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1. INTRODUCTION
As robots become more commonplace, the tools to facil-

itate knowledge transfer from human to robot will be vi-
tal, especially for non-technical users. While some ongoing
work considers the role of human reinforcement in intelli-
gent algorithms, the burden of learning is often placed solely
on the computer [2]. These approaches neglect the expres-
sive capabilities of humans, especially regarding our ability
to quickly refine motor skills. Thus, when designing au-
tonomous robots that interact with humans, not only is it
important to leverage machine learning, but it is also very
useful to have the tools in place to facilitate the transfer of
knowledge between man and machine. We introduce such a
tool for enabling a human to transfer motion learning capa-
bilities to a robot.

In this paper, we propose a general framework for Motion
Acquisition in Robots through Iterative Online Evaluative
Training (MARIOnET ). Specifically, MARIOnET repre-
sents a direct and real-time interface between a human in
a motion-capture suit and a robot, with a training process
that provides a convenient human interface and requires no
technical knowledge. In our framework, the learning hap-
pens exclusively by the human - not the robot. However,
the robot provides a natural interface for interaction, and
is able to store and reuse trained behaviors autonomously
in the future. Our approach exploits the ability at which
humans are able to learn and refine fine-motor skills [6, 4].
Implemented on two robots (one quadruped and one biped),
our results indicate that both technical and non-technical
users are able to harness MARIOnET to quickly improve a
robot’s performance of a task requiring fine-motor skills.
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2. MOTIVATION
Historically robot motion has been written by experts,

where behaviors are coded by hand or via extensive learning
experiments using constrained parameterizations, causing a
lot of wear and tear on the robots [3]. Generally, program-
ming specialized robot motions requires a significant amount
of coding, which is not possible for most people. We aim to
develop an efficient method for generating cyclical open-loop
sequences like stable robot gaits, without requiring expert
knowledge or machine learning.

Recent breakthroughs in behavioral motor control have
enhanced our understanding of the human brain and illus-
trate how remarkable our innate capacity for delicate motor
control is [6]. Muellbacher et al. report that given a 60-
minute training period, subjects can rapidly optimize per-
formance of a complex task involving fine motor control [4].
We hope to harness this ability in this work.

The high-level motivation for MARIOnET is that a real-
time mapping from a human to a robot will serve as a con-
venient interface for quickly and systematically training effi-
cient motion sequences. While there is certainly a difference
in the dynamics of robots and humans, we believe that peo-
ple’s ability to quickly hone fine motor skills can be exploited
to rapidly train diverse robot motions. Even if the mapping
from human coordinates to robot coordinates is not exact,
we hypothesize that humans will be able to learn to correct
for any inconsistencies. Additionally, the prospect of map-
ping any human limb to any robot limb allows for a flexible
training process (e.g., mapping human arms to robot legs).

3. MARIONET
As the name indicates, MARIOnET is a form of iterative

online evaluative training. The human performs a motion,
and the robot mimics in realtime. The human evaluates
the robot’s performance, and repeats the motion account-
ing for any errors perceived in the robot’s previous actions.
This process continues until a sufficient motion sequence is
obtained.

We represent each human limb as a vector of points that
can be initialized to a “neutral” position. Thus, we can pre-
cisely represent any human pose by relating the current pose
to a neutral position. The difference between these vectors is
transformed to a coordinate system appropriate for a robot,
and a resulting set of joint positions is generated by calcu-
lating a solution to inverse kinematics. The control flow of
our interface can be seen in Figure 1. An initial configura-
tion procedure correlates the bounds of each subject to the
bounds of the robot, and captures a neutral human pose.



Figure 1: Control flow of the MARIOnET Interface

During training, it is often useful to have a “looped” mo-
tion sequence. For example, the human could take two steps
and wish the robot to repeat this sequence, resulting in a
continuous gait. To facilitate a natural human interface, we
have implemented hand-gesture recognition to control the
looping state of the robot. All loops are saved, and can
subsequently be reproduced in high-level behavioral code.

4. RESULTS
To evaluate the effectiveness of MARIOnET, we tested the

methodology using two different robots, a quadruped (the
Sony AIBO) and a humanoid (the Aldebaran Nao). We
primarily evaluated the ease of the training interface and
assessed the ability of a human to quickly improve at a task
involving fine-motor control. A typical training session using
our humanoid can be seen in Figure 2.

We had 3 technical and 5 non-technical subjects perform
shape-tracing and complete an episodic task involving mov-
ing a toy car from a source location to a sink location using
the Nao (called Car-Park).l All of the users were able to
considerably improve performance over 60 episodes of Car-
Park, reducing their average completion time from 28.5 sec-
onds for the first 10 episodes to 6.8 seconds for the final 10.
The solution for Car-Park that every user eventually found
was to use both arms - one to nudge the car and the other
to stop it at the correct location. This coordinated sequence
is the type of motion that might have taken a standard ML
algorithm a long time to find, and would certainly require
significant exploration of the state space.

Also, we tested generation of cyclical open-loop gaits using
the AIBO. A majority of the subjects exhibited dramatic im-
provement in walk speed over the course of their training ses-
sion. The fastest walk achieved a velocity of 18.8 cm/s, and
the subject had only trained for 17 minutes before achiev-
ing this speed. To put this number in context, some of the
fastest AIBO walks found through optimization algorithms
are in excess of 34 cm/s[5], while the standard walk Sony
included with the AIBO is 3.2cm/s. However, most param-
eter optimization techniques start with a decent hand-coded
walk – MARIOnET starts from scratch. It should be noted
that the output of the MARIOnET learning could be used
as the starting point for these optimizations. A video of
MARIOnET in action can be found at
www.cs.utexas.edu/~AustinVilla/?p=research/marionet.

Figure 2: A sample training session using our hu-

manoid, the Aldebaran Nao

5. CONCLUSIONS
As more robots appear with complex body dynamics, it is

vital that interaction is possible for all types of users, both
technical and non-technical. However, it is very difficult to
systematically construct motion controllers that exploit the
specific properties of a robot, even for a roboticist. MAR-
IOnET allows the layman to precisely develop specialized
robot motions, and represents a promising route for shaping
the behavior of tomorrow’s robots.

While the similarities of human movement and robot lo-
comotion have been investigated [1], our idea of exploiting
human motor skills for rapid training of robot motions takes
a completely new approach. We train the robot not by mod-
eling its dynamics or optimizing parameters of an ML algo-
rithm, but by taking advantage of the most finely-tuned and
sophisticated control mechanism known to man: himself.

We have applied MARIOnET to two classes of robots,
but one of its strengths is that it can be used to control
any robot with an end effector that is able to compute a
solution to inverse kinematics. In this first specification of
MARIOnET, we have laid the groundwork for much future
work. As mentioned earlier, MARIOnET abstracts the task
of learning away from the robot and places this burden on
the human. Although our results indicate that this approach
is viable, a more robust set of problems could be approached
and optimized if the robot and human learned in harmony.
Using the effective combination of human reinforcement and
machine learning, we plan to address this important question
in future work.
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