing,
agents are assigned paths with the goal of maximizing system
performance. This paper considers a scenario where a cen-
tralized network manager wishes to optimize utilities over all
agents, i.e., implement a system-optimum routing policy. In
many real-life scenarios, however, the system manager is un-
able to influence the route assignment of all agents due to lim-
ited influence on route choice decisions. Motivated by such
scenarios, a computationally tractable method is presented
that computes the minimal amount of agents that the sys-
tem manager needs to influence (compliant agents) in order to
achieve system optimal performance. Moreover, this method-
ology can also determine whether a given set of compliant
agents is sufficient to achieve system optimum and compute
the optimal route assignment for the compliant agents to do
so. Experimental results are presented showing that in sev-
eral large-scale, realistic traffic networks optimal flow can be
achieved with as low as 13% of the agent being compliant
and up to 54%.

Introduction
In multiagent systems, there are generally two paradigms of
interaction. Centralized control paradigms assume that a sin-
gle decision making entity is able to dictate the actions of all
the agents, thus leading them to a coordinated social opti-
mum. Decentralized control paradigms, on the other hand,
assume that each agent selects its own actions, and while it
is in principle possible for them to act altruistically, they are
generally assumed to be self-interested.

In this paper, we consider a routing scenario in which a
subset of agents are controlled centrally (compliant agents),
while the remaining are self-interested agents. We model the
system as a Stackelberg routing game (Yang, Zhang, and
Meng 2007) in which the decision maker for the centrally
controlled agents is the leader, and the self-interested agents
are the followers. In this paper, we provide a computation-
ally tractable methodology for 1) determining the maximum
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number of self-interested agents that a system can tolerate at
optimal flow, 2) determining whether a given subset of cen-
trally controlled agents are sufficient to achieve system opti-
mum (SO), and 3) computing the actions the leader should
prescribe to a sufficient set of compliant agents in order to
achieve SO.

A known fact in routing games is that agents seeking to
minimize their private latency need not minimize the to-
tal system’s latency (Pigou 1920; Roughgarden and Tardos
2002). That is, self-interested agents may reach a user equi-
librium (UE) that is not optimal from a system perspective.
However, if all agents are assigned paths with minimum sys-
tem marginal cost then the system will achieve optimal per-
formance (Pigou 1920; Beckmann, McGuire, and Winsten
1956; Dietrich 1969).

Therefore, from a system manager perspective, it is de-
sirable that all agents traversing a network would strictly
utilize minimal marginal cost paths, even if such paths are
not of minimum latency for an individual agent. However,
in many important scenarios, it will not be possible to en-
force path assignment on all agents, but it may be possi-
ble to affect the behavior of a subset (the compliant agents).
As a motivating example, consider an opt-in tolling system
where drivers are given positive incentives to enroll but,
in exchange, they will be subject to tolls that affect their
route choice (Sharon et al. 2017a; 2017b). Another rele-
vant example is virtual private network (VPN) path allo-
cation. While each packet within the VPN might be self-
interested, a pro-social network manager might allocate vir-
tual paths that are different from those preferred by the
self-interested packets (Fingerhut, Suri, and Turner 1997;
Duffield et al. 1999).

We show that, in the general case, computing the optimal
assignment of compliant agents is NP-hard. Therefore, we
focus on the specific scenario where the portion of compli-
ant agents is sufficiently large to achieve SO. We present a
novel linear program (LP ) representation for computing the
maximal portion of self-interested agents that allow the sys-
tem to achieve SO and to determine whether a given set of
compliant agents is sufficient to achieve SO. Furthermore,
we provide a method to tractably compute the flow assign-
ment for the compliant agents such that SO performance is
guaranteed.

Experimental results, performed using a standard traffic



simulator, are provided and demonstrate that the number of
compliant agents necessary to achieve system optimum can
be a relatively small percentage of total flow (between 13%
and 53%).

