Empirical Evaluation of Ad Hoc Teamwork in the Pursuit Domain

Samuel Barrett¹ Peter Stone¹ Sarit Kraus²

¹University of Texas at Austin {sbarrett,pstone}@cs.utexas.edu

²Bar-Ilan University sarit@cs.biu.ac.il

AAMAS 2011 May 4, 2011

Introduction

Approach Results Conclusions Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

Ad Hoc Teamwork

- Only in control of a single agent
- Unknown teammates
- Shared goals
- No pre-coordination

Examples:

- Pick up soccer
- Search and rescue

Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

- Agents are becoming more common and lasting longer
 - Both robots and software agents
- Pre-coordination may not be possible
- Most previous work on ad hoc teams was theoretical

Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

- Agents are becoming more common and lasting longer
 - Both robots and software agents
- Pre-coordination may not be possible
- Most previous work on ad hoc teams was theoretical

Research Question:

How can an ad hoc agent help its team in the pursuit domain?

Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

Ad Hoc Agent Evaluation

- Evaluate(a, A, D):
 - Initialize performance (reward) counter r = 0.
 - Repeat:
 - Sample a task *d* from *D*.
 - Randomly draw a subset of agents *B*, from *A* such that $E[s(B, d)] \ge s_{min}$.
 - Randomly select one agent b ∈ B to remove from the team to create the team B[−].
 - Increment *r* by *s*({*a*} ∪ *B*[−], *d*)
 - If Evaluate(a₀, A, D) > Evaluate(a₁, A, D) and the difference is significant, then we conclude that a₀ is a better ad hoc team player than a₁ in domain D over the set of possible teammates A.

Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

Pursuit Domain

- Grid world Torus
- 4 Predators and 1 Prey
- Predators' goal is to surround the prey as quickly as possible
- Act simultaneously
- Collisions randomly decided - loser stays still

Introduction

Approach Results Conclusions Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

- Observe positions of all agents
- Cannot explicitly communicate
- 5 actions: Stay still, up, down, left, and right

Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

Agent Types:

• Greedy - moves to nearest open cell neighboring the prey

Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

Agent Types:

- Greedy moves to nearest open cell neighboring the prey
- Teammate-aware lets the farthest predator have the closest cell

Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

Agent Types:

- Greedy moves to nearest open cell neighboring the prey
- Teammate-aware lets the farthest predator have the closest cell
- Greedy Probabilistic greedy, but with chance of taking a longer path

Ad Hoc Teamwork Motivation Evaluation Problem Description Agents

Agent Types:

- Greedy moves to nearest open cell neighboring the prey
- Teammate-aware lets the farthest predator have the closest cell
- Greedy Probabilistic greedy, but with chance of taking a longer path
- Probabilistic Destinations moves towards a random cell that is closer to the prey

Value Iteration MCTS Model probabilities

If the ad hoc agent has:

- Knows dynamics of world
- Knows prey's behavior
- Knows teammates' behavior

Then it can plan about the effects of actions and their values

Value Iteration MCTS Model probabilities

Value Iteration

- If the teammates' types are known
- Calculates the optimal action values
- Slow for large worlds
- Impractical because of the size of the state space

Value Iteration MCTS Model probabilities

Monte Carlo Tree Search



- Sample playouts
- Focus on relevant state actions
- UCT balances exploration vs. exploitation
- Efficient

Value Iteration MCTS Model probabilities

- Set of known models
- Start with prior belief
- Update using the probability that a model would have taken the observed action

$$P(\text{model}|\text{actions}) = rac{P(\text{actions}|\text{model}) * P(\text{model})}{P(\text{actions})}$$

Known teammates Known set of teammates Teammates of Unknown Types

- Can the ad hoc agent do better than copying its teammates' behaviors?
- Number of steps the team takes to capture the prey

Known teammates Known set of teammates Teammates of Unknown Types

- Can the ad hoc agent do better than copying its teammates' behaviors?
- Number of steps the team takes to capture the prey
- 1,000 episodes
- No information carried between episodes
- Random start positions per episode, but same across evaluations

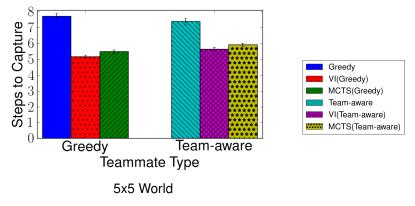
Known teammates Known set of teammates Teammates of Unknown Types

Known deterministic teammates

- Ad hoc agent knows the its teammates' type
- Planning outperforms copying teammates' behavior
- Performance of MCTS is close to that of VI

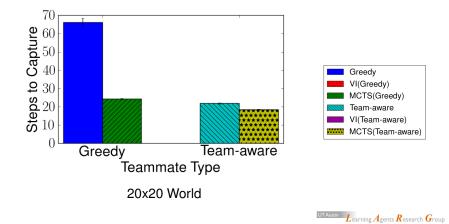
Known teammates Known set of teammates Teammates of Unknown Types

Known deterministic teammates



Known teammates Known set of teammates Teammates of Unknown Types

Known deterministic teammates



Known teammates Known set of teammates Teammates of Unknown Types

Incorrect type

- Ad hoc agent is incorrect about its teammates' type
- All methods perform poorly

Known teammates Known set of teammates Teammates of Unknown Types

Incorrect Type

Known teammates Known set of teammates Teammates of Unknown Types

Known set of teammates

- Set of possible agent types is known
- Ad hoc agent tracks probabilities of types
- Low loss compared to knowing correct model

Known teammates Known set of teammates Teammates of Unknown Types

Known set of teammates

Known teammates Known set of teammates Teammates of Unknown Types

Known set of teammates

Known teammates Known set of teammates Teammates of Unknown Types

Teammates of Unknown Types

- Ad hoc agent does not know behavior of teammates
- Set of known types
- True ad hoc scenario
- Planning should outperform copying

Known teammates Known set of teammates Teammates of Unknown Types

Teammates of Unknown Types

Related Work Conclusions Future Work Questions

Related Work

Related Work Conclusions Future Work Questions

- Ad hoc agents can help their teams
- Can do better than copying teammates
- MCTS is effective and efficient for planning
- Can differentiate teammate types
- Models still help when incorrect

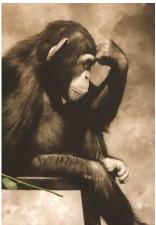
Related Work Conclusions Future Work Questions

- Can we learn a model on the fly?
- Can we learn to correct an existing model?
- Will other domains get similar results?
- How can the ad hoc agent reason about the value of information?
- How can an ad hoc agent deal with incomplete communication?

Related Work Conclusions Future Work Questions

Thank You!

 Ad hoc team agents can learn to help their teams on the fly



Learning Agents Research Group