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Abstract

While recent advances in deep reinforcement learning have
allowed autonomous learning agents to succeed at a variety of
complex tasks, existing algorithms generally require a lot of
training data. One way to increase the speed at which agents
are able to learn to perform tasks is by leveraging the input
of human trainers. Although such input can take many forms,
real-time, scalar-valued feedback is especially useful in sit-
uations where it proves difficult or impossible for humans
to provide expert demonstrations. Previous approaches have
shown the usefulness of human input provided in this fashion
(e.g., the TAMER framework), but they have thus far not con-
sidered high-dimensional state spaces or employed the use of
deep learning. In this paper, we do both: we propose Deep
TAMER, an extension of the TAMER framework that lever-
ages the representational power of deep neural networks in
order to learn complex tasks in just a short amount of time
with a human trainer. We demonstrate Deep TAMER’s suc-
cess by using it and just 15 minutes of human-provided feed-
back to train an agent that performs better than humans on the
Atari game of BOWLING - a task that has proven difficult for
even state-of-the-art reinforcement learning methods.

Introduction
Many tasks that we would like autonomous agents to be able
to accomplish can be thought of as the agent making a se-
ries of decisions over time. For example, if an autonomous
robot is tasked to navigate to a specific goal location in a
physical space, it does so by making a series of decisions
regarding which particular movement actions it should exe-
cute at every instant. Solutions to these types of sequential
decision making problems can be specified by policies, i.e.,
mappings from the agent’s state (e.g., its physical location
within the environment) to actions that the agent might take
(e.g., to move in a certain direction). Armed with a particu-
lar policy, an agent may decide what actions to take by first
estimating its state and then acting according to the output
of that policy.

In some very simple cases, human experts are able to
completely specify in advance (i.e., “hand code”) policies
that allow agents to accomplish certain tasks. For many com-
plex tasks, however, specifying policies in such a manner is
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Figure 1: The Deep TAMER framework proposed in this paper. A
human observes an autonomous agent trying to perform a task in
a high-dimensional environment and provides scalar-valued feed-
back as a means by which to shape agent behavior. Through the
interaction with the human, the agent learns the parameters of a
deep neural network, Ĥ , that is used to predict the human’s feed-
back. This prediction then drives the agent’s behavior policy. In this
paper, we specifically consider the Atari game of BOWLING, which
uses a pixel-level state space.

prohibitively difficult. Instead, good policies are often found
automatically through machine learning methods such as re-
inforcement learning (Sutton and Barto 1998). These tech-
niques can compute optimal policies without explicit human
direction using only data available to the agent as it interacts
with its environment.

While most state-of-the-art reinforcement learning ap-
proaches to finding optimal decision-making policies enjoy
reasonable success, they also usually require a large amount
of time and/or data. This requirement is primarily due to
the fact that interesting tasks often exhibit high-dimensional
state spaces such as those that arise when the agent’s state in-
formation includes raw image data. In the absence of any a
priori information, performing reinforcement learning over
these state spaces requires that a large number of parameters
be estimated from scratch, and, as a result, even state-of-the-
art techniques typically require extremely large amounts of
training data, which often translates to large amounts of time
before agents are able to learn good policies. For example,
recent methods in deep reinforcement learning must acquire
tens of millions of video frames worth of experience in a
simulator before they can learn good strategies for playing
Atari games (e.g., (Mnih et al. 2015)).

Here, we are concerned with situations where fast train-
ing time is of critical importance. Like others before us, we



propose to achieve more rapid agent learning by adapting
the typical reinforcement learning paradigm such that it is
able to exploit the availability of a human trainer, and we
develop a novel method by which to do so. Human train-
ers are useful because they typically possess a good under-
standing of the task they would like the agent to perform
at the outset, and this understanding can be thought of as
critical a priori information that might allow an agent to
drastically reduce its training time. This observation was
recently made and exploited in a series of papers outlin-
ing the TAMER framework (Knox and Stone 2009; 2012;
Knox, Stone, and Breazeal 2013; Knox and Stone 2015)
(see Figure 1), in which it was shown that agents learning
directly from non-expert human trainers can improve over
agent-only learning both in terms of sample complexity and
overall performance. While there has been some follow-on
work that examined the quality of human feedback as a func-
tion of factors relating to user engagement (Li et al. 2013;
Li, Hung, and Whiteson 2015; Li et al. 2017), until now,
this framework was only shown to work in low-dimensional
state spaces.

