Mechanism Design with Unknown Correlated Distributions: Can We Learn Optimal Mechanisms?

Michael Albert¹, Vincent Conitzer¹, Peter Stone²

¹Duke University, ²University of Texas at Austin

May 10th, 2017

< □ > < @ > < 注 > < 注 > ... 注

Introduction	Background	Learning Optimal Mechanisms	Conclusion
●000	00000		000
Introduction			

- Auctions are one of the fundamental tools of the modern economy
 - In 2012, four government agencies purchased **\$800 million** through reverse auctions (Government Accountability Office 2013)
 - In 2014, NASA awarded contracts to Boeing and Space-X worth \$4.2 billion and \$2.6 billion through an auction process (NASA 2014)
 - In 2016, **\$72.5 billion** of ad revenue generated through auctions (IAB 2017)
 - The FCC spectrum auction just allocated **\$20 billion** worth of broadcast spectrum

Introduction	Background	Learning Optimal Mechanisms	Conclusion
•000	00000	000000000	000
Introduction			

- Auctions are one of the fundamental tools of the modern economy
 - In 2012, four government agencies purchased **\$800 million** through reverse auctions (Government Accountability Office 2013)
 - In 2014, NASA awarded contracts to Boeing and Space-X worth \$4.2 billion and \$2.6 billion through an auction process (NASA 2014)
 - In 2016, **\$72.5 billion** of ad revenue generated through auctions (IAB 2017)
 - The FCC spectrum auction just allocated **\$20 billion** worth of broadcast spectrum

Introduction	Background	Learning Optimal Mechanisms	Conclusion
•000	00000		000
Introduction			

- Auctions are one of the fundamental tools of the modern economy
 - In 2012, four government agencies purchased **\$800 million** through reverse auctions (Government Accountability Office 2013)
 - In 2014, NASA awarded contracts to Boeing and Space-X worth \$4.2 billion and \$2.6 billion through an auction process (NASA 2014)
 - In 2016, **\$72.5 billion** of ad revenue generated through auctions (IAB 2017)
 - The FCC spectrum auction just allocated **\$20 billion** worth of broadcast spectrum

Introduction	Background	Learning Optimal Mechanisms	Conclusion
•000	00000		000
Introduction			

- Auctions are one of the fundamental tools of the modern economy
 - In 2012, four government agencies purchased **\$800 million** through reverse auctions (Government Accountability Office 2013)
 - In 2014, NASA awarded contracts to Boeing and Space-X worth \$4.2 billion and \$2.6 billion through an auction process (NASA 2014)
 - In 2016, **\$72.5 billion** of ad revenue generated through auctions (IAB 2017)
 - The FCC spectrum auction just allocated **\$20 billion** worth of broadcast spectrum

Introduction	Background	Learning Optimal Mechanisms	Conclusion
•000	00000		000
Introduction			

- Auctions are one of the fundamental tools of the modern economy
 - In 2012, four government agencies purchased **\$800 million** through reverse auctions (Government Accountability Office 2013)
 - In 2014, NASA awarded contracts to Boeing and Space-X worth \$4.2 billion and \$2.6 billion through an auction process (NASA 2014)
 - In 2016, **\$72.5 billion** of ad revenue generated through auctions (IAB 2017)
 - The FCC spectrum auction just allocated **\$20 billion** worth of broadcast spectrum

Introduction	Background	Learning Optimal Mechanisms	Conclusion
•000	00000	000000000	
Introduction			

- Auctions are one of the fundamental tools of the modern economy
 - In 2012, four government agencies purchased **\$800 million** through reverse auctions (Government Accountability Office 2013)
 - In 2014, NASA awarded contracts to Boeing and Space-X worth \$4.2 billion and \$2.6 billion through an auction process (NASA 2014)
 - In 2016, **\$72.5 billion** of ad revenue generated through auctions (IAB 2017)
 - The FCC spectrum auction just allocated **\$20 billion** worth of broadcast spectrum

It is important that the mechanisms we use are revenue optimal!

