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Abstract

To excel in challenging tasks, intelligent agents need sophisticated mechanisms for action

selection: they need policies that dictate what action to take in each situation. Reinforcement

learning (RL) algorithms are designed to learn such policies given only positive and negative

rewards. Two contrasting approaches to RL that are currently in popular use are temporal

difference (TD) methods, which learn value functions, and evolutionary methods, which opti-

mize populations of candidate policies. Both approaches have had practical successes but few

studies have directly compared them. Hence, there are no general guidelines describing their

relative strengths and weaknesses. In addition, there has been little cross-collaboration, with

few attempts to make them work together or to apply ideas from one to the other. This article

aims to address these shortcomings via three empirical studies that compare these methods and

investigate new ways of making them work together.

First, we compare the two approaches in a benchmark task and identify variations of the

task that isolate factors critical to each method’s performance. Second, we investigate ways

to make evolutionary algorithms excel at on-line tasks by borrowing exploratory mechanisms

traditionally used by TD methods. We present empirical results demonstrating a dramatic

performance improvement. Third, we explore a novel way of making evolutionary and TD

methods work together by using evolution to automatically discover good representations for

TD function approximators. We present results demonstrating that this novel approach can

outperform both TD and evolutionary methods alone.

Keywords: reinforcement learning, temporal difference methods, evolutionary computation,

neural networks, robot soccer, autonomic computing



1 Introduction

A primary focus of artificial intelligence is the design of intelligent agents. To succeed, such agents
must tackle two main challenges, as described by Prescott, Bryson, and Seth (2007): 1) identifying
the most useful set of available actions, called action specification, and 2) finding a good policy
that indicates what action to take in each situation, called action selection. This article focuses on
the latter problem by investigating how such policies can be discovered via reinforcement learning
(RL) (Sutton & Barto, 1998). In RL, agents never see examples of correct or incorrect behavior but
instead must learn policies using a much weaker form of feedback: positive and negative delayed
rewards. By interacting with their environment, such agents strive to learn policies that maximize
the reward they accrue over the long term.

Two contrasting approaches to RL that are currently in popular use are temporal difference
(TD) methods (Sutton, 1988) and evolutionary algorithms (Moriarty, Schultz, & Grefenstette,
1999). Temporal difference methods rely on the concept of value functions, which indicate, for a
particular policy, the long-term value of taking a particular action in a particular situation, or state.
By combining principles of dynamic programming with statistical sampling, TD methods use the
immediate rewards received by an agent to incrementally improve its estimated value function and
thereby its policy. By contrast, evolutionary algorithms for RL do not reason about value functions.
Instead, they simulate the process of natural selection to optimize a population of candidate policies.
Like other policy search methods (Sutton, McAllester, Singh, & Mansour, 2000a; Ng & Jordan,
2000; Kohl & Stone, 2004), they directly search the space of policies for those that achieve the best
performance.

Although these two approaches to learning action selection policies have both had success in
difficult RL tasks, only a few studies (e.g. Runarsson & Lucas, 2005; Gomez & Miikkulainen, 2002;
Moriarty & Miikkulainen, 1996; Pollack, Blair, & Land, 1997; Whitley, Dominic, Das, & Anderson,
1993) have directly compared them. While these comparisons present useful data, they do not
isolate the factors critical to the performance of each method. As a result, there are currently no
general guidelines describing the methods’ relative strengths and weaknesses. In addition, since
the two research communities are largely disjoint and often focus on different problems, there has
been little cross-collaboration, with few attempts to make these different methods work together
or to apply ideas from one to the other. In this article, we present research that aims to address
these shortcomings by conducting rigorous empirical comparisons between TD and evolutionary
methods and investigating new methods for making them work together. In particular, we present
three empirical studies that compare, contrast, and even combine these two methods.

First, we apply NEAT (Stanley & Miikkulainen, 2002), one of the most successful evolutionary
RL methods, to 3 vs. 2 Keepaway (Stone, Kuhlmann, Taylor, & Liu, 2006), a robot soccer bench-
mark task at which TD methods have previously excelled (Kostiadis & Hu, 2001; Stone, Sutton,
& Kuhlmann, 2005). Our results in this domain demonstrate that NEAT discovers better policies
than Sarsa (Rummery & Niranjan, 1994; Singh & Sutton, 1996), the best performing TD method,
though it requires many more evaluations to do so. We also compare NEAT and Sarsa in two
variations of Keepaway designed to isolate factors critical to the performance of each method and
find that they have contrasting strengths and weaknesses. Together, these results shed light on the
open question of when evolutionary or TD methods perform better and why.

Second, we investigate ways to make evolutionary algorithms excel at on-line reinforcement
leaning tasks, i.e. those in which the agent learns, not in a safe environment like a simulator, but
in the real world. TD methods naturally excel at on-line tasks because they have explicit mecha-
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nisms for balancing exploration and exploitation. Evolutionary algorithms do not. We investigate
a novel way to borrow these mechanisms and apply them to evolutionary methods. We present
experiments in the benchmark mountain car domain (Sutton & Barto, 1998) and server job schedul-
ing (Whiteson & Stone, 2006a), a challenging stochastic domain drawn from the field of autonomic
computing (Kephart & Chess, 2003). The results demonstrate that this approach can dramatically
improve the on-line performance of evolutionary methods for RL.

Third, we explore a novel way of making evolutionary and TD methods work together called evo-
lutionary function approximation. While evolutionary methods are typically used to learn policies
directly, we use them to automatically discover good representations for TD function approximators,
which describe value functions using concise, parameterized functions. Hence, this novel synthesis
evolves agents that are better able to learn. In particular, we present NEAT+Q, which uses NEAT
to evolve neural network function approximators for Q-learning (Watkins, 1989), a popular TD
method. Additional experiments in the mountain car and server job scheduling domains demon-
strate that NEAT+Q can outperform both regular NEAT and Q-learning with manually designed
representations.

Together, these empirical studies contribute to our understanding of action selection in RL by 1)
providing some much-needed empirical comparisons between evolutionary and TD methods and 2)
examining novel combinations of these two approaches. The results demonstrate that good action
selection strategies can be found, not only by choosing between evolutionary and TD methods, but
by making them work together.

2 Background

In this section, we present brief overviews of the TD and evolutionary methods used in this article.