Motivation
Recent advances in GPS based tolling technology (Num-
rich, Ruja, and Voß 2012) open the possibility of imple-
menting micro-tolling systems in which specific tolls are
charged for the use of links within a road network. Such tolls
can be charged on many or all network links, and changed
frequently in response to real-time observations of traffic
conditions. Toll values and traffic conditions can then be
communicated to vehicles which might change routes in re-
sponse, either autonomously, or by updating directions given
to the human driver. Setting tolls appropriately can influ-
ence self-interested drivers to prefer paths with minimum
system marginal cost and thus, lead to improved system per-
formance (Sharon et al. 2017a; 2017b).

Unfortunately, political factors deter public officials from
allowing such a micro-tolling scheme to be realized. Road
pricing is known to cause a great deal of public unrest and is
thus opposed by governmental institutions (Schaller 2010).
To tackle this issue and avoid public unrest, we suggests an
opt-in micro-tolling system where, given some initial mone-
tary sign-up incentive, drivers choose to opt-in to the system
and be charged for each journey they take based on their
chosen route. The vehicles belonging to such drivers would
need to be equipped with a GPS device as well as a comput-
erized navigation system. Given the toll values and driver’s
value of time, the navigation system would suggest a mini-
mal cost route where the cost is a function of the travel time
and tolls.

While addressing the issue of political acceptance, an
opt-in system would result in traffic that is composed of
a mixture of self-interested and compliant agents (compli-
ant in the sense that the system manager can influence their
route choice). Such a scenario raises some practical ques-
tions which are the focus of this paper, namely, what portion
of self-interested agents can the system tolerate while still
reaching optimum performance? The answer to this ques-
tion can help practitioners to determine both the level and
the targeting of incentives in an opt-in system.

Problem definition and terminology
The terminology in this paper follows that of Roughgarden
and Tardos (2002). We review the relevant concepts and no-
tation in this section.

The flow model
The flow model in this work is composed of a directed graph
G(V,E), and a demand function R(s, t) → R+ mapping
a pair of vertices s, t ∈ V 2 to a non-negative real number
representing the required amount of flow between source, s,
and target, t.1 An instance of the flow model is a {G,R}

1The demand between any source and target, R(s, t), can be
viewed as an infinitely divisible set of agents (also known as a non-
atomic flow (Rosenthal 1973)).

pair.
Ps,t denotes the set of acyclic paths from s to t. Define P

as the collection of all Ps,t (i.e., ∪s,t∈V 2Ps,t). The variable
fp represents the flow volume assigned to path p. Similarly,
fe is the flow volume assigned to link e. By definition, the
flow on each link (fe) equals the summation of flows on all
paths of which e is a part. Define the system flow vector as
f = vect{fp}. f is said to be feasible if for all s, t ∈ V 2,∑

p∈Ps,t
fp = R(s, t).

Each link e ∈ E has a latency function le(fe) which,
given a flow volume (fe), returns the latency (travel time)
on e. Following Roughgarden and Tardos (2002) we make
the following assumption:
Assumption 1. The latency function le(fe) is non-negative,
differentiable, and non-decreasing for each link e ∈ E.

The latency of a simple path p for a given flow f , is
defined as lp(f) =

∑
e∈p le(fe). A feasible flow f is de-

fined as a user equilibrium (UE) if for every s, t ∈ V 2 and
pa, pb ∈ Ps,t with fpa

> 0 it holds that lpa
(f) ≤ lpb

(f) (see
Lemma 2.2 in (Roughgarden and Tardos 2002)). In other
words, at UE, no amount of flow can be rerouted to a path
with lower latency when the rest of the flow is fixed.

Define the system cost associated with link e as ce(fe) =
le(fe)fe, the cost of a path p as cp(f) =

∑
e∈p ce(fe)

and the cost of a flow f as c(f) =
∑

e∈E ce(fe). Define
c′e(x) = d

dxce(x) and c′p(f) =
∑

e∈p c
′
e(fe). A feasible

flow f is defined as a system optimum (SO) flow if for ev-
ery s, t ∈ V 2 and pa, pb ∈ Ps,t with fpa > 0 it holds that
c′pa

(f) ≤ c′pb
(f) (see Lemma 2.5 in (Roughgarden and Tar-

dos 2002)). In other words, at SO, the benefit from reducing
the flow along any path is always less than or equal to the
cost of adding the same amount of flow to a parallel, alter-
native path. We follow Roughgarden and Tardos (2002), and
make the following assumption:
Assumption 2. The cost function ce(fe) is convex for each
link e ∈ E.