Introduction 0●00	Background 00000	Learning Optimal Mechanisms	Conclusion
Introduction			

- Standard mechanisms do very well with large numbers of bidders
 - VCG mechanism with n + 1 bidders ≥ optimal revenue mechanism with n bidders, for IID bidders (Bulow and Klemperer 1996)

• For "thin" markets, must use knowledge of the distribution of bidders

• Generalized second price auction with reserves (Myerson 1981)

- Thin markets are a large concern
 - Sponsored search with rare keywords or ad quality ratings
 - Of 19,688 reverse auctions by four governmental organizations in 2012, one-third had only a single bidder (GOA 2013)

Introduction	Background	Learning Optimal Mechanisms	Conclusion
0●00	00000		000
Introduction			

- Standard mechanisms do very well with large numbers of bidders
 - VCG mechanism with n + 1 bidders ≥ optimal revenue mechanism with n bidders, for IID bidders (Bulow and Klemperer 1996)
- For "thin" markets, must use knowledge of the distribution of bidders
 - Generalized second price auction with reserves (Myerson 1981)
- Thin markets are a large concern
 - Sponsored search with rare keywords or ad quality ratings
 - Of 19,688 reverse auctions by four governmental organizations in 2012, one-third had only a single bidder (GOA 2013)

Introduction	Background	Learning Optimal Mechanisms	Conclusion
○●○○	00000		000
Introduction			

- Standard mechanisms do very well with large numbers of bidders
 - VCG mechanism with n + 1 bidders ≥ optimal revenue mechanism with n bidders, for IID bidders (Bulow and Klemperer 1996)
- For "thin" markets, must use knowledge of the distribution of bidders
 - Generalized second price auction with reserves (Myerson 1981)
- Thin markets are a large concern
 - Sponsored search with rare keywords or ad quality ratings
 - Of 19,688 reverse auctions by four governmental organizations in 2012, *one-third had only a single bidder* (GOA 2013)

Introduction	Background	Learning Optimal Mechanisms	Conclusion
0000	00000	000000000	000
Introduction			

• A common assumption in mechanism design is independent bidder valuations

Introduction	Background	Learning Optimal Mechanisms	Conclusion
00●0	00000		000
Introduction			

- This is not accurate for many settings
 - Oil drilling rights
 - Sponsored search auctions
 - Anything with resale value

Introduction	Background	Learning Optimal Mechanisms	Conclusion
00●0	00000	000000000	000
Introduction			

• Cremer and McLean (1985) demonstrates that full surplus extraction as revenue is possible for correlated valuation settings! And it's easy!

Introduction	Background	Learning Optimal Mechanisms	Conclusion
00●0	00000	000000000	000
Introduction			

• What if we don't know the distribution though?

Introduction 00●0	Background 00000	Learning Optimal Mechanisms	Conclusion
Introduction			

• Fu et. al. 2014 indicate that it is still easy if we have a finite set of potential distributions!

Introduction	Background	Learning Optimal Mechanisms	Conclusion
00●0	00000	000000000	000
Introduction			

• What if we have an infinite set of distributions?

Introduction	
0000	

5/23

Contribution

In order to effectively implement mechanisms that take advantage of correlation, there needs to be a lot of correlation.

Introduction	Background	Learning Optimal Mechanisms	Conclusion
0000	●0000		000
Problem D	escription		

• A monopolistic seller with one item

イロン イヨン イヨン イヨン

3

6/23

• A single bidder with type $\theta \in \Theta$ and valuation $v(\theta)$

• An external signal $\omega \in \Omega$ and distribution $\pi(\theta, \omega) \in \Delta(\Theta \times \Omega)$ Introduction 0000 Background ●0000 Learning Optimal Mechanisms

Conclusion 000

6/23

Problem Description

 A monopolistic seller with one item

• A single bidder with type $\theta \in \Theta$ and valuation $v(\theta)$

<ロ> <同> <同> < 回> < 回>

• An external signal $\omega \in \Omega$ and distribution $\pi(\theta, \omega) \in \Delta(\Theta \times \Omega)$ Introduction 0000 Background ●0000 Learning Optimal Mechanisms

Conclusion

Problem Description

 A monopolistic seller with one item

 A single bidder with type θ ∈ Θ and valuation v(θ)

• An external signal $\omega \in \Omega$ and distribution $\pi(\theta, \omega) \in \Delta(\Theta \times \Omega)$

イロト 不得下 イヨト イヨト 二日

7/23

Mechanism and Bidder Utility

Definition: Mechanism

A (direct revelation) mechanism, (\mathbf{p}, \mathbf{x}) , is defined by, given the bidder type and external signal (θ, ω) , the probability that the seller allocates the item to the bidder, $\mathbf{p}(\theta, \omega)$, and a monetary transfer from the bidder to the seller, $\mathbf{x}(\theta, \omega)$.