2.1 Temporal Difference Methods

TD methods rely on value functions to perform action selection. For a given policy, a value function
Q(s, a) estimates the long-term value of taking an action a in a state s. Each time the agent takes an
action, TD methods incrementally refine both the agent’s policy and the estimated value function
for that policy. In the simple case, the value function is stored in a table, with one entry for each
state-action pair.

In this article, we use Sarsa (Rummery & Niranjan, 1994; Singh & Sutton, 1996) and Q-
learning (Watkins, 1989) as representative TD methods. We choose them because they are well-
established, canonical methods with numerous empirical successes (Sutton, 1996; Crites & Barto,
1998; Stone et al., 2005). The update rule for tabular Sarsa is:

Q(s, a)← (1− α)Q(s, a) + α(r + γQ(s′, a′)) (1)

where s′ and a′ are the agent’s next state and action, respectively, α is the learning rate and γ is
a discount factor used to weight immediate rewards more heavily than future rewards. Q-learning
is a simple variation of Sarsa in which the update is based, not on the action the agent took in the
subsequent state, but on the optimal action available in that state. Hence, its update rule is:

Q(s, a)← (1− α)Q(s, a) + α(r + γmaxa′Q(s′, a′)) (2)
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(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Figure 1: Examples of NEAT’s structural mutation operators. In (a), a hidden node is added by splitting a link in
two. In (b), a link, shown with a thicker black line, is added to connect two nodes.

Since Q-learning’s update rule is independent of the policy the agent is following, it is an off-
policy TD method, a feature which facilitates proofs of convergence. In practice, both Sarsa and
Q-learning are known to perform well.

In domains or those with large or continuous state space, the value function cannot be repre-
sented in a table. In such cases, TD methods rely on function approximators, which represent the
mapping from state-action pairs to values via more concise, parameterized functions. Many func-
tion approximators are currently in use; in this article we use radial basis functions (RBFs) (Powell,
1987) and neural networks (Crites & Barto, 1998).

2.2 NeuroEvolution of Augmenting Topologies (NEAT)1

Unlike TD methods, evolutionary approaches to RL do not learn value functions. Instead, they
simulate the process of natural selection to optimize a population of candidate policies. Like
other policy search methods (Sutton et al., 2000a; Ng & Jordan, 2000; Kohl & Stone, 2004), they
directly search the space of policies for those that achieve the best performance. In this article, we
use NeuroEvolution of Augmenting Topologies (NEAT) as a representative evolutionary method.
NEAT is an appropriate choice because of its empirical successes on difficult RL tasks like pole
balancing (Stanley & Miikkulainen, 2002) and robot control (Stanley & Miikkulainen, 2004a). In
addition, NEAT is appealing because, unlike many other optimization techniques, it automatically
learns an appropriate representation for the solution.

In a typical neuroevolutionary system (Yao, 1999), the weights of a neural network are strung
together to form an individual genome. A population of such genomes is then evolved by evaluating
each one and selectively reproducing the fittest individuals through crossover and mutation. Most
neuroevolutionary systems require the designer to manually determine the network’s topology (i.e.
how many hidden nodes there are and how they are connected). By contrast, NEAT automatically
evolves the topology to fit the complexity of the problem. It combines the usual search for network
weights with evolution of the network structure.

Unlike other systems that evolve network topologies and weights, NEAT begins with a uniform
population of simple networks with no hidden nodes and inputs connected directly to outputs.
In addition to normal weight mutations, NEAT also has structural mutations, shown in Figure 1,
which add hidden nodes and links to the network. Only those structural mutations that improve
performance tend to survive; in this way, NEAT searches through a minimal number of weight
dimensions and finds the appropriate level of complexity for the problem.

Since NEAT is a general purpose optimization technique, it can be applied to a wide variety of
problems. For reinforcement learning tasks, NEAT typically evolves action selectors, which directly

1Section 2.2 is adapted from the original NEAT paper (Stanley & Miikkulainen, 2002).
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map states to the action the agent should take in that state. Hence, policies are represented directly,
not via value functions as in TD methods.

3 Comparing NEAT and Sarsa Approaches to Action Selection

Although both evolutionary and TD methods have had success in difficult RL tasks, only a few
studies (e.g. Runarsson & Lucas, 2005; Gomez & Miikkulainen, 2002; Moriarty & Miikkulainen,
1996; Pollack et al., 1997; Whitley et al., 1993) have directly compared them. While these compar-
isons present useful data, they do not isolate the factors critical to the performance of each method.
As a result, there are currently no general guidelines describing the methods’ relative strengths and
weaknesses. The goal of our first empirical study is to address this shortcoming by performing a
rigorous comparison of the two approaches, not only on a benchmark RL task, but on variations of
that task designed to reveal which factors have the greatest effect on performance.

No such comparison can ever be conclusive because the results depend on the specific domains
tested. Nonetheless, careful experiments can contribute substantially to our understanding of
which methods to use when. In our first empirical study, we conduct experiments in 3 vs. 2
Keepaway (Stone et al., 2006), a standard RL benchmark domain based on robot soccer. Keepaway
is an appealing platform for empirical comparisons because the performance of TD methods in
it has already been established in previous studies (Kostiadis & Hu, 2001; Stone et al., 2005).
While evolutionary methods have been applied to variations of Keepaway (Hsu & Gustafson, 2002;
Whiteson, Kohl, Miikkulainen, & Stone, 2005), they have never been applied to the benchmark
version of the task.

Empirical comparisons are limited not just by the domain but also by the specific methods
tested. Many evolutionary and TD methods are currently in use and it is not feasible to test
them all. In this empirical study, we evaluate Sarsa with RBF function approximators, the best
performing TD method to date in this domain (Stone et al., 2006), and compare its performance to
NEAT, which has a strong record on challenging RL tasks (Stanley & Miikkulainen, 2002, 2004a,
2004b). We present results, not just in the benchmark version of Keepaway, but in two variations
designed to isolate factors critical to the performance of each method.

3.1 The Benchmark Keepaway Task

Keepaway is a subproblem of the full 11 vs. 11 simulated soccer game in which a team of three
keepers attempts to maintain possession of the ball while two takers attempt to steal the ball or
force it out of bounds, ending an episode. Figure 2 depicts three keepers playing against two takers.
The agents choose not from the simulator’s primitive actions but from a set of higher-level macro-
actions implemented as part of the player. These macro-actions can last more than one time step
and the keepers make decisions only when a macro-action terminates. The macro-actions are Hold
Ball, Get Open, Receive, and Pass (Stone et al., 2005). The agents make decisions at discrete time
steps, at which point macro-actions are initiated and terminated. Takers do not learn and always
follow a static hand-coded strategy.