In this paper, we specifically seek to augment the
TAMER framework such that it may be utilized in higher-
dimensional state spaces. We propose to do so by incorpo-
rating recent function approximation techniques from deep
learning that have enabled a number of recent successes
in reinforcement learning over high-dimensional spaces. In
particular, the contributions of our work are twofold:

(1) We propose specific enhancements to TAMER that
enable its success in high-dimensional state spaces in
a framework we call Deep TAMER.

(2) We quantify the performance difference between
TAMER and the proposed technique in an environ-
ment with high-dimensional state features.

In order to evaluate Deep TAMER, we focus here specif-
ically on the Atari game of BOWLING. Training agents that
are successful at this game has proven difficult for even
state-of-the-art deep reinforcement learning methods. For
example, even with training times on the order of days, sev-
eral recently-proposed frameworks for deep reinforcement
learning are only able to train agents that obtain raw scores
ranging from 35 to 70 out of a maximum of 270 (Mnih et
al. 2016). In contrast, we show in this paper that, using the
proposed technique, human trainers can train better agents
within just a few minutes of interactive training. Moreover,
we show that human trainers are often able to train the agent
to achieve a better score on BOWLING than the trainers
themselves.

Related Work
While there is a large body of literature on techniques that
allow autonomous agents to learn through interaction with
human trainers, none of it addresses the problem domain or
uses the methodology we propose to study here.

One area of research on learning from human interac-
tion that has received a great deal of attention is focused on
the specific problem of learning from demonstration (Schaal
1997; Argall et al. 2009; Hussein et al. 2017). Techniques

developed to address this problem typically take as input
observations of a human performing a task, and aim to use
these demonstrations in order to compute policies that al-
low the autonomous agent to also accomplish the demon-
strated task. While learning from demonstration techniques
often exhibit impressive performance in terms of training
time, the necessity of demonstration data may sometimes
prove infeasible: an expert human demonstrator may not
always be available, or, for difficult tasks, may not even
even exist. This is also problematic for the related area
of inverse reinforcement learning (Ng and Russell 2000;
Abbeel and Ng 2004), in which autonomous agents attempt
to learn the reward function - and, through that, a useful pol-
icy - using explicit demonstrations of the task. Moreover,
since the goal in this setting is often to mimic the human,
performance on the underlying task is typically capped at
what was exhibited by the demonstrator, which makes diffi-
cult the task of training autonomous agents that are capable
of super-human performance.

Another area of research that aims to use explicit hu-
man interaction to increase the speed at which autonomous
agents can learn to perform tasks is that of reward shap-
ing (Skinner 1938; Randløv and Alstrøm 1998; Ng, Harada,
and Russell 1999; Devlin and Kudenko 2012). Reward shap-
ing techniques do not require demonstrations, but rather that
humans modify directly a low-level reward function that is
used to specify the desired task. Assuming the human has a
good understanding of the task and the intricacies of how to
appropriately modify the underlying reward function, these
approaches can also be quite effective. However, as with
learning from demonstration, it is not often the case that a
human has either the level of understanding or the profi-
ciency in machine learning to be able to interact with the
agent in this way.

Most closely related to the work presented here, several
methods have recently been proposed that allow an agent
to learn from interaction with a non-expert human (Thomaz
and Breazeal 2006; MacGlashan et al. 2014; Loftin et al.
2014; 2016; Peng et al. 2016). In this work, we consider
the TAMER (Training an Agent Manually via Evaluative
Reinforcement) technique (Knox and Stone 2009; 2012;
Knox, Stone, and Breazeal 2013; Knox and Stone 2015) for
training autonomous agents in particular. TAMER allows an
autonomous agent to learn from non-expert human feedback
in real time through a series of critiques: the human trainer
observes the agent’s behavior and provides scalar feedback
indicating how “good” or “bad” they assess the current be-
havior to be. The agent, in response, tries to estimate a hid-
den function that approximates the human’s feedback and
adjusts its behavior to align with this estimate. While the
TAMER framework has proven successful in several lim-
ited tasks, existing work has not yet considered the high-
dimensional state spaces often encountered in many more
complex tasks of interest.