Assumptions 1 and 2 imply that the set of SO flows corre-
spond to the set of solutions of a convex program where the
objective is to minimize c(f) =

∑
e∈E ce(fe) (see Rough-

garden and Tardos (2002) Corollary 2.7).

Problem Definition
The focus of this paper is a scenario where the demand is
partitioned into self-interested and compliant agents. We de-
fine two types of controllers that assign paths to all of the
agents. These controllers are viewed as players in a Stackel-
berg game (Yang, Zhang, and Meng 2007).

• SO-controller - Stackelberg leader, the SO-controller as-
pires to assign paths to the compliant subset of agents that,
taking into account the self-interested agents’ reaction,
optimizes the systems performance (i.e. minimizes total
latency). We refer to flow assigned by the SO-controller
as compliant flow.

• UE-controller - Stackelberg follower, considering the
compliant agents’ path assignment as fixed, the UE-
controller assigns paths to the self-interested agents, the



UE flow, such that a state of user equilibrium (as defined
above) is achieved.2

The problems addressed in this paper are:

1. Given an instance of the flow model {G,R}, what is the
maximum amount of self-interested agents that can be as-
signed to the UE controller and still permit the optimal
flow.

2. Given a set of compliant agents and an instance of the
flow model {G,R}, can the SO controller assign paths to
them in such a way that the system achieves SO.

3. If SO is achievable, how should the SO-controller as-
sign the compliant flow. Equivalently, what is the optimal
Stackelberg equilibrium.

To the best of our knowledge, this work is the first to answer
these questions in a general setting.

Related Work
Previous work examined mixed equilibrium scenarios where
traffic is composed of: UE and Cournot-Nash (CN ) con-
trollers. A CN -controller assigns flows to a given subset of
the demand with the aim of minimizing the total travel time
only for that subset. For instance, a logistic company with
many trucks can be viewed as a CN -controller.

It was shown that the equilibrium for a mixed UE, CN
scenario is unique and can be computed using a convex pro-
gram (Haurie and Marcotte 1985; Yang and Zhang 2008).
On the other hand, no tractable algorithm is known for com-
puting the optimal Stackelberg equilibrium for scenarios that
also include a SO-controller.

Korilis et. al. (1997) examined mixed equilibrium scenar-
ios that do include a SO-controller. In their work, a tech-
nique for computing a solution for the above questions #1
and #3 was suggested for specific types of flow models.
Their technique was proven to work for networks with a
common source and a common target with any number of
parallel links. Moreover, the latency functions were assumed
to be of a very specific form (linear function with a capac-
ity bound). As a result, their solution is not applicable when
general networks with arbitrary latency functions are con-
sidered.

Other work (Roughgarden 2004; Immorlica et al. 2009)
studied a variant of the scheduling problem where infinites-
imal jobs must be assigned to a set of shared machines each
of which is affiliated with a non-negative, differentiable,
and non-decreasing latency function that, given the machine
load, specify the amount of time needed to complete a job.
When considering a scenario where part of the jobs are as-
signed to machines by a UE-controller while the rest are
assigned by a SO-controller, they show it is NP-hard to
compute the optimal Stackelberg equilibrium (Roughgarden
2004). Their problem can be viewed as a special case of our
problem, specifically a network with a single source and tar-
get with multiple parallel links between them. Given that in

2The UE enforced by the UE-controller applies only for the
self-interested subset of agents. That is, no self-interested agent
can benefit from unilaterally deviating from its assigned path.

this, more restrictive setting, computing the optimal Stackel-
berg equilibrium is intractable, the same yet general question
in our setting will also be computationally intractable.

Computing the Maximal UE Flow
Given that finding the optimal Stackelberg equilibrium is
NP-hard for an arbitrary size of compliant flow, this work
focuses on scenarios where the size of the compliant flow
is sufficient to achieve SO. As we will show, finding the
optimal Stackelberg equilibrium can be done in polynomial
time for such cases. In this section, we will present a com-
putationally tractable method to compute the maximal UE
flow given an instance of a flow model {G,R}, and we will
provide a method to check, for a given level of compliant
flow, whether SO is achievable.