The keepers learn in a constrained policy space: they have the freedom to select actions only
when in possession of the ball. A keeper in possession may either hold the ball or pass to one of
its teammates. Therefore in 3 vs. 2 Keepaway, a keeper with the ball may select among 3 actions:
Hold Ball, Pass to Closest Teammate, or Pass to Farthest Teammate. Keepers not in possession of
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the ball are required to execute the Receive macro-action in which the keeper who can reach the
ball the fastest goes to the ball and the remaining players use the Get Open macro-action.

Figure 2: The 13 state variables
used in Keepaway, including 11 dis-
tances between players and the cen-
ter of the field and 2 angles along
passing lanes.

To solve this task using NEAT, we trained a population of 100
neural network action selectors, each with 13 inputs, one for each
state feature, and 3 outputs, one for each macro-action. When
a given network controls the keepers, their actions correspond to
the output with the highest activation. Its performance in a given
episode is its hold time: the number of seconds the keepers con-
trol the ball before it goes out of bounds or is stolen by a taker.
Since Keepaway is a stochastic domain (with noisy sensors and
actuators), each network was evaluated for 60 episodes on aver-
age to obtain accurate fitness estimates. In informal experiments,
fewer episodes per network caused evolution to stagnate while more
episodes led to slower learning. NEAT parameters were set the
same as reported in previous work (Taylor, Whiteson, & Stone,
2006).

To solve this task using Sarsa, we used RBF function approx-
imators with Gaussian basis functions of width σ = 0.25. While
other types of function approximators, including CMACs and neu-
ral networks, have been successfully applied to this task, we use RBFs because they have achieved
the best performance to date (Stone et al., 2006). A learning rate of α = 0.05, an ǫ-greedy explo-
ration strategy with ǫ = 0.01 were likewise used because previous studies found them to be effective
in the Keepaway domain.

The RoboCup Soccer Server’s time steps are in 0.1 second increments and all times reported
below refer to simulator time. Thus we report only sample complexity and not computational
complexity; the running time for our learning methods is negligible compared to that of the Soccer
Server. The machines used for our experiments allowed us to speed up the simulator by a factor of
two so that the real experimental time required was roughly half the reported simulator time.
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Figure 3: Mean hold times of the best policies
learned by NEAT and Sarsa in the benchmark Keep-
away task. Error bars show 95% confidence intervals.

Figure 3 shows the results of our experiments
comparing these two methods. The graph plots,
at regular intervals, the hold time of the best pol-
icy discovered so far, averaged over 1,000 episodes.
These results are also averaged over 20 independent
trials for Sarsa and 5 for NEAT. Each trial was run
until performance plateaued. Since the Sarsa runs
plateau much sooner than the NEAT curves, we
were able to conduct more of them. Note that the
learning curve is extended on the graph even af-
ter learning has finished, denoted by a horizontal
performance line without plotted data points.

The results demonstrate that NEAT can learn
better policies in the benchmark Keepaway task
than Sarsa with RBFs. Unpaired Student’s t-tests
conducted at regular intervals confirm that, after 650 hours of training, the difference in average
hold times is statistically significant with 95% confidence, despite slightly overlapping confidence
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intervals. These results also highlight an important trade-off between the two methods. While
NEAT ultimately learns better policies, it requires many more evaluations to do so. Sarsa learns
much more rapidly and in the early part of learning its average policy is much better than NEAT’s.

In order to discover what characteristics of the Keepaway task most critically affect the speed
and quality of learning in each method, we conducted additional experiments in two variations of
the Keepaway task. The remainder of this section describes these variations and the results of our
experiments therein.

3.2 The Fully Observable Keepaway Task

In the benchmark Keepaway task, the agents’ sensors are noisy. Since the agents can only partially
observe the true state of the world, the task is non-Markovian, i.e. the probability distribution
over next states is not independent of the agents’ state and action histories. This fact could be
problematic for Sarsa since TD update rules assume the environment is Markovian, though in
practice they can still perform well when it is not (Sutton & Barto, 1998). By contrast, NEAT can
evolve recurrent networks that cope with non-Markovian tasks by recording important information
about previous states (Stanley & Miikkulainen, 2002; Gomez & Schmidhuber, 2005). Therefore,
we hypothesized that Sarsa’s relative performance would improve if sensor noise was removed,
rendering the Keepaway task fully observable and effectively Markovian.2

 8

 10

 12

 14

 16

 18

 0  200  400  600  800  1000

M
e
a
n
 H

o
ld

 T
im

e
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Keepaway: Fully Observable Task

Sarsa

NEAT

 8

 10

 12

 14

 16

 18

 0  200  400  600  800  1000

M
e
a
n
 H

o
ld

 T
im

e
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Keepaway: Fully Observable Task

Sarsa

NEAT

 8

 10

 12

 14

 16

 18

 0  200  400  600  800  1000

M
e
a
n
 H

o
ld

 T
im

e
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Keepaway: Fully Observable Task

Sarsa

NEAT

 8

 10

 12

 14

 16

 18

 0  200  400  600  800  1000

M
e
a
n
 H

o
ld

 T
im

e
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Keepaway: Fully Observable Task

Sarsa

NEAT

Figure 4: Mean hold times of the best policies
learned by NEAT and Sarsa in the fully observable
Keepaway task. Error bars show 95% confidence in-
tervals.

To test this hypothesis we conducted 20 trials of
Sarsa and 5 trials of NEAT in the fully observable
Keepaway task. Figure 4 shows the results of these
experiments. As in the benchmark version of the
task, Sarsa learns much more rapidly than NEAT.
However, in the fully observable version, Sarsa also
learns substantially better policies. Unpaired Stu-
dent’s t-tests confirm that the difference in average
hold times is statistically significant with 95% con-
fidence for all points graphed.

These results verify our hypothesis that full ob-
servability is a critical factor in Sarsa’s performance
in the Keepaway task. While Sarsa can learn well in
the partially observable benchmark version, its per-
formance relative to NEAT improves dramatically
when sensor noise is removed. These results are not surprising given the way these two methods
work: one of Sarsa’s underlying assumptions is violated in the absence of the Markov property. By
contrast, NEAT makes no such assumption and therefore tasks with partial observability are not
particularly problematic.