Separately, very recent work has yielded a major break-
through in reinforcement learning by utilizing new function
approximation techniques from deep learning (Krizhevsky,
Sutskever, and Hinton 2012; LeCun, Bengio, and Hinton
2015). This advancement has spurred a huge leap for-



ward in the ability of reinforcement learning techniques to
learn in high-dimensional state spaces, such as those en-
countered in even simple Atari games (Mnih et al. 2015;
2016). Deep learning has also been applied to several of the
areas described above, including learning from demonstra-
tion (Hester et al. 2017) and inverse reinforcement learn-
ing (Wulfmeier, Ondruska, and Posner 2016). However, the
effect of using deep learning in techniques that learn from
human interaction remains largely understudied and could
enable highly efficient human-agent learning for many tasks
of interest.

One notable place in which deep learning and learning
from human interaction has been studied is in the recent
work of (Christiano et al. 2017). There, deep learning was
applied to a paradigm in which the learner actively queries
humans to compare behavior examples during the learning
process. While this work is indeed similar to ours, we can
highlight two key differences. First, the method discussed in
(Christiano et al. 2017) requires the learner to have access
to, and use in the background, a simulator during the hu-
man interaction, which may not always be possible in real-
world situations such as those that might arise in robotics.
The method we describe here does not require access to a
simulator during the interaction. Second, the technique pro-
posed by (Christiano et al. 2017) requires on the order of 10
million learning time steps to be executed in the simulator
during interaction with the human, which is only possible
with access to extremely powerful hardware. The method
we propose here learns from a human in real-time without a
simulator, and requires just a few thousand time steps of in-
teraction to learn a good policy for the environment consid-
ered here. This enables its success with standard computing
hardware (e.g., a consumer laptop).

Problem Formulation
In this paper, we are concerned with answering the follow-
ing specific question: what is the impact of using deep neu-
ral networks on the effectiveness of learning from real-time,
scalar-valued human feedback in high-dimensional state
spaces? In this section, we formulate this problem more pre-
cisely. While we adopt a formulation similar to that pro-
posed in (Knox and Stone 2009), there will be two main
ways in which ours differs: (1) in the choice of function class
the agent uses to represent the feedback coming from the hu-
man, and (2) in the specific optimization techniques used to
train the agent.

We consider the agent learning problem in the context
of classical sequential decision making (Bellman 1957).
Specifically, let S denote the set of states in which an au-
tonomous agent can find itself, and let A denote the ac-
tions that this agent may execute. As the agent selects and
executes actions (a1,a2, . . .) which result in a state tra-
jectory (s0, s1, s2, s3, . . .), we assume here that a human
trainer observes the state trajectory and periodically pro-
vides scalar-valued feedback signals, (h1, h2, . . .), that con-
vey their assessment of the agent’s behavior. Here, we as-
sume that larger h correspond to a more positive assessment
from the human. Critically, we also assume that the human
provides this feedback according to some hidden function

H(·, ·) : S ×A → R that the human implicitly understands.
The agent learning problem we consider here is that of com-
puting an estimate of this function, which we denote as Ĥ ,
such that it is a good match for H . Given the current esti-
mate Ĥ , we assume that the agent behaves myopically ac-
cording to a fixed action-selection policy π that selects the
next action as the one that maximizes the predicted human
feedback, i.e., π(s) = maxa Ĥ(s,a).

Given this fixed behavior policy, the problem described
above is exactly one of supervised machine learning: the
agent observes inputs toH in the form of its own experience
x = (s,a, ts, te) and observations related to its output in the
form of the human’s feedback y = (h, tf ), where (ts, te) is
the interval of time the agent spent in state s before taking
action a and tf is the time at which the human’s feedback
was observed. From these observations, the agent is tasked
with computing the estimate Ĥ . Importantly, we do not as-
sume that there is a one-to-one mapping between inputs and
outputs. That is, we expect that each observed y corresponds
to several recently-observed xs, and, moreover, that some x
may have no corresponding feedback information at all. We
encode this assumption in the learning process by using the
following loss function to judge the quality of Ĥ:

`(Ĥ ; x,y) = w(ts, te, tf )
[
Ĥ(s,a)− h

]2
, (1)

where w is a scalar-valued weighting function that is larger
for (x,y) pairs for which we hypothesize that the human
intended h to apply to (s,a). The exact form of w will be
discussed in the next section, but, importantly, it has the
property that it is zero-valued when tf is less than ts and
becomes negligible when tf is sufficiently greater than te.
These events correspond to when the human feedback was
provided before the state-action pair occurred, or long after
it, respectively.