We define r∗UE as the maximal amount of demand com-
prised of self-interested agents that the system can toler-
ate and still achieve SO. Additionally, we define r∗s,t as the
amount of demand from source s to target t that is assigned
to the UE-controller. That is, computing r∗UE is equivalent
to maximizing

∑
s,t r

∗
s,t.

We can cast the problem of maximizing
∑

s,t r
∗
s,t as an

optimization problem, specifically a linear program (LP ).
Assigning values to all variables of type r∗s,t must follow
some constraints. Specifically, the UE flow from each origin
to each destination must be both a subflow of the SO flow,
and must follow a least latency path.

Definition 1 (Subflow of flow f ). For a directed graph
G(V,E) and demand function R, a flow f∗ is a subflow of
flow f if for all links e ∈ E, 0 ≤ f∗e ≤ fe and for each pair
of nodes s, t ∈ V 2, there exists 0 ≤ rs,t ≤ R(s, t) such that∑

e∈out(s)

f∗e −
∑

e∈in(s)

f∗e =
∑
t

rs,t

and ∑
e∈in(t)

f∗e −
∑

e∈out(t)

f∗e =
∑
s

rs,t.

A path p, leading from vertex s to vertex t, is said to be
zero reduced cost if there is no other path, p′, leading from
s to t with lower latency or lower marginal cost.

Definition 2 (Zero reduced cost path). For a flow model
{G,R}, a zero reduced cost path with regard to flow assign-
ment f is a path p ∈ Ps,t such that ∀ p′ ∈ Ps,t : lp(f) ≤
lp′(f) and c′p(f) ≤ c′p′(f). A link, e, is defined as a zero
reduced cost link, with respect to source s, if it is part of any
zero reduced cost path originating from s and terminating
at t for some origin-destination pair (s, t) ∈ V 2. We denote
the set of zero reduced cost links with respect to source s as
Es

RC

We require that the UE flow (flow routed by the UE-
controller) is routed solely via zero reduced cost links/paths.
This is because the UE controller can only assign flow
to minimal latency paths (otherwise self-interested agents
would deviate). the UE flow is also required to follow min-
imal marginal cost paths else it cannot be a subflow of the
SO flow.



Note that it is sufficient to only consider whether or not a
link e is part of a reduced cost path from the origin s to some
destination t (not a specific t) because either link e is along a
reduced cost path from (s, t), or there is no path only along
links in Es

RC that includes e.
We can efficiently compute the set of zero reduced cost

links for any origin destination pair (s, t) by applying uni-
form cost search from s to t and marking all links that are
part of optimal paths, once with regard to minimal total la-
tency (arg minp∈Ps,t

(lp(fSO)), and second with regard to
minimal marginal cost (arg minp∈Ps,t

(c′p(fSO)).
Let the constant fSO denote the flow vector at a SO so-

lution.3 The SO flow is not unique when latency functions
are non-decreasing, and the maximal amount of UE flow
permitted may, in general, depend on the specific SO flow.
Therefore, we must efficiently search over the space of SO
flows. This is possible due to the following lemmas.

Lemma 1. For any two flows that achieve SO, fSO and
f̂SO, le(fSO

e ) = le(f̂
SO
e ).

Proof. Given Assumption 2, a SO flow is the solution to a
convex program (Roughgarden and Tardos 2002). The so-
lutions to a convex program form a convex set. Suppose
that there are two flows that both achieve SO, but for which
fSO
e 6= f̂SO

e . Then ce(fe) = le(fe)fe must be a linear func-
tion between fSO

e and f̂SO
e (to see this, note that any con-

vex combination of fSO and f̂SO is also an SO solution,
but if ce(fe) is not linear, then the total system travel time
would be strictly less, a contradiction). Since le(fe) is a non-
decreasing function, the only way for ce(fe) to be linear is
for le(fe) to be constant between fSO

e and f̂SO
e .

Lemma 2. The set of zero reduced cost paths is identical for
all SO solutions.