2The state is still not truly Markovian because player velocities are not included. However, the Keepaway bench-
mark task does not include velocity because past research found that it was not useful for learning, since players
have low inertia and the field has a high coefficient of friction. Hence, we use the same state variables as previous
work (Stone et al., 2005, 2006) but note that without sensor noise the state is “effectively Markovian.”
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3.3 The Deterministic Keepaway Task

Even in the fully observable version of the task, which has no sensor noise, the Keepaway task
remains highly stochastic due to noise in the agents’ actuators and randomness in the agents’
initial states. In both the benchmark task and the fully observable variation described above, this
stochasticity greatly slows NEAT’s learning rate. A policy’s measured fitness in a given episode
has substantial variance and NEAT is able to learn well only when the fitness estimate for each
candidate policy is averaged over many episodes. Therefore, we tested a third version of Keepaway
in which noise was removed from the sensors and actuators and the agents’ initial states were fixed.
These changes yield a domain with a completely deterministic fitness function. We hypothesized
that NEAT would learn much faster in this deterministic variation as it could perfectly evaluate
each network in a single episode.

To test this hypothesis, we conducted 20 trials of Sarsa and 5 trials of NEAT in the deterministic
Keepaway task. Figure 5 shows the results of these experiments. In the deterministic version of
the task, Sarsa’s speed advantage disappears. NEAT learns more rapidly than Sarsa, in addition to
discovering dramatically superior policies. Unpaired Student’s t-tests confirm that the difference
in average hold times is statistically significant with 95% confidence for all points with at least
10 hours of training. We conducted additional informal experiments to test whether removing the
actuator noise but using a random start state, or allowing actuator noise but fixing the start state,
affected the methods differently. While Sarsa performed similarly in both cases, we found that
NEAT’s performance improved more when actuator noise was removed than when the start state
was fixed. This result makes sense since actuator noise, by affecting every state, likely adds more
noise to the fitness function than randomness in the initial state.
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Figure 5: Mean hold times of the best policies
learned by NEAT and Sarsa in the deterministic Keep-
away task. Error bars show 95% confidence intervals.

These results confirm our hypothesis that
stochasticity in the Keepaway domain critically af-
fects how quickly NEAT can learn. In the bench-
mark task, NEAT learns well only when fitness es-
timates are averaged over many episodes, resulting
in slow learning relative to Sarsa. By contrast, in
the deterministic version, only one episode of evalu-
ation is necessary for each network, enabling NEAT
to learn much more rapidly. Furthermore, making
the Keepaway task deterministic greatly improves,
relative to Sarsa, the quality of the best policies
discovered. This outcome is surprising since the
deterministic version of the task is also fully ob-
servable and should be well suited to TD methods.
These results demonstrate that, in the determinis-
tic version of the task, the advantage Sarsa gains from full observability is far outweighed by the
advantage NEAT gains from the ability to perform rapid and accurate fitness evaluations.

Our results therefore suggest that the choice between evolutionary and TD methods can be
made based on some of the target task’s characteristics. In deterministic domains, where the
fitness of a candidate policy can be evaluated quickly, evolutionary methods are likely to excel. If
the task is fully observable but nondeterministic, TD methods may have a critical advantage. If
the task is partially observable and nondeterministic, each method may have different advantages:
TD methods in speed and evolutionary methods in ultimate performance.

7



4 On-Line Evolutionary Computation

If TD and evolutionary methods have contrasting advantages, the question naturally arises: can
the performance of one method be improved by borrowing elements of the other? In our sec-
ond empirical study, we demonstrate that the answer is yes. In particular, we demonstrate that
the performance of evolutionary methods can be dramatically improved by borrowing exploratory
mechanisms traditionally used by TD methods.

While evolutionary methods have had much empirical success in difficult RL tasks (Stanley
& Miikkulainen, 2002, 2004b; Whiteson et al., 2005), this success is largely restricted to off-line
scenarios, in which the agent learns, not in the real-world, but in a “safe” environment like a
simulator. Consequently, its only goal is to learn a good policy as quickly as possible. It does not
care how much reward it accrues while it is learning because those rewards are only hypothetical
and do not correspond to real-world costs. If the agent tries disastrous policies, only computation
time is lost.

Unfortunately, many reinforcement learning problems cannot be solved off-line because no simu-
lator is available. Sometimes the dynamics of the task are unknown or are too complex to accurately
simulate. In such domains, the agent has no choice but to learn on-line: by interacting with the
real world and adjusting its policy as it goes. In an on-line learning scenario, it is not enough for
an agent to learn a good policy quickly. It must also maximize the reward it accrues while it is
learning because those rewards correspond to real-world costs. For example, if a robot learning
on-line tries a policy that causes it to drive off a cliff, then the negative reward the agent receives
is not hypothetical; it corresponds to the very real cost of fixing or replacing the robot.

To excel in on-line scenarios, a learning algorithm must effectively balance exploration, the
search for better policies, with exploitation, use of the current best policy to maximize reward.
Evolutionary methods already strive to perform this balance. In fact, Holland (1975) argues that
the reproduction mechanism encourages exploration, since crossover and mutation result in novel
genomes, but also encourages exploitation, since each new generation is based on the fittest members
of the last one. However, reproduction allows evolutionary methods to balance exploration and
exploitation only across generations, not within them. Once the members of each generation have
been determined, they all typically receive the same evaluation time.

This approach makes sense in deterministic domains, where each member of the population can
be accurately evaluated in a single episode. However, most real-world domains are stochastic, in
which case fitness evaluations must be averaged over many episodes. In these domains, giving the
same evaluation time to each member of the population can be grossly suboptimal because, within
a generation, it is purely exploratory. Instead, an on-line evolutionary algorithm should exploit the
information gained earlier in the generation to systematically give more evaluations to the most
promising policies and avoid re-evaluating the weakest ones. Doing so allows evolutionary methods
to increase the reward accrued during learning.

