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Introduction Background Learning Optimal Mechanisms Conclusion

Introduction

Auctions are one of the fundamental tools of the modern
economy

In 2012, four government agencies purchased $800 million
through reverse auctions (Government Accountability Office
2013)
In 2014, NASA awarded contracts to Boeing and Space-X
worth $4.2 billion and $2.6 billion through an auction
process (NASA 2014)
In 2016, $72.5 billion of ad revenue generated through
auctions (IAB 2017)
The FCC spectrum auction just allocated $20 billion worth of
broadcast spectrum

It is important that the mechanisms we use are revenue optimal!
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Introduction

Standard mechanisms do very well with large numbers of
bidders

VCG mechanism with n + 1 bidders ≥ optimal revenue
mechanism with n bidders, for IID bidders (Bulow and
Klemperer 1996)

For “thin” markets, must use knowledge of the distribution of
bidders

Generalized second price auction with reserves (Myerson 1981)

Thin markets are a large concern

Sponsored search with rare keywords or ad quality ratings
Of 19,688 reverse auctions by four governmental organizations
in 2012, one-third had only a single bidder (GOA 2013)
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Introduction

A common assumption in mechanism design is independent
bidder valuations

v1

v2

v3

4 / 23



Introduction Background Learning Optimal Mechanisms Conclusion

Introduction

This is not accurate for many settings

Oil drilling rights
Sponsored search auctions
Anything with resale value
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Introduction

Cremer and McLean (1985) demonstrates that full surplus
extraction as revenue is possible for correlated valuation
settings! And it’s easy!
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Introduction

What if we don’t know the distribution though?
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Introduction

Fu et. al. 2014 indicate that it is still easy if we have a finite
set of potential distributions!
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Introduction

What if we have an infinite set of distributions?
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Contribution

In order to effectively implement mechanisms that take advantage
of correlation, there needs to be a lot of correlation.
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Problem Description

A monopolistic seller
with one item

A single bidder with
type θ ∈ Θ and
valuation v(θ)

An external signal
ω ∈ Ω and
distribution
π(θ, ω) ∈ ∆(Θ× Ω)

or
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Mechanism and Bidder Utility

Definition: Mechanism

A (direct revelation) mechanism, (p, x), is defined by, given the
bidder type and external signal (θ, ω), the probability that the
seller allocates the item to the bidder, p(θ, ω), and a monetary
transfer from the bidder to the seller, x(θ, ω).

Definition: Bidder Utility

Given a realization of the external signal ω, reported type θ′ ∈ Θ
by the bidder, and true type θ ∈ Θ, the bidder’s utility under
mechanism (p, x) is:

U(θ, θ′, ω) = v(θ)p(θ′, ω)− x(θ′, ω)
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Definition: Ex-Interim Individual Rationality (IR)

A mechanism (p, x) is ex-interim individually rational (IR) if:

∀θ ∈ Θ :
∑
ω∈Ω

π(ω|θ)U(θ, θ, ω) ≥ 0

Definition: Bayesian Incentive Compatibility (IC)

A mechanism (p, x) is Bayesian incentive compatible (IC) if:

∀θ, θ′ ∈ Θ :
∑
ω∈Ω

π(ω|θ)U(θ, θ, ω) ≥
∑
ω∈Ω

π(ω|θ)U(θ, θ′, ω)
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Definition: Optimal Mechanisms

A mechanism (p, x) is an optimal mechanism if under the
constraint of ex-interim individual rationality and Bayesian
incentive compatibility it maximizes the following:∑

θ,ω

x(θ, ω)π(θ, ω) (1)
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Full Surplus Extraction with Bayesian Mechanisms (Cremer
and McLean 1985; A, Conitzer, and Lopomo 2016)
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Uncertain Distributions

What if we don’t know the true distribution?
Maybe we observe samples from previous auction rounds

Full extraction is still possible and easy with a finite set of
potential distributions

Lopomo, Rigotti, and Shannon 2009 give conditions under
which full extraction is possible with Knightian uncertainty in a
discrete type space
Fu et. al. 2014 find that a single sample from the underlying
distribution is sufficient to extract full revenue (given a generic
condition)

We look at an infinite set of distributions
Discrete set for impossibility result
Single bidder and external signal, bidder knows true
distribution
We know the marginal distribution over bidder types
Finite number of samples from the true distribution
Bidders report both type and true distribution
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Converging Sequences of Distributions