Proof. By Lemma 1, all SO flows have the same latency on
each link, so the SO solutions can differ by at most flows
along a set of links with constant latency over the range of
which the two flows differ on those links. Since we assume
that the latency functions are differentiable, the derivatives
of the latency function are zero over the range at which they
are constant. Therefore, c′e(fe) = le(fe) + fel

′
e(fe) is con-

stant over the range as well. This implies that any path that
is reduced cost in one flow is also reduced cost in the other
flow, since the latency functions and c′e(fe) are constant for
every link e.

Define the constant f̄SO
e = sup{f : le(f) = le(f

SO
e )},

i.e. f̄SO
e is the largest flow value such that the latency on link

e is equal to the latency at a SO solution. Note that if le is
strictly increasing at fSO

e , then f̄SO
e = fSO

e . However, if le
is constant at fSO

e , then f̄SO
e > fSO

e .
Given that the zero reduced cost paths are the same for

all SO flows (Lemma 2), and any SO flow has the same
latency on all links (Lemma 1), it will be sufficient to only
search over flows that are less than f̄SO

e on each link e ∈ E.

3A SO flow can be efficiently computed as a solution to a con-
vex program (Roughgarden and Tardos 2002; Dial 2006).

For each vertex, s, and link, e, define variable xse denoting
the amount of UE flow originating from source s that is as-
signed to link e. Let in(v) denote the set of links for which
v is the tail vertex and out(v) the set of links for which v is
the head vertex.

Definition 3. For a given flow model {G,R}, the UE linear
program is:

max
r∗s,t,x

s
e

∑
s,t∈V 2

r∗s,t (1)

subject to

r∗s,t ≤ R(s, t) ∀ s, t ∈ V 2 (2)∑
e∈out(s)

xse =
∑
t∈V

r∗s,t ∀ s ∈ V (3)

∑
e∈in(t)

xse −
∑

e∈out(t)

xse = r∗s,v ∀ s, t ∈ V 2 (4)

∑
s

xse ≤ f̄SO
e ∀ e ∈ E, s ∈ V (5)

xse ≥ 0, r∗s,t ≥ 0 ∀ s, t ∈ V, e ∈ E (6)

xse = 0 ∀ s ∈ V, e ∈ E \ Es
RC

(7)

The flow fUEe =
∑

v x
v
e defined by a feasible solution to

the UE linear program (given constraints (2)-(7)) is a UE
subflow. The flow defined by an optimal solution to the UE
linear program is an optimal UE subflow.

Note that the number of variables is |{∀s ∈ V, ∀t ∈
V, ∀e ∈ E : r∗s,t, x

s
e}| = O(|V |2+ |V ||E|), and the number

of constraints is also O(|V |2 + |V ||E|). Therefore, since the
number of variables and constraints are polynomial in the
flow model, the optimal solution to the UE linear program
can be computed in polynomial time (Karmarkar 1984).

Theorem 1. A UE subflow, fUE , defined by a feasible solu-
tion to the UE linear program is a subflow of a SO flow.

Proof. First, note that by equations (2)–(4), the UE subflow,
fUEe , satisfies flow conservation constraints. Equation (2)
states that the flow along all zero reduced cost paths from
origin s to destination t must be less then total demand for
(s, t). Then equations (3) and (4) state that the flow out of
node v must either be due to the demand generated by node
v or the flow into it, minus the flow that reaches v as a desti-
nation. Therefore, fUEe is a subflow of a feasible flow.

What must be shown is that there must exist a SO flow,
fSO, such that fUEe ≤ fSO

e for all e. If e is such that le
is strictly increasing at an SO solution, and therefore will
be strictly increasing at all SO solutions by Lemma 1, then
fSO
e = f̄SO

e and constraint (5) guarantees this claim. Let E′
be the set of links such that the latency function is constant
at a SO flow. Therefore, it only needs to be shown that there
exists a SO solution, f , such that for e ∈ E′, fUEe ≤ fSO

e .
Suppose that there existed a set of links e ∈ E′ such

that for all SO flows fSO, fUEe > fSO
e . Let f̂SO be an

SO flow. Then there must exist an origin destination pair



(s, t) such that there are two sets of paths P>,P< ⊂ Ps,t

for which for all p ∈ P>, fUEp > f̂SO
p , and for all

p′ ∈ P<, fUEp′ < f̂SO
p′ and all paths only differ by links

in E′. This is because the total flow between any origin-
destination is larger in the SO flow by equation (2). More-
over,