In our second empirical study, we investigate on-line evolutionary computation, a novel approach
to achieving this balance that relies on exploratory mechanisms typically used by TD methods to
balance exploration and exploitation. To use these mechanisms in evolutionary computation, we
must modify the level at which they are applied. They cannot be applied at the level of individual
actions because evolutionary methods, lacking value functions, have no notion of the value of
individual actions. However, they can be applied at the level of episodes, in which entire policies
are assessed holistically. The same exploratory mechanisms used to select individual actions in TD
methods can be used to select policies for evaluation, allowing evolutionary algorithms to excel
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on-line by balancing exploration and exploitation within and across generations.
In particular, we examine three methods based on this approach. The first method, based on

ǫ-greedy selection (Watkins, 1989), switches probabilistically between searching for better policies
and re-evaluating the best known policy. Instead of distributing episodes of evaluation equally
among the members of a given generation, they are assigned probabilistically. At the beginning of
each episode, a policy is selected for evaluation. With probability ǫ, that policy is chosen randomly.
With probability 1− ǫ, the current generation champion is selected. By increasing the proportion
of evaluations given to the estimated strongest member of the population, ǫ-greedy evolution can
boost on-line reward.

The second method, based on softmax selection (Sutton & Barto, 1998), distributes evaluations
in proportion to each policy’s estimated fitness. As is typical in TD methods, softmax evolution
uses a Boltzmann distribution to favor policies with higher estimated fitness. Before each episode,
a policy p in a population P is selected with probability

ef(p)/τ

∑

p′∈P ef(p′)/τ
(3)

where f(p) is the fitness of policy p, averaged over all the episodes for which it has been previously
evaluated. Softmax selection provides a more nuanced balance between exploration and exploitation
than ǫ-greedy because it focuses its exploration on the most promising alternative to the current
best policy. It can quickly abandon poorly performing policies and reduce their impact on the
reward accrued during learning.

The third method, based on interval estimation (Kaelbling, 1993), computes confidence intervals
for the fitness of each policy and always evaluates the policy with the highest upper bound. Hence,
interval estimation evolution always selects the policy p ∈ P that maximizes:

f(p) + z(
100− α

200
)

σ(p)
√

e(p)
(4)

where [0, z(x)] is an interval within which the area under the standard normal curve is x. f(p),
σ(p) and e(p) are the fitness, standard deviation, and number of episodes, respectively, for policy
p. Interval estimation addresses an important disadvantage of both ǫ-greedy and softmax selection:
they do not consider the uncertainty of the estimates on which they base their selections. Interval
estimation evolution favors policies with high estimated value and also focuses exploration on the
most promising but uncertain policies.

To empirically evaluate these methods, we used two different reinforcement learning domains.
The first domain, mountain car, is a standard benchmark task requiring function approximation.
We use this domain to establish preliminary, proof-of-concept results. The second domain, server
job scheduling, is a large, probabilistic domain drawn from the field of autonomic computing. We
use this domain to assess whether these methods can scale to a much more complex task. We
use these domains instead of the Keepaway domain used in the first empirical study because their
simulators run much more quickly, enabling many more trials.

In the mountain car task (Sutton, 1996), an agent strives to drive a car to the top of a steep
mountain. The car cannot simply accelerate forward because its engine is not powerful enough
to overcome gravity. Instead, the agent must learn to drive backwards up the hill behind it, thus
building up sufficient inertia to ascend to the goal.
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While the mountain car task is a useful benchmark, it is a very simple domain. To assess
whether evolutionary function approximation can scale to a much more complex problem, we use
a challenging reinforcement learning task called server job scheduling. This domain is drawn from
the burgeoning field of autonomic computing (Kephart & Chess, 2003). The goal of autonomic
computing is to develop computer systems that automatically configure themselves, optimize their
own behavior, or diagnose and repair their own failures.

One autonomic computing task is server job scheduling (Whiteson & Stone, 2006a), in which a
server, such as a website’s application server or database, must determine in what order to process
the jobs currently waiting in its queue. Its goal is to maximize the aggregate utility of all the jobs it
processes. A utility function for each job type maps the job’s completion time to the utility derived
by the user (Walsh, Tesauro, Kephart, & Das, 2004). Since selecting a particular job for processing
necessarily delays the completion of all other jobs in the queue, the scheduler must weigh difficult
trade-offs to maximize aggregate utility.

Our experiments were conducted in a Java-based simulator. During each timestep, the server
removes one job from its queue and completes it. Also, a new job of a randomly selected type is
added to the end of the queue. Hence, the agent must make decisions about which job to process
next even as new jobs are arriving. For each job that completes, the scheduling agent receives
an immediate reward determined by that job’s utility function. Utility functions for the four job
types used in our experiments are shown in Figure 6. These utility functions result in a challenging
scheduling problem because they are 1) non-linear and 2) different for each job type. Hence, the
cost of delaying completion of any particular job depends not only on its type but on its current
age. Note that all these utilities are negative functions of completion time. Hence, the scheduling
agent strives to bring aggregate utility as close to zero as possible.
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Figure 6: The four utility functions.

As a baseline of comparison, we applied the orig-
inal, off-line version of NEAT to both the moun-
tain car and server job scheduling domains and av-
eraged its performance over 25 runs. NEAT pa-
rameters were set the same as reported in previous
work (Whiteson & Stone, 2006a). The population
size |P | was 100 and the number of episodes per gen-
eration e was 10,000. Hence, each member of the
population was evaluated for 100 episodes. Next,
we applied the ǫ-greedy, softmax, and interval es-
timation versions of NEAT to both domains using
the same parameter settings. Each of these on-line
methods has associated with it one additional pa-
rameter which controls the balance between explo-
ration and exploitation. For each method, we experimented informally with approximately ten
different settings of these parameters to find ones that worked well in the two tasks. Finally, we
averaged the performance of each method over 25 runs using the best known parameter settings.

Those settings were as follows. For ǫ-greedy, ǫ was set to 0.25. This value is larger than
is typically used in TD methods but makes intuitive sense, since exploration in NEAT is safer
than in TD methods. After all, even when NEAT explores, the policies it selects are not drawn
randomly from policy space. On the contrary, they are the children of the previous generation’s
fittest parents. For softmax, the appropriate value of τ depends on the range of fitness scores, which
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Figure 7: The uniform moving average reward accrued by off-line NEAT, compared to three versions of on-line
NEAT in the mountain car and server job scheduling domains.

differs dramatically between the two domains. Hence, different values were required for the two
domains: we set τ to 50 in mountain car and 500 in server job scheduling. For interval estimation,
α was set to 20, resulting in 80% confidence intervals.