Using (1) as our loss function amounts to judging the
quality of Ĥ according to its predictive power in the context
of our prior belief about what the trainer intended to evalu-
ate with their feedback. Therefore, the learning problem be-
comes one of simply computing an estimate that minimizes
(1) over the set of available observations. Since we would
like the agent to learn throughout the interaction with the
human and not after, we define our problem as one of online
supervised learning where we treat observations as realiza-
tions of random variables and seek to minimize the loss in
a statistical sense. Here, we accomplish this goal by seeking
to find an Ĥ that minimizes the expected value of the loss,
i.e.,

Ĥ∗ = argmin
Ĥ

Ex,y

[
`(Ĥ ; x,y)

]
(2)

where the expectation is taken with respect to (x,y) pairs
generated during the real-time interaction between the hu-
man and the agent. Programs of the form of (2) are amenable
to online solution techniques, and we shall describe ours in
the next section.



Figure 2: The specific network structure for the state encoder, f(·,θf ), that we use as the fixed front half of Ĥ in this work. There are
76, 035 parameters to be learned, and the optimal set, θ∗

f , is found during an autoencoder pre-training phase (with a decoder, not shown, that
has symmetric structure) over states obtained while the agent executes a random policy in simulation.

Method
We shall adopt a common technique for approaching prob-
lems formulated as in (2) when observations are only se-
quentially available: that of stochastic gradient descent
(SGD) (Robbins and Monro 1951; Bottou 1998). Broadly
speaking, SGD computes incremental estimates Ĥk via a
descent procedure that uses instantaneous approximations of
the gradient, i.e.,

Ĥk+1 = Ĥk − ηk∇Ĥ`(Ĥk ; xik ,yjk) . (3)

Above, k is the iteration index (i.e., the number of times
feedback-experience information has been used to update
Ĥ) and ∇Ĥ`(Ĥk ; xik ,yjk) denotes the gradient of `
taken with respect to the first argument given an (x,y) pair
sampled uniformly at random from the stream of experi-
ence observations (x1,x2, . . .) and feedback observations
(y1,y2, . . .).

Importance Weights
In selecting (1) as our loss function, we have opted to use
a weighted squared loss, with weights given by w. We use
these weights as importance weights, i.e., we use them to
bias our solution toward those (x,y) pairs for which we
hypothesize the human intended their feedback information
y to apply to agent experience x. Since we select the kth

(x,y) pair in (3) uniformly at random from the stream of all
experience and feedback observations, simply using a loss
of (Ĥ(s,a) − h)2 would amount to assuming that all hu-
man feedback applied to all experience. This assumption
is clearly at odds with the intent of human trainers pro-
viding real-time feedback while watching an agent behave,
and so, instead, we assume that human trainers intend for
their feedback to apply only to recent agent behavior. More
specifically, we compute importance weights, w(ts, te, tf ),
as the probability that feedback provided at time tf applies
to a state-action pair that occurred during the time inter-
val (ts, te) according to an assumed probability distribution
fdelay. That is,

w(ts, te, tf ) =

∫ tf−ts

tf−te
fdelay(t)dt . (4)

While there are many distributions one might adopt for
fdelay (the interested reader should refer to (Knox and Stone

2009) for further discussion), we shall use the continuous
uniform distribution over the interval [0.2, 4]. Thus, each ob-
served feedback y will only have nonzero w for those x ob-
served between 4 and 0.2 seconds before the feedback oc-
curred. For learning efficiency, when performing SGD (3),
we do not sample (x,y) pairs for which the corresponding
w is zero since such pairs will result in no update to Ĥ .

Algorithm 1 The Deep TAMER algorithm.