Mechanism and Bidder Utility

Definition: Mechanism

A (direct revelation) mechanism, (\mathbf{p}, \mathbf{x}) , is defined by, given the bidder type and external signal (θ, ω) , the probability that the seller allocates the item to the bidder, $\mathbf{p}(\theta, \omega)$, and a monetary transfer from the bidder to the seller, $\mathbf{x}(\theta, \omega)$.

Definition: Bidder Utility

Given a realization of the external signal ω , reported type $\theta' \in \Theta$ by the bidder, and true type $\theta \in \Theta$, the bidder's utility under mechanism (\mathbf{p}, \mathbf{x}) is:

$$U(\theta, \theta', \omega) = v(\theta) \boldsymbol{p}(\theta', \omega) - \boldsymbol{x}(\theta', \omega)$$

Introduction 0000 Background 00●00 Learning Optimal Mechanisms

イロト イロト イヨト イヨト 二日

Conclusion 000

8 / 23

Definition: Ex-Interim Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is ex-interim individually rational (IR) if:

$$orall heta \in \Theta: \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega | heta) U(heta, heta, \omega) \geq 0$$

Introduction 0000 Background 00●00 Learning Optimal Mechanisms

Conclusion

Definition: Ex-Interim Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is ex-interim individually rational (IR) if:

$$orall heta \in \Theta: \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega| heta) U(heta, heta, \omega) \geq 0$$

Definition: Bayesian Incentive Compatibility (IC)

A mechanism (\mathbf{p}, \mathbf{x}) is Bayesian incentive compatible (IC) if:

$$orall heta, heta' \in \Theta: \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega| heta) U(heta, heta, \omega) \geq \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega| heta) U(heta, heta', \omega)$$

8 / 23

イロト 不得下 イヨト イヨト 二日

Introduction	Background	Learning Optimal Mechanisms	Conc
	00000		

Definition: Optimal Mechanisms

A mechanism (p, x) is an *optimal mechanism* if under the constraint of ex-interim individual rationality and Bayesian incentive compatibility it maximizes the following:

$$\sum_{\theta,\omega} \mathbf{x}(\theta,\omega) \boldsymbol{\pi}(\theta,\omega) \tag{1}$$

イロン イロン イヨン イヨン 三日

lusion

Uncertain Distributions

• What if we don't know the true distribution?

- Maybe we observe samples from previous auction rounds
- Full extraction is still possible and easy with a finite set of potential distributions
 - Lopomo, Rigotti, and Shannon 2009 give conditions under which full extraction is possible with Knightian uncertainty in a discrete type space
 - Fu et. al. 2014 find that a single sample from the underlying distribution is sufficient to extract full revenue (given a generic condition)

• We look at an infinite set of distributions

- Discrete set for impossibility result
- Single bidder and external signal, bidder knows true distribution
- We know the marginal distribution over bidder types
- Finite number of samples from the true distribution
- Bidders report both type and true distribution

Uncertain Distributions

- What if we don't know the true distribution?
 - Maybe we observe samples from previous auction rounds
- Full extraction is still possible and easy with a finite set of potential distributions
 - Lopomo, Rigotti, and Shannon 2009 give conditions under which full extraction is possible with Knightian uncertainty in a discrete type space
 - Fu et. al. 2014 find that a single sample from the underlying distribution is sufficient to extract full revenue (given a generic condition)

• We look at an infinite set of distributions

- Discrete set for impossibility result
- Single bidder and external signal, bidder knows true distribution
- We know the marginal distribution over bidder types
- Finite number of samples from the true distribution
- Bidders report both type and true distribution

Introduction	Background	Learning Optimal Mechanisms	Conclusion
0000	00000	●00000000	000
	Distant of		

- Uncertain Distributions
 - What if we don't know the true distribution?
 - Maybe we observe samples from previous auction rounds
 - Full extraction is still possible and easy with a finite set of potential distributions
 - Lopomo, Rigotti, and Shannon 2009 give conditions under which full extraction is possible with Knightian uncertainty in a discrete type space
 - Fu et. al. 2014 find that a single sample from the underlying distribution is sufficient to extract full revenue (given a generic condition)
 - We look at an infinite set of distributions
 - Discrete set for impossibility result
 - Single bidder and external signal, bidder knows true distribution
 - We know the marginal distribution over bidder types
 - Finite number of samples from the true distribution

Introduction	Background	Learning Optimal Mechanisms	Conclusion
0000	00000	●00000000	000
	Distant of		