Figure 7 summarizes the results of these experiments by plotting a uniform moving average
over the last 1,000 episodes of the total reward accrued per episode for each method. We plot
average reward because it is an on-line metric: it measures the amount of reward the agent accrues
while it is learning. The best policies discovered by evolution, i.e. the generation champions,
perform substantially higher than this average. However, using their performance as an evaluation
metric would ignore the on-line cost that was incurred by evaluating the rest of population and
receiving less reward per episode. Error bars on the graph indicate 95% confidence intervals. In
addition, unpaired Student’s t-tests confirm, with 95% confidence, the statistical significance of the
performance difference between each pair of methods except softmax and interval estimation.

The results clearly demonstrate that exploratory mechanisms borrowed from TD methods can
dramatically improve the on-line performance of evolutionary computation. All three on-line meth-
ods substantially outperform the off-line version of NEAT. In addition, the more nuanced strategies
of softmax and interval estimation fare better than ǫ-greedy. This result is not surprising since the
ǫ-greedy approach simply interleaves the search for better policies with exploitative episodes that
employ the best known policy. Softmax selection and interval estimation, by contrast, concentrate
exploration on the most promising alternatives. Hence, they spend fewer episodes on the weakest
individuals and achieve better performance as a result.

The on-line methods, especially interval estimation, show a series of periodic fluctuations. Each
of these fluctuations corresponds to one generation. The performance improvements within each
generation reflect the on-line methods’ ability to exploit the information gleaned from earlier
episodes. As the generation progresses, these methods become better informed about which in-
dividuals to favor when exploiting and average reward increases as a result.
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5 Evolutionary Function Approximation

The empirical study presented above demonstrates that evolution can be substantially improved
by incorporating elements of TD methods. However, the resulting algorithm remains essentially
an evolutionary one. In our third empirical study, we investigate a more ambitious integration of
evolutionary and TD methods. We show that the resulting combination, which we call evolutionary
function approximation, outperforms each of its constituent components.

When evolutionary methods are applied to reinforcement learning problems, they typically
evolve a population of action selectors, each of which remains fixed during its fitness evaluation.
The central insight behind evolutionary function approximation is that, if evolution is directed
to evolve value functions instead, then those value functions can be updated, using TD methods,
during each fitness evaluation. In this way, the system can evolve function approximators that are
better able to learn via TD.

By automatically finding effective representations, evolution can improve the performance of
TD methods. However, TD methods can also improve the performance of evolution. In particular,
evolutionary function approximation can enable synergistic effects between evolution and learning
via a biological phenomenon called the Baldwin Effect (Baldwin, 1896). This effect, which has
been demonstrated in evolutionary computation (Hinton & Nowlan, 1987; Ackley & Littman,
1991), occurs in two stages. First, learning speeds evolution because each individual need not be
perfect at birth; it need only be in the right neighborhood and learning adjusts it accordingly.
Second, those behaviors that were previously learned become known at birth because individuals
that possess them at birth have higher overall fitness and are favored by evolution.

In our third empirical study, we investigate the performance of NEAT+Q, an implementation
of evolutionary function approximation that uses NEAT to evolve topologies and initial weights of
neural networks that are better able to learn, via backpropagation, to represent the value estimates
provided by Q-learning. All that is required to make NEAT optimize value functions instead of
action selectors is a reinterpretation of its output values. The structure of neural network action
selectors (one input for each state feature and one output for each action) is already identical to that
of Q-learning function approximators. Therefore, if the weights of the networks NEAT evolves are
updated during their fitness evaluations using Q-learning and backpropagation, they will effectively
evolve value functions instead of action selectors. Hence, the outputs are no longer arbitrary values;
they represent the long-term discounted values of the associated state-action pairs and are used,
not just to select the most desirable action, but to update the estimates of other state-action pairs.

NEAT+Q combines the power of TD methods with the ability of NEAT to learn effective
representations. Traditional neural network function approximators put all their eggs in one basket
by relying on a single manually designed network to represent the value function. NEAT+Q, by
contrast, explores the space of such networks to increase the chance of finding a representation that
will perform well.

To evaluate evolutionary function approximation, we tested it in the mountain car and server
job scheduling domains (Whiteson & Stone, 2006a). Mountain car is a particularly relevant domain
because it is known to be difficult for neural network function approximators. Previous research has
demonstrated that TD methods can solve the task using several different function approximators,
including CMACs (Sutton, 1996), locally weighted regression (Boyan & Moore, 1995), and radial
basis functions (Kretchmar & Anderson, 1997). By giving the learner a priori knowledge about the
goal state and using methods based on experience replay, the mountain car problem has been solved
with neural networks too (Reidmiller, 2005). However, the task remains notoriously problematic
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for neural networks, as several researchers have noted that value estimates can easily diverge (e.g.
Boyan & Moore, 1995; Pyeatt & Howe, 2001). We hypothesized that this difficulty is due at least
in part to the problem of finding an appropriate representation. We use the mountain car domain
as a preliminary testbed for NEAT+Q in order to evaluate this hypothesis.

We tested NEAT+Q by conducting 25 runs in each domain and comparing the results to regular
NEAT (i.e. the off-line NEAT results presented in Section 4). NEAT+Q used the same parameter
settings. In addition, the eligibility decay rate λ was 0.0, the learning rate α was set to 0.1, and α

was annealed linearly for each member of the population until reaching zero after 100 episodes.3 In
scheduling, the discount factor γ was 0.95 and the agents use ǫ-greedy exploration with ǫ = 0.05.
Those values of γ and ǫ work well in mountain car too, though in the experiments presented here
they were set to 1.0 and 0.0 respectively, since Sutton (1996) found that discounting and exploration
are unnecessary in mountain car.

To test Q-learning without NEAT, we tried 24 different manual configurations of the neural
network function approximator in each domain. These configurations correspond to every possible
combination of the following parameter settings. The networks had feed-forward topologies with
0, 4, or 8 hidden nodes. The learning rate α was either 0.01 or 0.001. The annealing schedules
for α were linear, decaying to zero after either 100,000 or 250,000 episodes. The eligibility decay
rate λ was either 0.0 or 0.6. The other parameters, γ and ǫ, were set just as with NEAT+Q, and
the standard deviation of initial weights σ was 0.1. Each of these 24 configurations was evaluated
for 5 runs. In addition, we experimented informally with higher and lower values of α, higher
values of γ, slower linear annealing, exponential annealing, and no annealing at all, though none
performed as well as the results presented here. We took the setting with the highest performance4

and conducted an additional 20 runs, for a total of 25.
Figure 8 shows the results of our experiments in both domains comparing NEAT+Q to NEAT

and Q-learning with manually designed networks. Only the highest performing Q-learning configu-
ration is shown. For each method, the corresponding line in the graph represents a uniform moving
average over the aggregate reward received in the past 1,000 episodes. Error bars indicate 95%
confidence intervals. In addition, unpaired Student’s t-tests confirmed the statistical significance
of the performance difference between each pair of methods.

