
Making Friends on the Fly:
Cooperating with New Teammates✩

Samuel Barretta,1,2, Avi Rosenfeldb, Sarit Krausc,d, Peter Stonee

aCogitai, Inc., Anaheim, CA 92808 USA
bDept. of Industrial Engineering, Jerusalem College of Technology, Jerusalem, 9116001 Israel

cDepartment of Computer Science, Bar-Ilan University, Ramat Gan, 5290002 Israel
dInstitute for Advanced Computer Studies, University of Maryland, College Park MD 20742 USA

eDept. of Computer Science, The University of Texas at Austin, Austin, TX 78712 USA

Abstract

Robots are being deployed in an increasing variety of environments for longer peri-
ods of time. As the number of robots grows, they will increasingly need to interact with
other robots. Additionally, the number of companies and research laboratories produc-
ing these robots is increasing, leading to the situation where these robots may not share
a common communication or coordination protocol. While standards for coordination
and communication may be created, we expect that robots will need to additionally
reason intelligently about their teammates with limited information. This problem mo-
tivates the area of ad hoc teamwork in which an agent may potentially cooperate with a
variety of teammates in order to achieve a shared goal. This article focuses on a limited
version of the ad hoc teamwork problem in which an agent knows the environmental
dynamics and has had past experiences with other teammates, though these experiences
may not be representative of the current teammates. To tackle this problem, this article
introduces a new general-purpose algorithm, PLASTIC, that reuses knowledge learned
from previous teammates or provided by experts to quickly adapt to new teammates.
This algorithm is instantiated in two forms: 1) PLASTIC–Model – which builds models
of previous teammates’ behaviors and plans behaviors online using these models and 2)
PLASTIC–Policy – which learns policies for cooperating with previous teammates and
selects among these policies online. We evaluate PLASTIC on two benchmark tasks:
the pursuit domain and robot soccer in the RoboCup 2D simulation domain. Recog-
nizing that a key requirement of ad hoc teamwork is adaptability to previously unseen
agents, the tests use more than 40 previously unknown teams on the first task and 7
previously unknown teams on the second. While PLASTIC assumes that there is some
degree of similarity between the current and past teammates’ behaviors, no steps are
taken in the experimental setup to make sure this assumption holds. The teammates

✩This article contains material from 4 prior conference papers [11–14].
Email addresses: sam@cogitai.com (Samuel Barrett), rosenfa@jct.ac.il (Avi Rosenfeld),

sarit@cs.biu.ac.il (Sarit Kraus), pstone@cs.utexas.edu (Peter Stone)
1This work was performed while Samuel Barrett was a graduate student at the University of Texas at

Austin.
2Corresponding author.

Preprint submitted to Elsevier October 30, 2016

To appear in
http://dx.doi.org/10.1016/j.artint.2016.10.005

Artificial Intelligence (AIJ)

were created by a variety of independent developers and were not designed to share
any similarities. Nonetheless, the results show that PLASTIC was able to identify and
exploit similarities between its current and past teammates’ behaviors, allowing it to
quickly adapt to new teammates.

1. Introduction

Robots are becoming cheaper and more durable and are therefore being deployed in
more environments for longer periods of time. As robots continue to proliferate in this
way, many of them will encounter and interact with a variety of other kinds of robots.
In many cases, these interacting robots will share a set of common goals, in which
case it will be desirable for them to cooperate with each other. In order to effectively
perform in new environments and with changing teammates, they should observe their
teammates and adapt to achieve their shared goals. For example, after a disaster, it is
helpful to use robots to search the site and rescue survivors. However, the robots may
come from a variety of sources and may not be designed to cooperate with each other,
such as in the response to the 2011 Tohoku earthquake and tsunami [43, 55, 56, 58].
If these robots are not pre-programmed to cooperate, they may not share information
about which areas have been searched; or worse, they may unintentionally impede their
teammates’ efforts to rescue survivors. Therefore, in the future, it is desirable for robots
to be designed to observe their teammates and adapt to them, forming a cohesive team
that quickly searches the area and rescues the survivors.

This idea epitomizes the spirit of ad hoc teamwork. In ad hoc teamwork settings,
agents encounter a variety of teammates and try to accomplish a shared goal. In ad
hoc teamwork research, researchers focus on designing a single agent or subset of
agents that can cooperate with a variety of teammates. The desire is for agents de-
signed for ad hoc teamwork to quickly learn about these teammates and determine how
they should act on this new team to achieve their shared goals. Agents that reason about
ad hoc teamwork will be robust to changes in teammates in addition to changes in the
environment. This article focuses on a limited version of the ad hoc teamwork prob-
lem. Specifically, this article investigates how an agent should adapt to new teammates
given that it has previously interacted with other teammates and learned from these
interactions. However, these past interactions may not be representative of the current
teammates.

In this article, the word “agent” refers to an entity that repeatedly senses its envi-
ronment and takes actions that affect this environment, shown visually in Figure 1a. As
a shorthand, the terms ad hoc team agent and ad hoc agent are used in this article to
refer to an agent that reasons about ad hoc teamwork. The environment includes the
dynamics of the world the agent interacts with, as well as defining the observations re-
ceived by the agent. We treat the other agents in the domain as teammates because they
share a set of common goals; they are fully cooperative in the terminology of game
theory.

Previous work on teamwork has largely assumed that all agents in the domain will
act as a unified team and are designed to work with their specific teammates [25, 36,

2

66, 68]. Methods for coordinating multiagent teams largely rely on specifying stan-
dardized protocols for communication as well as shared algorithms for coordination.
These approaches do not directly apply to ad hoc teams due to their strong assump-
tions about this sharing of prior knowledge, which is violated in the ad hoc teamwork
scenario. This view of multiagent teams is shown in Figure 1b.