- Uncertain Distributions
 - What if we don't know the true distribution?
 - Maybe we observe samples from previous auction rounds
 - Full extraction is still possible and easy with a finite set of potential distributions
 - Lopomo, Rigotti, and Shannon 2009 give conditions under which full extraction is possible with Knightian uncertainty in a discrete type space
 - Fu et. al. 2014 find that a single sample from the underlying distribution is sufficient to extract full revenue (given a generic condition)
 - We look at an infinite set of distributions
 - Discrete set for impossibility result
 - Single bidder and external signal, bidder knows true distribution
 - We know the marginal distribution over bidder types
 - Finite number of samples from the true distribution
 - Bidders report both type and true distribution

Introduction 0000 Background 00000 Learning Optimal Mechanisms

Conclusion

Converging Sequences of Distributions

Definition: Converging Distributions

A countably infinite sequence of distributions $\{\pi_i\}_{i=1}^{\infty}$ is said to be **converging to the distribution** π^* , the **convergence point**, if for all $\theta \in \Theta$ and $\epsilon > 0$, there exists a $T \in \mathbb{N}$ such that for all $i \geq T$, $||\pi_i(\cdot|\theta) - \pi^*(\cdot|\theta)|| < \epsilon$. I.e., for each $\theta \in \Theta$, the conditional distributions in the sequence, $\{\pi_i(\cdot|\theta)\}_{i=1}^{\infty}$, converge to the conditional distribution $\pi^*(\cdot|\theta)$ in the l^2 norm.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

Introduction Background Conclusion October Conclusion C

Definition: Mechanism with Private Distributions

A (direct revelation) mechanism, (\mathbf{p}, \mathbf{x}) , is defined by, given a bidder type, a distribution, and the external signal, (θ, π, ω) , the probability that the seller allocates the item to the bidder, $\mathbf{p}(\theta, \pi, \omega)$, and a monetary transfer from the bidder to the seller, $\mathbf{x}(\theta, \pi, \omega)$.

イロト 不得 とくき とくきとう き

Distribution as Private Information

Definition: Mechanism with Private Distributions

A (direct revelation) mechanism, (\mathbf{p}, \mathbf{x}) , is defined by, given a bidder type, a distribution, and the external signal, (θ, π, ω) , the probability that the seller allocates the item to the bidder. $p(\theta, \pi, \omega)$, and a monetary transfer from the bidder to the seller, $\mathbf{x}(\theta, \boldsymbol{\pi}, \omega).$

Definition: Bidder Utility with Private Distributions

Given a realization of the external signal ω , reported type $\theta' \in \Theta$ by the bidder, reported distribution $\pi' \in {\{\pi_i\}_{i=1}^{\infty}}$, true type $\theta \in \Theta$, and true distribution $\pi \in {\{\pi_i\}_{i=1}^{\infty}, \text{ the bidder's utility under}\}}$ mechanism (\mathbf{p}, \mathbf{x}) is:

$$U(\theta, \boldsymbol{\pi}, \theta', \boldsymbol{\pi}', \omega) = \boldsymbol{v}(\theta) \boldsymbol{p}(\theta', \boldsymbol{\pi}', \omega) - \boldsymbol{x}(\theta', \boldsymbol{\pi}', \omega)$$

イロト イポト イヨト イヨト

Background 00000 Learning Optimal Mechanisms

Conclusion 000

15 / 23

Definition: Ex-Interim Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is *ex-interim individually rational (IR)* if for all $\theta \in \Theta$ and $\mathbf{\pi} \in \{\pi_i\}_{i=1}^{\infty}$:

$$orall heta \in \Theta: \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega | heta) U(heta, oldsymbol{\pi}, heta, oldsymbol{\pi}, \omega) \geq 0$$

Background 00000

Definition: Ex-Interim Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is *ex-interim individually rational (IR)* if for all $\theta \in \Theta$ and $\mathbf{\pi} \in \{\pi_i\}_{i=1}^{\infty}$:

$$orall heta \in \Theta: \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega| heta) U(heta,oldsymbol{\pi}, heta,oldsymbol{\pi},\omega) \geq 0$$

Definition: Bayesian Incentive Compatibility (IC)

A mechanism (\mathbf{p}, \mathbf{x}) is *Bayesian incentive compatible (IC)* if for all $\theta, \theta' \in \Theta$ and $\pi, \pi' \in \{\pi_i\}_{i=1}^{\infty}$:

$$\sum_{\omega\in\Omega} oldsymbol{\pi}(\omega| heta) U(heta,oldsymbol{\pi}, heta,oldsymbol{\pi},\omega) \geq \sum_{\omega\in\Omega} oldsymbol{\pi}(\omega| heta) U(heta,oldsymbol{\pi}, heta',oldsymbol{\pi}',\omega)$$