∑
p∈P>

(fUEp − f̂SO
p ) ≤

∑
p′∈P<

(f̂SO
p − fUEp ) since

the flow along non-constant latency links constrains the total
flow. Move

∑
p∈P>

(fUEp − f̂SO
p ) units of flow from paths in

set P> to paths in set P< in the SO flow f̂SO. Denote the
new flow by f ′. The total travel time for f ′ cannot increase
because the flow has only increased on constant latency
links, and the new flow does not exceed f̄SO

e on any link.
The total travel time also cannot have decreased because
f̂SO was an SO flow, so f ′ is also an SO flow. Continue
this procedure until there does not exist a link e ∈ E′ for
which fUEe exceeds the transformed SO flow. Then we have
constructed an SO flow, f , in which, for all links e ∈ E,
fUEe ≤ fe, a contradiction.

Lemma 3. For a network {G,R}, let f∗ be a subflow of a
feasible flow f . Then the flow f ′ such that f ′e = fe − f∗e is
also a subflow of f .

Proof. First, 0 ≤ f ′e ≤ fe, by the definition of a sub-
flow. Now set r′s,t = R(s, t) − r∗s,t. Then for all s, t ∈
V 2,

∑
e∈out(s) f

′
e −

∑
e∈in(s) f

′
e =

∑
t(R(s, t) − r∗s,t) =∑

t r
′
s,t, and similarly for

∑
e∈in(t) f

′
e −

∑
e∈out(t) f

′
e

Theorem 2. The optimal value of the UE linear program
for a network instance {G,R} is the maximum amount of
UE agents that the network can support and achieve SO.

Proof. First, by Theorem 1, there exists an SO flow such
that the optimal UE subflow, fUE , is a subflow of the SO
flow, and by Lemma 3, there exists a subflow of compliant
agents that can achieve the SO solution. Moreover, by the
definition of the UE linear program and Lemma 2, the UE
flow is only along zero reduced cost paths. By the definition
of zero reduced cost paths, all UE agents are willing to take
the assigned paths. Therefore, the SO solution is achievable
with the UE flow, and there is some volume of UE flow that
is equal to the objective of the UE linear program.

Now, suppose that there was another UE flow assignment,
f ′, for which compliant flow could be assigned in such a
way that the SO total system travel time was achieved and
the total UE flow volume was larger than the value returned
by the UE linear program. Note that this flow assignment
(f ′) must be a subflow of some SO flow, f . Moreover, by
the definition of UE flow and the fact that all paths in a SO
solution are minimum marginal cost paths, all paths assigned
with a UE flow greater than zero must be a zero reduced cost
path. Therefore, the flow f ′ satisfies the equations (2)-(6),
and since theUE linear program returns the optimalUE flow
assignment under these constraints, this is a contradiction.

While we’ve demonstrated that we can compute the maxi-
malUE flow that permits an SO solution given the appropri-
ate assignment of the compliant flow, it is likely that a more

common problem would be to determine, for a given set of
compliant agents, whether or not it is possible to achieve SO
with that set. Our methodology also provides an answer to
this question, as the following Corollary demonstrates.
Corollary 1. For a given network instance {G,R} and
given a set of compliant demand, rCs,t, from each origin des-
tination pair s, t ∈ V 2, there exists a compliant flow fC

such that the network achieves SO if and only if there exists
an xse for all s ∈ V and e ∈ E such that rUEs,t = R(s, t)−rCs,t
and xse are a solution to the UE linear program.

Proof. By Theorem 1, any solution to the UE linear pro-
gram defines a subflow of an SO flow. Therefore, if rUE

s,t
and xse is a solution, there exists an assignment of the com-
pliant flow that achieves SO.

Moreover, if there exists an assignment of the com-
plaint flow, fC , such that a UE subflow with demands rUE

s,t
achieves system optimum, then the UE flow is only along
zero reduced cost paths by definition of UE flow and SO,
and the UE subflow is feasible. Therefore, the decomposed
UE flow satisfies the constraints of the linear program.