Definition: Converging Distributions

A countably infinite sequence of distributions {πi}∞i=1 is said to be
converging to the distribution π∗, the convergence point, if
for all θ ∈ Θ and ε > 0, there exists a T ∈ N such that for all
i ≥ T , ||πi (·|θ)− π∗(·|θ)|| < ε. I.e., for each θ ∈ Θ, the
conditional distributions in the sequence, {πi (·|θ)}∞i=1, converge to
the conditional distribution π∗(·|θ) in the l2 norm.
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Distribution as Private Information

Definition: Mechanism with Private Distributions

A (direct revelation) mechanism, (p, x), is defined by, given a
bidder type, a distribution, and the external signal, (θ,π, ω), the
probability that the seller allocates the item to the bidder,
p(θ,π, ω), and a monetary transfer from the bidder to the seller,
x(θ,π, ω).

Definition: Bidder Utility with Private Distributions

Given a realization of the external signal ω, reported type θ′ ∈ Θ
by the bidder, reported distribution π′ ∈ {πi}∞i=1, true type θ ∈ Θ,
and true distribution π ∈ {πi}∞i=1, the bidder’s utility under
mechanism (p, x) is:

U(θ,π, θ′,π′, ω) = v(θ)p(θ′,π′, ω)− x(θ′,π′, ω)
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Definition: Ex-Interim Individual Rationality (IR)

A mechanism (p, x) is ex-interim individually rational (IR) if for all
θ ∈ Θ and π ∈ {πi}∞i=1:

∀θ ∈ Θ :
∑
ω∈Ω

π(ω|θ)U(θ,π, θ,π, ω) ≥ 0

Definition: Bayesian Incentive Compatibility (IC)

A mechanism (p, x) is Bayesian incentive compatible (IC) if for all
θ, θ′ ∈ Θ and π,π′ ∈ {πi}∞i=1:∑

ω∈Ω

π(ω|θ)U(θ,π, θ,π, ω) ≥
∑
ω∈Ω

π(ω|θ)U(θ,π, θ′,π′, ω)
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Convergence to an Interior Point

Assumption: Converging to an Interior Point

For the sequence of distributions {πi}∞i=1 converging to π∗ and for
any θ′ ∈ Θ, there exists a subset of distributions of size |Ω| from
the set {πi (·|θ)}i ,θ that is affinely independent and the distribution
π∗(·|θ′) is a strictly convex combination of the elements of the

subset. I.e., there exists {αk}
|Ω|
k=1, αk ∈ (0, 1), and {πk(·|θk)}|Ω|k=1

such that π∗(·|θ′) =
∑|Ω|

k=1 αkπk(·|θk).
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π(ωL) = 1 π(ωM) = 1

π(ωH) = 1
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Inapproximability of the Optimal Mechanism

Theorem: Inapproximability of the Optimal Mechanism

Let {πi}∞i=1 be a sequence of distributions converging to π∗.
Denote the revenue of the optimal mechanism for the distribution
π∗ by R. For any k > 0, there exists a T ∈ N such that for all
πi ′ ∈ {πi}∞i=T , the expected revenue is less than R + k.

Corrollary: Sampling Doesn’t Help

The above still holds if the mechanism designer has access to a
finite number of samples from the underlying true distribution.
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Sufficient Correlation Implies Near Optimal Revenue

Theorem: Sufficient Correlation Implies Near Optimal Revenue

For any distribution π∗ that satisfies the ACL condition with
optimal revenue R and given any positive constant k > 0, there
exists ε > 0 and a mechanism such that for all distributions, π′, for
which for all θ ∈ Θ, ||π∗(·|θ)− π′(·|θ)|| < ε, the revenue
generated by the mechanism is greater than or equal to R − k .
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A, Conitzer, and Stone 2017 - AAAI - Automated Design
of Robust Mechanisms
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Related Work

Unknown Correlated Distributions (Lopomo, Rigotti, and
Shannon 2009, Fu, Haghpanah, Hartline, and Kleinberg 2014)

Automated Mechanism Design (Conitzer and Sandholm 2002,
2004; Guo and Conitzer 2010; Sandholm and Likhodedov
2015)

Robust Optimization (Bertsimas and Sim 2004; Aghassi and
Bertsimas 2006)

Learning Bidder Distributions (Elkind 2007, Blume et. al.
2015, Morgenstern and Roughgarden 2015)

Simple vs. Optimal Mechanisms (Bulow and Klemperer 1996;
Hartline and Roughgarden 2009)
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Thank you for listening to my presentation.
Questions?
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I will also be presenting this as a poster at DD-2 during the
Thursday morning poster session. Please come by!
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