Introduction 0000 Background 00000 Learning Optimal Mechanisms

Conclusion 000

Convergence to an Interior Point

Assumption: Converging to an Interior Point

For the sequence of distributions $\{\pi_i\}_{i=1}^{\infty}$ converging to π^* and for any $\theta' \in \Theta$, there exists a subset of distributions of size $|\Omega|$ from the set $\{\pi_i(\cdot|\theta)\}_{i,\theta}$ that is affinely independent and the distribution $\pi^*(\cdot|\theta')$ is a strictly convex combination of the elements of the subset. I.e., there exists $\{\alpha_k\}_{k=1}^{|\Omega|}$, $\alpha_k \in (0, 1)$, and $\{\pi_k(\cdot|\theta_k)\}_{k=1}^{|\Omega|}$ such that $\pi^*(\cdot|\theta') = \sum_{k=1}^{|\Omega|} \alpha_k \pi_k(\cdot|\theta_k)$.

Introduction 0000	Background 00000	Learning Optimal Mechanisms 0000000000	Conclusion 000

Introduction 0000	Background 00000	Learning Optimal Mechanisms	Conclusion 000
	7	$ au(\omega_H) = 1$	
		٨	

 π_3

• π_2

Introduction 0000	Background 00000	Learning Optimal Mechanisms 000000€000	Conclusion 000
	7	$ au(\omega_H)=1$	

 π_{3}

 $\bullet \pi_2$

Inapproximability of the Optimal Mechanism

Theorem: Inapproximability of the Optimal Mechanism

Let $\{\pi_i\}_{i=1}^{\infty}$ be a sequence of distributions converging to π^* . Denote the revenue of the optimal mechanism for the distribution π^* by R. For any k > 0, there exists a $T \in \mathbb{N}$ such that for all $\pi_{i'} \in \{\pi_i\}_{i=T}^{\infty}$, the expected revenue is less than R + k.

Inapproximability of the Optimal Mechanism

Theorem: Inapproximability of the Optimal Mechanism

Let $\{\pi_i\}_{i=1}^{\infty}$ be a sequence of distributions converging to π^* . Denote the revenue of the optimal mechanism for the distribution π^* by R. For any k > 0, there exists a $T \in \mathbb{N}$ such that for all $\pi_{i'} \in \{\pi_i\}_{i=T}^{\infty}$, the expected revenue is less than R + k.

Corrollary: Sampling Doesn't Help

The above still holds if the mechanism designer has access to a finite number of samples from the underlying true distribution.

Introduction 0000 Background 00000 Learning Optimal Mechanisms

Conclusion

Sufficient Correlation Implies Near Optimal Revenue

Theorem: Sufficient Correlation Implies Near Optimal Revenue

For any distribution π^* that satisfies the ACL condition with optimal revenue R and given any positive constant k > 0, there exists $\epsilon > 0$ and a mechanism such that for all distributions, π' , for which for all $\theta \in \Theta$, $||\pi^*(\cdot|\theta) - \pi'(\cdot|\theta)|| < \epsilon$, the revenue generated by the mechanism is greater than or equal to R - k.

Introduction
0000Background
00000Learning Optimal Mechanisms
000000000Conclusion
•o0A, Conitzer, and Stone 2017 - AAAI - Automated Design
of Robust MechanismsOf Robust MechanismsConclusion
•o0

Introduction	Background	Learning Optimal Mechanisms	Conclusion
0000	00000		○●○
Related Work			

- Unknown Correlated Distributions (Lopomo, Rigotti, and Shannon 2009, Fu, Haghpanah, Hartline, and Kleinberg 2014)
- Automated Mechanism Design (Conitzer and Sandholm 2002, 2004; Guo and Conitzer 2010; Sandholm and Likhodedov 2015)
- Robust Optimization (Bertsimas and Sim 2004; Aghassi and Bertsimas 2006)
- Learning Bidder Distributions (Elkind 2007, Blume et. al. 2015, Morgenstern and Roughgarden 2015)
- Simple vs. Optimal Mechanisms (Bulow and Klemperer 1996; Hartline and Roughgarden 2009)

Thank you for listening to my presentation. Questions?

I will also be presenting this as a poster at DD-2 during the Thursday morning poster session. Please come by!