Flow Assignment for Compliant Agents
Given that we can now determine both the maximal amount
of UE flow that a system can tolerate and achieve system
optimum and, for a given set of compliant agents, whether
or not a system can achieve optimum, we are only left with
assigning the compliant flow to paths. This section tackles
the question of how to assign paths to a, sufficiently large,
set of compliant agents such that SO is achieved.

The methodology from the previous section immediately
suggests a solution. Given a network instance {G,R}, sup-
pose that we have compliant demand equal to rCs,t for all
s, t ∈ V 2. Then we must find a SO flow, fSO, such that rCs,t
and rUEs,t = R(s, t)−rCs,t permit subflows of the SO solution.
Such a SO flow must exist by Theorem 1 and Corollary 1.

The first step is to compute the UE subflow, fUE , given
UE demand. From the previous section: this exists and is
computationally tractable. Any feasible subflow, fC , with
demand rCs,t such that the total flow along link e satisfies

fCe + fUEe ≤ f̄e
SO has latency equal to the SO solution,

and the flow fCe + fUEe , by Lemma 1, is an SO solution.
We can compute fC with the following linear program:

max
fC
e

1

subject to∑
e∈out(v)

fCe −
∑

e∈in(v)

fCe =
∑
t

(rCv,t) ∀ v ∈ V

∑
e∈in(v)

fCe −
∑

e∈out(v)

fCe =
∑
s

(rCs,v) ∀ v ∈ V

0 ≤ fCe ≤ f̄SO
e − fUEe ∀ e ∈ E

We know that a solution to the above linear program exists
and it can be computed tractably.

The final step is to decompose the compliant flow, fC ,
into a per path assignment for each origin-destination pair



Figure 1: Three representative network topologies: I - Sioux Falls, SD, II - Eastern Massachusetts (Ellipsoids represent different
zones), III - Anaheim, CA.

(s, t) in order to assign individual agents to a path. This can
be done in time O(|V ||E|) using standard flow decomposi-
tion algorithms (see Section 3.5 of Ahuja, Magnanti, et. al.
(1993) for a discussion).

Experimental Results
We are interested in the viability of opt-in micro-tolling
schemes to more efficiently utilize road networks. As such,
we haven undertaken an empirical study to investigate the
minimal amount of compliant flow required for SO (r∗UE) in
six realistic traffic scenarios over actual road networks.

Scenarios
Each traffic scenario is defined by the following attributes:

1. The road network, G(V,E), specifying the set of vertices
and links where each link is affiliated with a length, ca-
pacity and speed limit. Networks are, following standard
practice, partitioned into traffic analysis zones (TAZs) and
each zone contains a node belonging to V called the cen-
troid. All traffic originating and terminating within the
zone is assumed to enter and leave the network at the cen-
troid.

2. A trip table which specifies the traffic demand between
pairs of centroids. The demand functionR between nodes
other than centroids is set to zero.

The following benchmark scenarios were chosen both
for their diversity of topology and traffic volume and
their widespread use within the traffic literature: Sioux
Falls, Eastern Massachusetts, Anaheim, Chicago Sketch,
Philadelphia, and Chicago-regional. All traffic scenarios
are available at: https://github.com/bstabler/
TransportationNetworks. Figure 1 depicts three
representative network topologies (the three smallest net-
works).

The Traffic Model

A macroscopic model was used in order to evaluate traffic
formation. Macroscopic models calculate the UE in a given
scenario using algorithm B (Dial 2006). For all scenarios,
the model assumed that travel times follow the Bureau of
Public Roads (BPR) function (Moses and Mtoi 2017) with
the commonly used parameters β = 4, α = 0.15. The SO
solution is computed by replacing the latency functions with
c′e(x) and using algorithm B to obtain the equilibrium solu-
tion (Dial 1999). Since solving for the UE and SO solutions
requires solving a convex program (Dial 2006), we only
solve them to a certain precision. To measure convergence,
given an assignment of agents to paths, we define the av-
erage excess cost (AEC) as the average difference between
the travel times on paths taken by the agents and their short-
est alternative path. The algorithm terminates when the AEC
is less than 1E-12 minutes (except for Chicago-regional for
which 1E-10 was used due to the size of the network). There-
fore, a minimum marginal cost path is only a minimum up
to a threshold.

