DJ-MC: A Reinforcement Learning Agent for Music Playlist Recommendation

Elad Liebman Maytal Saar-Tsechansky Peter Stone

University of Texas at Austin

May 11, 2015

Background \& Motivation

- Many Internet radio services (Pandora, last.fm, Jango etc.)
- Some knowledge of single song preferences
- No knowledge of preferences over a sequence
- ...But music is usually in context of sequence
- Key idea - learn transition model for song sequences
- Use reinforcement learning

Overview

- Use real song data to obtain audio information
- Formulate the playlist recommendation problem as a Markov Decision Process
- Train an agent to adaptively learn song and transition preferences
- Plan ahead to choose the next song (like a human DJ)
- Our results show that sequence matters, and can be efficiently learned

Reinforcement Learning Framework

The adaptive playlist generation problem - an episodic Markov Decision Process (MDP) (S,A,P,R,T). For a finite set of n songs and playlists of length k :

- State space S - the entire ordered sequence of songs played, $S=\left\{\left(a_{1}, a_{2}, \ldots, a_{i}\right) \mid 1 \leq i \leq k ; \forall j \leq i, a_{j} \in \mathcal{M}\right\}$.
- The set of actions A is the selection of the next song to play, $a_{k} \in A$, i.e. $A=\mathcal{M}$.
- S and A induce a deterministic transition function P. Specifically, $P\left(\left(a_{1}, a_{2}, \ldots, a_{i}\right), a^{*}\right)=\left(a_{1}, a_{2}, \ldots, a_{i}, a^{*}\right)$ (shorthand notation).
- $R(s, a)$ is the utility the current listener derives from hearing song a when in state s.
- $T=\left\{\left(a_{1}, a_{2}, \ldots a_{k}\right)\right\}$: the set of playlists of length k.

Reinforcement Learning Framework

The adaptive playlist generation problem - an episodic Markov Decision Process (MDP) (S,A,P,R,T). For a finite set of n songs and playlists of length k :

- State space S - the entire ordered sequence of songs played, $S=\left\{\left(a_{1}, a_{2}, \ldots, a_{i}\right) \mid 1 \leq i \leq k ; \forall j \leq i, a_{j} \in \mathcal{M}\right\}$.
- The set of actions A is the selection of the next song to play, $a_{k} \in A$, i.e. $A=\mathcal{M}$.
- S and A induce a deterministic transition function P. Specifically, $P\left(\left(a_{1}, a_{2}, \ldots, a_{i}\right), a^{*}\right)=\left(a_{1}, a_{2}, \ldots, a_{i}, a^{*}\right)$ (shorthand notation).
- $R(s, a)$ is the utility the current listener derives from hearing song a when in state s.
- $T=\left\{\left(a_{1}, a_{2}, \ldots a_{k}\right)\right\}$: the set of playlists of length k.

Reinforcement Learning Framework

The adaptive playlist generation problem - an episodic Markov Decision Process (MDP) (S,A,P,R,T). For a finite set of n songs and playlists of length k :

- State space S - the entire ordered sequence of songs played, $S=\left\{\left(a_{1}, a_{2}, \ldots, a_{i}\right) \mid 1 \leq i \leq k ; \forall j \leq i, a_{j} \in \mathcal{M}\right\}$.
- The set of actions A is the selection of the next song to play, $a_{k} \in A$, i.e. $A=\mathcal{M}$.
- S and A induce a deterministic transition function P. Specifically, $P\left(\left(a_{1}, a_{2}, \ldots, a_{i}\right), a^{*}\right)=\left(a_{1}, a_{2}, \ldots, a_{i}, a^{*}\right)$ (shorthand notation).
- $R(s, a)$ is the utility the current listener derives from hearing song a when in state s.
- $T=\left\{\left(a_{1}, a_{2}, \ldots a_{k}\right)\right\}$: the set of playlists of length k.