Require: pre-initialized Ĥ0, step size η, buffer update in-
terval b

Init: j = 0, k = 0
1: for i = 1, 2, . . . do
2: observe state si
3: execute action ai = arg maxaĤk(si,a)
4: xi = (si,ai, ti, ti+1)
5: if new feedback y = (h, tf ) then
6: j = j + 1
7: yj = y

8: Dj =
{
(x,yj) | w(x,yj 6= 0

}
9: D = D ∪Dj

10: compute Ĥk+1 using SGD update (3) and mini-
batch Dj

11: k = k + 1
12: end if
13: if mod(i,b)==0 and D 6= ∅ then
14: compute Ĥk+1 using SGD update (3) and mini-

batch sampled from D
15: k = k + 1
16: end if
17: end for

Deep Reward Model
In order to efficiently learn the human reward function
when the dimension of the state space is large, we pro-
pose to model this function using a deep neural network.
More specifically, since we are particularly interested in
state spaces that are comprised of images (which exhibit di-
mensionality on the order of tens of thousands), we assume
Ĥ takes the form of a deep convolutional neural network
(CNN), f , followed by a neural network comprised of sev-



Figure 3: The specific network structure for the fully-connected
portion of Ĥ , z(f(s),a). The action input specifies which compo-
nent of the output vector is used as the final output of Ĥ .

eral fully-connected layers, z, i.e., Ĥ(s,a) = z(f(s),a). In
order to efficiently learn the parameters of this network un-
der the constraints of both limited training time and limited
human input, we adopt two strategies: (1) we pre-train the
CNN portion of Ĥ using an autoencoder, and (2) we use a
feedback replay buffer as a means by which to increase the
rate of learning.

Deep Autoencoder As a means by which to immediately
reduce the number of parameters of Ĥ that the agent must
estimate during real-time interaction with the human, we
pre-train the convolutional layers of the network using an au-
toencoder. Our autoencoder is comprised of two functions:
an encoder, f(·;θf ), and a decoder, g(·;θg), parameterized
by θf and θg , respectively.

The encoder we use is a deep CNN that accepts states s
of dimension d and outputs encoded states f(s) of dimen-
sion p << d. For the Atari BOWLING environment, we let s
represent the two most-recent 160 × 160 game images, i.e.,
d = 51, 200, and we use an encoder structure that produces
a p = 100-dimensional output. The exact structure is given
in Figure 2.

The decoder we use during pre-training is the mirror im-
age of f : it is a deep deconvolutional neural network that ac-
cepts the encoded states and outputs decoded states g(f(s))
of dimension d. The parameters of the encoder and decoder
are jointly found by trying to minimize the reconstruction
error over a set of training states. That is, the optimal values
for θf and θg are given by

(θ∗
f ,θ

∗
g) = arg min

(θf ,θg)

1

M

M∑
i=1

‖si − g(f(s;θf );θg)‖22 .

(5)
We acquire the training states for each environment in off-
line simulation using a random policy. After training is com-
plete, we use the resulting encoder, f(·;θ∗

f ), as a fixed front
end for Ĥ .

Feedback Replay Buffer Even with the CNN parame-
ters fixed at θ∗

f , there are still a large number of parame-
ters of Ĥ that must be learned, namely those of the fully-
connected deep network that comprises the second half of

the function. As a means by which to more quickly learn
these parameters during the limited amount of real-time hu-
man interaction that the agent receives, we perform SGD
updates (3) at a fixed rate that typically exceeds the rate
at which humans are typically able to provide feedback to
the agent. We are able to do so by storing all observed
human feedback and relevant agent experience in a feed-
back replay buffer, D, and sampling repeatedly from this
buffer with replacement. More specifically, D contains the
running history of all human feedback information along
with, for each individual feedback signal, the set of experi-
ence points that yield nonzero importance weights. That is,
D =

{
(xi,yj) | w(xi,yj) 6= 0

}
, where we use the short-

hand w(x,y) for the quantity specified in (4). Because the
set of states {x | w(x,y) 6= 0} all occur within a fixed win-
dow of time before the corresponding y is observed, this set
can be easily obtained and stored immediately upon obser-
vation of each y. In this work, we do not consider limiting
the size ofD, and simply store all observed human feedback
information provided during the interaction (typically on the
order of 1, 000 feedback signals during the 15-minute train-
ing sessions that we shall describe in the next section).

