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Can reinforcement learning be data efficient
enough for real world applications®



Reinforcement Learning

_earn a policy that maps the world state to
an action that maximizes long term utility.
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Reinforcement Learning
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Policy Gradient Reinforcement Learning
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Monte Carlo Policy Gradient

1. Execute current policy for m steps.
2. Update policy with Monte Carlo policy gradient estimate.

3. Throw away observed data and repeat (on-policy).
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Sampling Error
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Correcting Sampling Error

Pretend data was generated by policy that most closely matches the
observed data.
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Correct weight on each state-action pair towards the policy we

actually took actions with. Importance Sampling
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s this method on-policy or off-policy”?

On-policy: Can only use data from the current policy.

Off-policy: Can use data from any policy.

Our method pretends on-policy data is off-policy data
and uses importance sampling to correct!
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Sampling Error Corrected Policy Gradient

1. Execute current policy for m steps.

2. Estimate empirical policy with maximum likelihood estimation.

3. Update policy with Sampling Error Corrected (SEC) policy
gradient estimate.

4. Throw away data and repeat (on-policy).
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—mpirical Results
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Related Work

1. Expected SARSA (van Seijen et al. 2009).
2. Expected Policy Gradients (Ciosek and Whiteson 2018).

—

3. Estimated Propensity Scores (Hirano et al. 2003, Li et al. 2015).

4. Many people outside of RL + Bandits:

e Blackbox importance sampling (Liu and Lee 2017), Bayesian
Monte Carlo (Gharamani and Rasmussen 2003).
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1. Any Monte Carlo method will have sampling error with finite data.
2. Sampling Error can slow down learning in policy gradient methods.

3. We introduced the sampling error corrected policy gradient
estimator to address this problem.

4. Similar approach can be used for other Monte Carlo estimators.
* For example: on- and off-policy policy evaluation.

Josiah Hanna, Scott Niekum, Peter Stone (to appear ICML 2019)
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Open Questions

1. Finite sample bias / variance analysis.

2. Correcting sampling error in online RL methods.
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Thank you!
Questions?
[phanna@cs.utexas.edu

LARG

Learning Agents Research Group
The University of Texas at Austin
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Ceci n'est pas un blank slide.
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