Reinforcement Learning Framework

The adaptive playlist generation problem - an episodic Markov Decision Process (MDP) (S,A,P,R,T). For a finite set of n songs and playlists of length k :

- State space S - the entire ordered sequence of songs played, $S=\left\{\left(a_{1}, a_{2}, \ldots, a_{i}\right) \mid 1 \leq i \leq k ; \forall j \leq i, a_{j} \in \mathcal{M}\right\}$.
- The set of actions A is the selection of the next song to play, $a_{k} \in A$, i.e. $A=\mathcal{M}$.
- S and A induce a deterministic transition function P. Specifically, $P\left(\left(a_{1}, a_{2}, \ldots, a_{i}\right), a^{*}\right)=\left(a_{1}, a_{2}, \ldots, a_{i}, a^{*}\right)$ (shorthand notation).
- $R(s, a)$ is the utility the current listener derives from hearing song a when in state s.
- $T=\left\{\left(a_{1}, a_{2}, \ldots a_{k}\right)\right\}$: the set of playlists of length k.

Reinforcement Learning Framework

The adaptive playlist generation problem - an episodic Markov Decision Process (MDP) (S,A,P,R,T). For a finite set of n songs and playlists of length k :

- State space S - the entire ordered sequence of songs played, $S=\left\{\left(a_{1}, a_{2}, \ldots, a_{i}\right) \mid 1 \leq i \leq k ; \forall j \leq i, a_{j} \in \mathcal{M}\right\}$.
- The set of actions A is the selection of the next song to play, $a_{k} \in A$, i.e. $A=\mathcal{M}$.
- S and A induce a deterministic transition function P. Specifically, $P\left(\left(a_{1}, a_{2}, \ldots, a_{i}\right), a^{*}\right)=\left(a_{1}, a_{2}, \ldots, a_{i}, a^{*}\right)$ (shorthand notation).
- $R(s, a)$ is the utility the current listener derives from hearing song a when in state s.
- $T=\left\{\left(a_{1}, a_{2}, \ldots a_{k}\right)\right\}$: the set of playlists of length k.

Song Descriptors

- Used a large archive - The Million Song Dataset (Bertin-Mahieux et al.
- Feature analysis and metadata provided by The Echo Nest
- 44745 different artists, 10^{6} songs
- Used features describing timbre (spectrum), rhythmic characteristics, pitch and loudness
- 12 meta-features in total, out of which 2 are 12-dimensional, resulting in a 34-dimensional feature vector

Song Representation

To obtain more compact state and action spaces, we represent each song as a vector of indicators marking the percentile bin for each individual descriptor:

Transition Representation

To obtain more compact state and action spaces, we represent each transition as a vector of pairwise indicators marking the percentile bin transition for each individual descriptor:

Modeling The Reward Function

We make several simplifying assumptions:

- The reward function R corresponding to a listener can be factored as $R(s, a)=R_{s}(a)+R_{t}(s, a)$.
- For each feature, for each each 10-percentile, the listener assigns reward
- for each feature, for each percentile-to-percentile transition, the listener assigns transition reward
- In other words, each listener internally assigns 3740 weights which characterize a unique preference.
- Transitions considered throughout history, stochastically (last song - non-Markovian state signal)
- totalReward $_{t}=R_{s}\left(a_{t}\right)+R_{t}\left(\left(a_{1}, \ldots, a_{t-1}\right), a_{t}\right)$ where $E\left[R_{t}\left(\left(a_{1}, \ldots, a_{t-1}\right), a_{t}\right)\right]=\sum_{i=1}^{t-1} \frac{1}{i^{2}} r_{t}\left(a_{t-i}, a_{t}\right)$

Expressiveness of the Model

- Does the model capture differences between separate types of transition profiles? Yes
- Take same pool of songs
- Consider songs appearing in sequence originally vs. songs in random order
- Song transition profiles clearly different (19 of 34 features separable)

Learning Initial Models

Planning via Tree Search

Filter Upper Median of Corpus

Generate Random Rollouts

Use Model to Evaluate Rollouts

Play $1^{\text {st }}$ Song of Most Promising Rollout
(Instantiate if planning over types)

Input: Song Corpus M, sequence length K

Experimental Evaluation in Simulation

- Use real user-made playlists to model listeners
- Generate collections of random listeners based on models
- Test algorithm in simulation
- Compare to baselines: random, and greedy
- Greedy only tries to learn song rewards

Experimental Evaluation in Simulation

- DJ-MC agent gets more reward than an agent which greedily chooses the "best" next song
- Clear advantage in "cold start" scenarios