Though we continually perform SGD updates at a fixed
rate by sampling from D, we also wish to ensure that each
human feedback has an immediate effect on the agent’s be-
havior. Therefore, we perform SGD updates to Ĥ:

(a) whenever the human provides new feedback, using
the new feedback information as the data sample; and

(b) at a fixed rate, using data sampled from D,

where the fixed rate is a parameter of the algorithm. In our
experiments, we select this parameter such that it results
in buffer updates every 10 time steps, while we have ob-
served that human feedback is typically provided at a rate
of approximately one signal every 25 time steps (i.e., in 100
time steps, there are 10 buffer updates and typically around
4 updates triggered by new human feedback). In practice,
we perform mini-batch updates using the average gradient
computed over several (x,y) samples instead of just one.
In particular, our mini-batches are formed by first sampling
several y and, for each individual y, adding all (x,y) pairs
for which the corresponding w is nonzero to the mini-batch.

Deep TAMER
While we have already discussed the deep encoder portion
of Ĥ , we have not yet discussed the remainder of the net-
work. For z in Ĥ(s,a) = z(f(s),a), we use a two-layer,
fully-connected neural network with 16 hidden units per
layer and one output node per available action, which is sim-
ilar in input-output structure to value networks used in recent
deep reinforcement learning literature (Mnih et al. 2015).
The exact structure of z is shown in Figure 3. The over-
all predicted human reward value for a given state-action
pair, Ĥ(s,a), is found by using f(s;θ∗

f ) as the input to the
fully-connected network and selecting the output node cor-
responding to action a. During training, errors are only fed
back through the single relevant output node.



We term using the deep reward model and the training
method described above - including pre-training the autoen-
coder and using the importance-weighted stochastic opti-
mization technique with the feedback replay buffer - as Deep
TAMER, and propose do so in autonomous agents that aim
to learn from real-time human interaction in environments
with high-dimensional state spaces. The complete procedure
is summarized in Algorithm 1.

Beyond the use of a deep neural network function approx-
imation scheme, Deep TAMER differs from TAMER in sev-
eral important ways. First, the specific loss function used,
(1), is different than the one used by TAMER. In using (1),
Deep TAMER seeks to minimize a weighted difference be-
tween the human reward and the predicted value for each
state-action pair individually. This is in contrast to the loss
function used in the TAMER framework, which is defined
for an entire window of samples, i.e., `(Ĥ ; {x}j ,y) =
1
2

(
h−

∑
j w(xj ,y)Ĥ(sj ,aj)

2
)

. We hypothesize that (1)
more faithfully reflects the intuition that the human’s reward
signal applies to individual state-action pairs.

Another major difference between Deep TAMER and
TAMER is in the frequency of learning. TAMER learns once
from each state-action pair, whereas Deep TAMER can learn
from each multiple times due to the feedback replay buffer.
Moreover, unlike the replay buffers used in recent deep RL
literature, Deep TAMER’s feedback replay buffer is used ex-
plicitly to address sparse feedback as opposed to overcoming
instability during learning.

Experiments
We experimentally evaluated Deep TAMER in the context of
the Atari game of BOWLING, which is an environment that
has proven difficult for several recent state-of-the art deep
reinforcement learning algorithms. For our experiments, we
used the implementation provided by the Aracade Learning
Environment (Bellemare et al. 2013) included as part of the
OpenAI Gym suite (Brockman et al. 2016). In this section,
we shall describe the environment, detail the procedure by
which we had humans train the agent, present the ways in
which we evaluated Deep TAMER, and then and discuss the
results of our evaluation.

In short, we found that, using Deep TAMER, human train-
ers were able to train successful BOWLING agents in just
15 minutes. Moreover, we found that agents trained us-
ing Deep TAMER outperformed agents trained using state-
of-the art deep reinforcement learning techniques as well
as agents trained using the original TAMER method pro-
posed in (Knox and Stone 2009). In most cases, the Deep
TAMER agents even performed better than the human train-
ers themselves. These results demonstrate that the proposed
enhancements to TAMER, namely the deep reward model,
allow the framework to be successful in environments with
high-dimensional state spaces. Additionally, the favorable
comparisons to both deep reinforcement learning techniques
and human players indicates the continued utility in the
paradigm of autonomous agent learning through real-time
human interaction.