Note that, as with the on-line methods presented in Section 4, the progress of NEAT+Q consists
of a series of periodic fluctuations. Each period corresponds to one generation and the changes
within them are due to learning via backpropagation. Though each individual learns for many
episodes, those episodes do not occur consecutively but are spread across the entire generation.
Hence, each individual changes gradually during the generation as it is repeatedly evaluated. The
result is a series of intra-generational learning curves within the larger learning curve.

For the particular problems we tested and network configurations we tried, evolutionary function
approximation significantly improves performance over manually designed networks. NEAT+Q also
significantly outperforms regular NEAT in both domains. This result highlights the value of TD
methods on challenging reinforcement learning problems. Even when NEAT is employed to find
effective representations, the best performance is achieved only when TD methods are used to
estimate a value function. Hence, the relatively poor performance of Q-learning is not due to some
weakness in the TD methodology but merely to the failure to find a good representation.

3Other values of λ were tested in the context of NEAT+Q but had little effect on performance.
4Mountain car parameters were: 4 hidden nodes, α = 0.001, annealed to zero at episode 100,000, λ = 0.0. Server

job scheduling parameters were: 4 hidden nodes, α = 0.01, annealed to zero at episode 100,000, λ = 0.6.
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Figure 8: A comparison of the performance of manual and evolutionary function approximators in the mountain
car and server job scheduling domains.

Nonetheless, the possibility remains that additional engineering of the network structure, the
feature set, or the learning parameters would significantly improve Q-learning’s performance. In
particular, when Q-learning is started with one of the best networks discovered by NEAT+Q and
the learning rate is annealed aggressively, Q-learning matches NEAT+Q’s performance without
directly using evolutionary computation. However, it is unlikely that a manual search, no matter
how extensive, would discover these successful topologies, which contain irregular and partially
connected hidden layers.

In mountain car, the performance of the final NEAT+Q generation champions matches the
best results published by other researchers (e.g. Smart & Kaelbling, 2000). However, this does not
imply that neural networks are the function approximator of choice for the mountain car domain.
On the contrary, linear function approximators can solve this task in many fewer episodes (Sutton,
1996). This is not surprising because NEAT+Q is actually solving a more challenging problem.
Linear function approximators require the human designer to engineer a state representation in
which the optimal value function is linear with respect to those state features (or can be reasonably
approximated as such). By contrast, nonlinear function approximators like neural networks can
take a simpler state representation and learn the important nonlinear relationships. However, doing
so with neural networks is notoriously difficult in the mountain car task. Our results demonstrate
that evolutionary function approximation can overcome these difficulties.

Comparing Figures 7 and 8 reveals that on-line evolutionary computation provides a greater
performance boost than evolutionary function approximation. However, it is not necessary to choose
between these two approaches as they can be easily combined. Additional experiments (Whiteson
& Stone, 2006a) demonstrate that on-line evolutionary computation can boost the performance of
NEAT+Q as well as NEAT.

6 Related Work

A broad range of previous research is related in terms of both methods and goals to the techniques
presented in this article. This section highlights some of that research and contrasts it with this
work.
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6.1 Optimizing Representations for TD Methods

A major challenge of using TD methods is finding good representations for function approxima-
tors. This article addresses that problem by coupling TD methods with evolutionary techniques
like NEAT that are proven representation optimizers. However, many other approaches are also
possible.

One strategy is to train the function approximator using supervised methods that also optimize
representations. For example, Rivest and Precup (2003) train cascade-correlation networks as TD
function approximators. Cascade-correlation networks are similar to NEAT in that they grow in-
ternal topologies for neural networks. However, instead of using evolutionary computation to find
such topologies, they rely on the network’s error on a given training set to compare alternative rep-
resentations. The primary complication of Rivest and Precup’s approach is that cascade-correlation
networks, like many representation-optimizing supervised methods, need a large and stable training
set, which TD methods do not provide. Rivest and Precup address this problem with a caching
system that in effect creates a hybrid value function consisting of a table and a neural network.
While this approach delays the exploitation of the agent’s experience, it nonetheless represents a
promising way to marry the representation-optimizing capacity of cascade-correlation networks and
other supervised algorithms with the power of TD methods.

Mahadevan (2005) suggests another strategy: using spectral analysis to derive basis functions for
TD function approximators. His approach is similar to this work in that the agent is responsible for
learning both the value function and its representation. It is different in that the representation is
selected by analyzing the underlying structural properties of the state space, rather than evaluating
potential representations in the domain.

A third approach is advanced by Sherstov and Stone (2005): using the Bellman error generated
by TD updates to assess the reliability of the function approximator in a given region of the state
or action space. They use this metric to automatically adjust the breadth of generalization for a
CMAC function approximator. An advantage of this approach is that feedback arrives immediately,
since Bellman error can be computed after each update. A disadvantage is that the function
approximator’s representation is not selected based on its actual performance, which may correlate
poorly with Bellman error.

6.2 Combining Evolution with Other Learning Methods

Because of the potential performance gains offered by the Baldwin Effect, many researchers have
developed methods that combine evolutionary computation with other learning methods that act
within an individual’s lifetime. Some of this work is applied to supervised problems, in which evo-
lutionary computation can be coupled with any supervised learning technique such as backpropa-
gation in a straightforward manner. For example, Boers et al. (1995) introduce a neuroevolution
technique that, like NEAT, tries to discover appropriate topologies. They combine this method
with backpropagation and apply the result to a simple supervised learning problem. Also, Giraud-
Carrier (2000) uses a genetic algorithm to tune the parameters of RBF networks, which he applies
to a supervised classification problem.