Experimental Evaluation on Human Listeners

- Simulation useful, but human listeners are (far) more indicative
- Implemented a lab experiment version, with two variants: DJ-MC and Greedy
- 24 subjects interacted with Greedy (learns song preferences)
- 23 subjects interacted with DJ-MC (also learns transitions)
- Spend 25 songs exploring randomly, 25 songs exploiting (still learning)
- queried participants on whether they liked/disliked songs and transitions

Experimental Evaluation on Human Listeners

- To analyze results and estimate distributions, used bootstrap resampling
- DJ-MC gains substantially more reward (likes) for transitions
- Comparable for song transitions
- Interestingly, transition reward for Greedy somewhat better than random

Experimental Evaluation on Human Listeners

Experimental Evaluation on Human Listeners

Related Work

- Chen et al., Playlist prediction via metric embedding, KDD 2012
- Aizenberg et al., Build your own music recommender by modeling internet radio streams, WWW 2011
- Zheleva et al., Statistical models of music-listening sessions in social media, WWW 2010
- Mcfee and Lanckriet, The Natural Language of Playlists, ISMIR 2011

Summary

- Sequence matters.
- Learning meaningful sequence preferences for songs is possible.
- A reinforcement-learning approach that models transition preferences does better (on actual human participants) compared to a method that focuses on single song preferences only.
- Learning can be done with respect to a single listener and online, in reasonable time and without strong priors.

Questions?

(c) bootstrapped disribution, geedy vs, d-mc
songreward $25-50$

Thank you for listening!

A few words on representative selection

1: Input: data $x_{0} \ldots x_{m}$, required distance δ
2: Initialize representatives $=\emptyset$.
3: Initialize clusters $=\emptyset$
4: representative assignment subroutine, RepAssign, lines 5-22:
for $i=0$ to m do
Initialize dist $=\infty$
Initialize representative $=$ null
for rep in representatives do
if $d\left(x_{i}\right.$, rep $) \leq$ dist then
representative $=$ rep
dist $=d\left(x_{i}, r e p\right)$
end if
end for
if dist $\leq \delta$ then
add x_{i} to cluster $r_{\text {representative }}$
else
representative $=x_{i}$
Initialize cluster ${ }_{\text {representative }}=\emptyset$
add x_{i} to cluster representative
add cluster representative to clusters
end if
22: end for

A few words on representative selection

1: Input: data $x_{0} \ldots x_{m}$, required distance δ
2: $t=0$
3: Initialize representatives ${ }_{t=0}=\emptyset$.
4: Initialize clusters $=\emptyset$
5: repeat
6: $\quad t=t+1$
7: call RepAssign subroutine, lines 5-22 of Algorithm 2
8: Initialize representatives ${ }_{t}=\emptyset$
9: for cluster in clusters do
10: \quad representative $=\underset{s \in \text { cluster }}{\operatorname{argmin}} \sum_{x \in \text { cluster }} d(x, s)$ s.t.
$\forall x \in$ cluster. $d(x, s) \leq \delta$
11: add representative to representatives ${ }_{t}$
12: end for
13: until representatives ${ }_{t} \equiv$ representatives $_{t-1}$

Tree-Search Algorithm

1: Input: Song corpus \mathcal{M}, planning horizon q
2: Select upper median of $\mathcal{M}, \mathcal{M}^{*}$, based on R_{S}
3: BestTrajectory = null
4: HighestExpectedPayoff $=-\infty$
5: while computational power not exhausted do
6: \quad trajectory $=$ []
7: for $1 \ldots . . q$ do
8: \quad song \leftarrow selected randomly from \mathcal{M}^{*} (avoiding repetitions)
9: optional:
song_type \leftarrow selected randomly from song_types $\left(\mathcal{M}^{*}\right)$
(avoiding repetitions, song_types(•) reduces the set to clusters)
add song to trajectory

end for

12: expectedPayoffForTrajectory $=$

$$
R_{s}\left(\text { song }_{1}\right)+\sum_{i=2}^{q}\left(R_{t}\left(\left(\text { song }_{1}, \ldots, \text { song }_{i-1}\right), \text { song }_{i}\right)+R_{s}\left(\text { song }_{i}\right)\right)
$$