Figure 4: Average score per episode vs wall-clock time for
the Atari BOWLING game. The blue and orange lines show
the Deep TAMER and TAMER learning curves averaged
over 9 human trainers. The yellow line shows the Double
DQN performance. The purple line shows the average A3C
performance over all 16 parallel workers. The red dashed
line shows the average game score achieved from the hu-
man trainers. The black dashed line shows the average game
score achieved by the professional human play tester in
(Mnih et al. 2015). The blue dashed line shows the Deep
Q-learning from human demonstration method from (Hes-
ter et al. 2017) which is the previous best method for Atari
BOWLING.

Atari BOWLING
A screenshot of the Atari game of BOWLING is depicted
in Figure 1. At each time step (we set the rate to ap-
proximately 20 frames per second), an image of the game
screen is displayed and the player may select one of four
actions: no-action, up, down, and bowl. We convert
the game image to grayscale and use as the game state the
160× 160× 2 tensor corresponding to the two most-recent
game screens. Bowling a single ball begins with the player
moving the character avatar vertically (using up and down)
to a desired position from which to release the ball. Then, the
player must execute the bowl action to start the ball rolling
toward the pins. Finally, the player has the chance to, at any
single point during the ball’s journey toward the end of the
lane, cause the ball to start spinning in the up or down di-
rection, by executing the up or down actions, respectively.
The game proceeds, and is scored, just like common ten-pin
bowling, though no extra balls are allowed after the tenth
frame, resulting in a maximum score of 270.

Training Procedure
To evaluate our system, we had 9 human trainers train an
agent to play BOWLING using Deep TAMER. All training
was performed using an experimental computer, and trainers
were supervised by experimenters. As a means by which to
both provide familiarization with the game and to character-
ize individual human performance, each trainer first played
two ten-frame games each during which we recorded the



Figure 5: Individual human trainer performance. Each panel shows the Deep TAMER learning curve of game score vs training
time for each of the 9 human trainers in the experiment (solid blue line). The red dashed line shows the average game score
achieved by the trainers playing two complete bowling games. All Deep TAMER agents were able to meet or exceed their
human trainers after 15 minutes of training.

game score. Then, each trainer was allowed a 10-minute
training session that was not recorded as a means by which
to practice giving feedback to the agent. During the practice
session, trainers were allowed the opportunity to ask the ex-
perimenter any questions that they might have. Finally, after
the practice session, the experimenter reset the agent, and
the trainer again used Deep TAMER to train an agent for
15 minutes while the interaction information and other data
relating to the agent was recorded.

For comparison,we additionally had 9 human trainers
train an agent to play BOWLING using TAMER (Knox and
Stone 2009) over the same state space using the same proce-
dure as as above.

Evaluation
We compared the performance of Deep TAMER on Atari
BOWLING against Double-DQN (van Hasselt, Guez, and
Silver 2015), A3C (Mnih et al. 2016), TAMER (Knox and
Stone 2009), and the performance of the human trainers
themselves. We used implementations of D-DQN and A3C
that have been made available from OpenAI (Hesse et al.
2017; OpenAI 2017). For TAMER, we implemented Algo-
rithm 2 of (Knox and Stone 2009) using the same credit as-
signment scheme, with the only difference being that, simi-
lar to our Ĥ , a separate linear parameter vector was learned
for each discrete action. Figure 4 shows the average game
score as a function of training time (wall-clock time) for
Deep TAMER, TAMER, DDQN and A3C (solid colored
lines). The Deep TAMER and TAMER results were com-
puted by averaging results across 9 human-trained policies
each. For further comparison, the scores of the human train-
ers tested in this experiment as well as the expert human
game tester reported in (Mnih et al. 2015) are shown as
horizontal dashed lines. Additionally, Deep TAMER was
compared to the previously best method on Atari BOWL-

ING from (Hester et al. 2017) that used human demonstra-
tion data to train a deep Q Network (shown as a horizontal
dashed line in Figure 4).