A link e is defined to be zero reduced cost with respect to
s if it carries flow originating at s in the SO solution (i.e.,
the link belongs to a minimum marginal cost path) and if the
difference between the least latency path that includes e and
the least latency unrestricted path, both leading from s to the
head vertex of e, is less than a threshold T .

The threshold T is defined as follows: for each origin s
and link e we calculate the least marginal cost path (c′) lead-
ing from s to the head vertex of e at the SO solution. We
do this once while restricting the path to include e and once
without such restriction. The difference between these two
values is stored and T is set to be the maximum of these
difference across all the links and origins in the network.



Scenario Vertices Links Zones Total Flow UE TTT SO TTT % Improve Threshold % compliant
Sioux Falls 24 76 24 360,600 7,480,225 7,194,256 3.82 6.19E-11 13.04
Eastern MA 74 258 74 65,576 28,181 27,323 3.04 3.04E-13 19.73
Anaheim 416 914 38 104,694 1,419,913 1,395,015 1.75 8.05E-11 19.76
Chicago S 933 2,950 387 1,260,907 18,377,329 17,953,267 2.31 9.14E-10 27.29
Philadelphia 13,389 40,003 1525 18,503,872 335,647,106 324,268,465 3.39 4.20E-09 49.59
Chicago R 12,982 39,018 1790 1,360,427 33,656,964 31,942,956 5.09 4.14E-07 53.34

Table 1: Required fraction of compliant agents given as “% compliant” for different scenarios along with network specifications
for each scenario: number of vertices, links and zones followed by the Total Travel Time (TTT) at UE (0% compliant agents)
and SO (100% compliant agents). The percentage of improvement of the SO TTT over the UE TTT is given as “% improve”.

Results
Table 1 presents the percentage of flow that must be com-
pliant in order to guarantee an SO solution for six different
traffic scenarios. Each scenario is affiliated with the number
of vertices, links, and zones comprising the affiliated road
network as well as the number of trips that make up the af-
filiated demand.

The columns “UE TTT” and “SO TTT” represent the to-
tal travel time (in minutes) over all agents for the case where
100% of the agents are controlled by the UE controller (UE
solution) and when 100% of the agents are controlled by the
SO controller (SO solution) respectively. The percentage of
improvement in total travel time between UE TTT and SO
TTT is also shown under “% improve”.

The percentage of required compliant flow (formally
r∗UE/|R| where |R| =

∑
s,tR(s, t)) as computed by the UE

linear program (Definition 3) is presented for each scenario
under “% compliant”.4

The results suggest that as the size of the network (i.e.,
the number of nodes and vertices) increases, a greater frac-
tion of compliant travelers are needed to ensure the network
achieves system optimum. This appears to be due to an in-
creasing number of used paths at the SO solution as the net-
work size increases. As the number of paths grow, the set of
zero reduced cost paths grows more slowly, and, therefore, a
higher percentage of compliant agents is required.

Summary
This paper discussed a scenario where a set of agents tra-
verse a congested network, while a centralized network
manager is seeking to optimize the flow (minimizes total la-
tency) by influencing the route assignment of a set of com-
pliant agents. A methodology was presented for computing
the minimal volume of traffic flow that needs to be compli-
ant in order to reach a state of optimal traffic flow. Moreover,
the methodology extends to inferring which agents should
be compliant and how exactly the compliant agents should
be assigned to paths. Experimental results demonstrate that
the required percentage of agents that are compliant is small
for some scenarios but can be greater than 50% in others.

Going forward, it would be worthwhile to explore the pos-
sibility of approximation algorithms for assigning compliant
flow when the UE flow volume is too large to achieve a state

4Statistical analysis for Table 1 is not presented, as the macro-
scopic model is deterministic.

of system optimum. Given that the optimal solution to this
problem is known to be NP-hard, an efficient approxima-
tion algorithm would be a useful tool as opt-in network rout-
ing systems are implemented. Further, in order to limit the
necessary opt-in incentives, there is work needed to develop
systems that target particularly influential users to opt-in to
these systems.
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