13: if expectedPayoffForTrajectory > HighestExpectedPayoff then
14: \quad HighestExpectedPayoff $=$ expectedPayoffForTrajectory
15: \quad BestTrajectory $=$ trajectory
16: end if
17: end while
18: optional: if planning over types, replace BestTrajectory[0] with song.
19: return BestTrajectory[0]

Model Update

1: Input: Song corpus, \mathcal{M}
Planned playlist duration, K
2: for $i \in\{1, \ldots, K\}$ do
3: Use Algorithm 4 to select song a_{i}, obtaining reward r_{i}
4: \quad let $\bar{r}=\operatorname{average}\left(\left\{r_{1}, \ldots, r_{i-1}\right\}\right)$
5: $\quad r_{\text {incr }}=\log \left(r_{i} / \bar{r}\right)$
weight update:
6: $\quad w_{s}=\frac{R_{s}\left(a_{i}\right)}{R_{s}\left(a_{i}\right)+R_{t}\left(a_{i-1}, a_{i}\right)}$
7: $\quad w_{t}=\frac{R_{t}\left(a_{i-1}, a_{i}\right)}{R_{s}\left(a_{i}\right)+R_{t}\left(a_{i-1}, a_{i}\right)}$
8: $\quad \phi_{s}=\frac{i}{i+1} \cdot \phi_{s}+\frac{1}{i+1} \cdot \theta_{s} \cdot w_{s} \cdot r_{\text {incr }}$
9: $\quad \phi_{t}=\frac{i}{i+1} \cdot \phi_{t}+\frac{1}{i+1} \cdot \theta_{t} \cdot w_{t} \cdot r_{\text {incr }}$
10: $\operatorname{Per} d \in$ descriptors, normalize $\phi_{s}^{d}, \phi_{t}^{d}$
(where ϕ_{x}^{d} denotes coordinates in ϕ_{x} corresponding to 10-percentile bins of descriptor d)
11: end for

Initializing Song Preferences

1: Input: Song corpus, \mathcal{M}
Number of preferred songs to be provided by listener, k_{s}
2: initialize all coordinates of ϕ_{s} to $1 /\left(k_{s}+\#\right.$ bins $)$
3: preferredSet $=\left\{a_{1}, \ldots, a_{k_{s}}\right\}$ (chosen by the listener)
4: for $i=1$ to k_{s} do
5: $\quad \phi_{s}=\phi_{s}+\frac{1}{\left(k_{s}+1\right)} \cdot \theta_{s}\left(a_{i}\right)$
6: end for

Initializing Transition Preferences

1: Input: Song corpus \mathcal{M}
Number of transitions to poll the listener, k_{t}
2: initialize all coordinates of ϕ_{t} to $1 /\left(k_{t}+\#\right.$ bins $)$
3: Select upper median of $\mathcal{M}, \mathcal{M}^{*}$, based on R_{s}
4: $\delta=10$ th percentile of all pairwise distances between songs in \mathcal{M}
5: representative set $\mathcal{C}=\delta$-medoids $\left(\mathcal{M}^{*}\right)$
6: song $_{0}=$ choose a song randomly from \mathcal{C}
7: for $i=1$ to k_{t} do
8: \quad song $_{i} \leftarrow$ chosen by the listener from \mathcal{C}
9: $\quad \phi_{t}=\phi_{t}+\frac{1}{\left(k_{t}+1\right)} \cdot \theta_{t}\left(\right.$ song $_{i-1}$, song $\left._{i}\right)$
10: end for

Full DJ-MC Architecture

1: Input: \mathcal{M} - song corpus, K - planned playlist duration, k_{s} number of steps for song preference initialization, k_{t} - the number of steps for transition preference initialization Initialization:
1: Initialize song preferences with corpus \mathcal{M} and parameter k_{s} to initialize song weights ϕ_{s}.
2: Initialize transition preferences with corpus \mathcal{M} and parameter k_{t} to initialize transition weights ϕ_{t}.
Planning and Model Update:
1: Simultaneously exploit and learn for K steps with corpus \mathcal{M} (this procedure iteratively selects the next song to play by calling the tree search procedure, and then updates R_{s} and R_{t}. This is repeated for K steps.)

Joint Feature Dependence

Joint Feature Dependence