As expected, the Double-DQN and A3C agents fail to
learn a useful policy in the same 15 minutes that was al-
lotted to the human trainers using Deep TAMER. Further,
even given the full amount of training data required by these
methods (i.e., 50-100 million training steps), these algo-
rithms still fail to learn a successful policy for BOWLING
(Mnih et al. 2016), probably due to the sparse reward sig-
nal from the environment. It can be seen that the original
TAMER algorithm also failed to learn a useful policy in the
allotted time. This is likely due to the fact that TAMER uses
a linear model for the human reward function, which is in-
sufficient for the pixel-based state input that we use here.
Deep TAMER also performs better than the learning from
demonstration method from (Hester et al. 2017), indicating
an advantage of a reward shaping methods over a demon-
stration methods when the task is difficult for a human to
perform but not difficult for a human to critique. Finally, as
seen in Figure 4, Deep TAMER is able to exceed the perfor-
mance of the human trainers after only 7 minutes of training,
and surpasses the performance of the expert human after 15
minutes.

This last point is especially interesting to us as it im-
plies that TAMER is not only useful in that it allows non-
experts to train agents that perform well on complex tasks,
but that it is also a promising methodology for easily cre-
ating agents capable of super-human performance. Figure 5
demonstrates this point in more detail: the Deep TAMER
performance for the 9 human trainers along with their indi-
vidual play performance is shown. While performance in-
crease is noisy - likely as a result of the stochastic optimiza-
tion technique - in all cases, the human trainers were able to
train the Deep TAMER agent to play BOWLING in just 15



Figure 6: Comparison of different credit assignment distri-
butions for Deep TAMER. The blue curve shows the average
over 9 subjects collected using a Uniform [0.28, 4.0] distri-
bution and the red curve shows the average of 8 subjects col-
lected using a Gamma(2.0, 0.28) distribution for the credit
assignment.

minutes, and in the majority of cases (6 out of 9), they were
able train Deep TAMER agents to play better than them-
selves.

Importance Weighting Study

We also performed a small study comparing the effect of us-
ing another reasonable importance-weighting scheme: that
which results when using a Gamma(2.0, 0.28) distribution as
fdelay as suggested in (Knox and Stone 2009). A compari-
son of the training performance under this weighting scheme
with that of the one based on the Uniform[0.28, 4.0] distri-
bution used throughout this work is shown in Figure 6. It
can be seen that the uniform distribution yielded better re-
sults, likely due to the fact that trainers tended to wait until
they observed the number of pins that fell before providing
feedback. Since we found that the time between the relevant
throw and/or spin actions was typically separated from the
time of feedback by between 2 and 4 seconds, the uniform
scheme resulted in higher importance weights for these crit-
ical state-action pairs than those provided by the Gamma
distribution.

Due to the difficulty of obtaining large amounts of human
interaction data, we did not perform any additional hyperpa-
rameter search. That is, with the exception of the alternative
importance-weighting scheme we presented above, we fixed
our choices for hyperparameters such as the number of in-
put frames, encoder structure, etc. based on intuition, and
we presented here an evaluation of only those choices. For
this same reason, we limited our analysis to the Bowling do-
main. There are, of course, a large number of domains and
hyperparameter settings that make sense to experiment with,
and we hope to do so in future work.

Summary
In this paper, we proposed an extension of the TAMER
framework for learning from real-time human interaction.
Our technique, called Deep TAMER, enables the TAMER
paradigm to be successful even in environments with high-
dimensional state spaces. This success is due to the use of
a deep neural network function model to approximate the
human trainer’s reward function, and also to the modified
supervised learning procedure we proposed to find the pa-
rameters of this new model.

We evaluated Deep TAMER on the challenging Atari
game of BOWLING with pixel-level state features, and found
that agents trained by humans using Deep TAMER sig-
nificantly outperformed agents trained by humans using
TAMER.

Additionally, our results reaffirm the attractiveness of the
overall TAMER paradigm. After just 15 minutes of real-time
interaction with a human, Deep TAMER agents were able
to achieve higher scores than agents trained using state-of-
the-art deep reinforcement learning techniques and orders
of magnitude more training data. Moreover, human trainers
were actually able to produce agents that actually exceeded
their own performance.
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