Inducing the Baldwin Effect on reinforcement learning problems is more challenging, since they
do not automatically provide the target values necessary for supervised learning. Evolutionary
function approximation uses TD methods to estimate those targets, though researchers have tried
many other approaches. McQuestion and Miikkulainen (1997) present a neuroevolutionary tech-
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nique that relies on each individual’s parents to supply targets and uses backpropagation to train
towards those targets. Stanley et al. (2003) avoid the problem of generating targets by using Heb-
bian rules, an unsupervised technique, to change a neural network during its fitness evaluation.
Downing (2001) combines genetic programming with Q-learning using a simple tabular represen-
tation; genetic programming automatically learns how to discretize the state space.

Nolfi et al. (1994) present a neuroevolutionary system that adds extra outputs to the network
that are designed to predict what inputs will be presented next. When those inputs actually arrive,
they serve as targets for backpropagation, which adjusts the network’s weights starting from the
added outputs. This technique allows a network to be adjusted during its lifetime using supervised
methods but relies on the assumption that forcing it to learn to predict future inputs will help it
select appropriate values for the remaining outputs, which actually control the agent’s behavior.
Another significant restriction is that the weights connecting hidden nodes to the action outputs
cannot be adjusted at all during each fitness evaluation.

Ackley and Littman (1991) combine neuroevolution with reinforcement learning in an artificial
life context. Evolutionary computation optimizes the initial weights of an “action network” that
controls an agent in a foraging scenario. The weights of the network are updated during each
individual’s lifetime using a reinforcement learning algorithm called CRBP on the basis of a feed-
back signal that is also optimized with neuroevolution. Hence, their approach is similar to the
one described in this article, though the neuroevolution technique they employ does not optimize
network topologies and CRBP does not learn a value function.

Another important related method is VAPS (Baird & Moore, 1999). While it does not use
evolutionary computation, it does combine TD methods with policy search methods. It provides
a unified approach to reinforcement learning that uses gradient descent to try to simultaneously
maximize reward and minimize error on Bellman residuals. A single parameter determines the
relative weight of these goals. Because it integrates policy search and TD methods, VAPS is in
much the same spirit as evolutionary function approximation. However, the resulting methods
are quite different. While VAPS provides several impressive convergence guarantees, it does not
address the question of how to represent the value function.

Other researchers have also sought to combine TD and policy search methods. For example,
Sutton et al. (2000a) use policy gradient methods to search policy space but rely on TD methods to
obtain an unbiased estimate of the gradient. Similarly, in actor-critic methods (Konda & Tsitsiklis,
1999), the actor optimizes a parameterized policy by following a gradient informed by the critic’s
estimate of the value function. Like VAPS, these methods do not learn a representation for the
value function.

6.3 Variable Evaluations in Evolutionary Computation

Because it allows members of the same population to receive different numbers of evaluations,
the approach to on-line evolution presented here is similar to previous research about optimizing
noisy fitness functions. For example, Stagge (1998) introduces mechanisms for deciding which
individuals need more evaluations for the special case where the noise is Gaussian. Beielstein and
Markon (2002) use a similar approach to develop tests for determining which individuals should
survive. However, this area of research has a significantly different focus, since the goal is to find
the best individuals using the fewest evaluations, not to maximize the reward accrued during those
evaluations.

The problem of using evolutionary systems on-line is more closely related to other research
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about the exploration/exploitation tradeoff, which has been studied extensively in the context of
TD methods (Watkins, 1989; Sutton & Barto, 1998) and multiarmed bandit problems (Bellman,
1956; Macready & Wolpert, 1998; Auer, Cesa-Bianchi, & Fischer, 2002). The selection mecha-
nisms we employ in our system are well-established though, to our knowledge, their application to
evolutionary computation is novel.

7 Ongoing and Future Work

There are many ways that the work presented in this article could be extended, refined, or further
evaluated. This section enumerates a few of the possibilities.

Reducing Sample Complexity One disadvantage of evolutionary function approximation is
its high sample complexity, since each fitness evaluation lasts for many episodes. However, in
domains where the fitness function is not too noisy, each fitness evaluation can be conducted in
a single episode if the candidate function approximator is pre-trained using methods based on
experience replay (Lin, 1992). By saving sample transitions from the previous generation, each
new generation can be be trained off-line. This variation uses much more computation time but
many fewer sample episodes. Since sample experience is typically a much scarcer resource than
computation time, this enhancement can greatly improve the practical applicability of evolutionary
function approximation. In other work, we show that a sample-efficient version of NEAT+Q can
perform as well regular NEAT+Q but with dramatically lower sample complexity (Whiteson &
Stone, 2006b).

Analyzing Evolved Topologies Preliminary efforts analyzing networks generated by NEAT+Q
demonstrate that it tends to learn sparsely connected networks with a small number of hidden
nodes (Whiteson & Stone, 2006a). The topologies are typically quite idiosyncratic, unlike those a
human would likely design. In the future, we hope to study these networks further to determine,
for example, whether the hidden nodes represent useful state abstractions. Such analysis could
produce important insights into what properties of neural networks are critical for successful TD
function approximation.

Using Different Policy Search Methods This article focuses on using evolutionary methods
to automate the search for good function approximator representations. However, many other
forms of policy search such as PEGASUS (Ng & Jordan, 2000) and policy gradient methods (Sut-
ton, McAllester, Singh, & Mansour, 2000b; Kohl & Stone, 2004) have also succeeded on difficult
reinforcement learning tasks. TD methods could be combined with these methods in the same way
they are combined with evolutionary computation in this article. In the future, we plan to test
some of these alternative combinations.

8 Conclusion

This article presents three empirical studies that compare, contrast, and combine evolutionary and
TD methods for action selection with reinforcement learning. The first study, which compares
these two approaches in Keepaway, demonstrates that evolutionary approaches can outperform TD
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methods in difficult RL tasks. It also highlights the contrasting strengths of each approach, as TD
methods perform better in the Markovian version and evolutionary methods perform better in the
deterministic version. The second study, which investigates on-line evolution, demonstrates that
evolutionary methods, by borrowing mechanisms traditionally used in TD methods, can improve
the way they balance exploration and exploitation. As a result, they can excel at on-line tasks.
The third study, which investigates evolutionary function approximation, demonstrates that human
designers do not necessarily have to choose between these two approaches. On the contrary, they can
combine them synergistically, yielding a new approach that performs better than either approach by
itself. Together these results suggest that a rich and promising research area lies at the intersection
of these two very different approaches to action selection in reinforcement learning.
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