On the other hand, this article will focus on creating a single agent that cooperates
with teammates coming from a variety of sources without directly altering the behavior
of these teammates. However, all of the agents still share a set of common goals, so it
is desirable for them to act as a team. In addition, rather than focusing on a single task,
these agents may face a variety of tasks, where a task refers to both the environment
other than the team’s agents as well as the team’s shared goals.

Agent

Environment

ActionState Reward

(a) A view of a single agent interacting with
its environment used by many reinforce-
ment learning algorithms.

Environment

Joint
Action

State Reward

Agent

Agent

Agent

Team

(b) A standard view of a unified team inter-
acting with the environment.

Environment

Joint
Action

State Reward

Agent

Agent
Agent

Possible Teammates

Agent

Agent
Agent

Agent

Team

Sample
Ad hoc
Agent

Ad hoc
Agent

Agent

Agent

Team

CombineCombine

Possible Environments

Environment
Environment

Environment

Sample

(c) The ad hoc teamwork setting in which an agent cooperates with an ad hoc team of agents to
accomplish shared goals on a given environment where the teammates and the environment are
each drawn from diverse sets at the beginning of an episode.

Figure 1: Foci of agent based research

The differences of this article from prior work are presented visually in Figure 1.
Another existing area of research into how agents should behave is reinforcement learn-
ing (RL). Generally, RL problems revolve around a single agent learning by interacting
with its environment. In RL problems, agents receive sparse feedback about the quality

3

of sequences of actions. Generally, RL algorithms either model other agents as part of
the environment and try to learn the best policy for the single agent given this envi-
ronment or they consider the case where the whole team is under a single designer’s
control. In addition, RL algorithms usually learn from scratch in each new environ-
ment, ignoring information coming from previous environments. However, there is a
growing body of work on applying transfer learning to RL to allow agents to reuse
prior experiences on new domains [69]. Figure 1a shows the standard RL view of an
agent interacting with its environment. Figure 1b represents a common multiagent view
of a unified team interacting with the environment where the agents model their team-
mates as being separate from the environment. In this case, the team is designed before
being deployed to cooperate with these specific agents to interact with a fixed envi-
ronment. However, these agents rely on knowing their teammates and usually require
an explicit communication and/or coordination protocol to be shared among the whole
team [36, 53, 73]. On the other hand, this article will focus on ad hoc teams drawn from
a set of possible teammates, where the team tackles a variety of possible environments
as shown in Figure 1c. In this case, the teammates are not programmed to cooperate
with this specific ad hoc agent, and they must be treated as given and inalterable. In-
stead, this research focuses on enabling the ad hoc agent to cooperate with a variety of
teammates in a range of possible environments.

In an ad hoc team, agents need to be able to cooperate with a variety of previously
unseen teammates. Rather than developing protocols for coordinating an entire team, ad
hoc team research focuses on developing agents that cooperate with teammates in the
absence of such explicit protocols. Therefore, we consider a single agent cooperating
with teammates that may or may not adapt to its behavior. In this scenario, we can only
develop algorithms for the ad hoc team agent, without having any direct control over
the other teammates.

In order to be responsive to different teammates and environments, a fully general
ad hoc agent needs two general classes of capabilities: 1) the ability to learn how to
act in an environment to maximize reward, and 2) the ability to reason about teamwork
and learn about its teammates. Previous work in reinforcement learning has largely
focused on how an agent should learn about the dynamics of the environment [49, 67],
which addresses capability 1. Therefore, this article will leverage this past research and
expand this work in the new direction of capability 2: reasoning about the team and
social knowledge required for effective teamwork.

Specifically, this article explores a limited version of the full ad hoc teamwork
problem in which an ad hoc agent knows the environmental dynamics and encounters
unknown teammates, but has previous experience in the domain with other teammates.
However, these past experiences may not reflect the current teammates’ behaviors. To
this end, we introduce a new algorithm for ad hoc teamwork, PLASTIC, that allows an
ad hoc agent to reuse knowledge learned about previous teammates to quickly adapt
to teammates exhibiting unknown behaviors. We analyze this algorithm in a number
of different scenarios in which we vary how similar these previous interactions are
to the current teammates’ behaviors. The PLASTIC algorithm assumes that there are
similarities between the new and old teammates’ behaviors, though this may not be true
in all scenarios. The experiments in this article do not enforce this assumption on the
creation of the teammates’ behaviors, but PLASTIC still finds similarities to exploit in

4

the scenarios investigated in this article.
This article includes material originally presented in 4 conference papers: [11–14].

In addition to the contributions from those papers, the main new contribution of this
article is in showing how the algorithms proposed in these papers form part of an over-
arching approach, PLASTIC. This article describes the PLASTIC algorithm and how it
can be applied to several ad hoc teamwork scenarios where the agent has had previous
interactions in the domain. In addition, it expands on the empirical results of these
papers as well as introducing a detailed description of the type of problems PLASTIC
can solve.

The remainder of this article is organized as follows. Section 2 discusses the prob-
lem of ad hoc teamwork as well as the framework and domains used in this article
for evaluating ad hoc team agents. We present the background information required to
understand the remainder of this article in Section 3. In Section 4, we present PLAS-
TICand its two instantiations (PLASTIC–Model and PLASTIC–Policy). Section 5 de-
scribes our empirical analyses of PLASTIC in the pursuit domain, and Section 6 an-
alyzes the performance of PLASTIC for the half field offense in the 2D simulation
domain. Section 7 situates this research in literature, and Section 8 contains the con-
cluding remarks and directions for future research.

2. Ad Hoc Teamwork

This section presents the problem of ad hoc teamwork, the problem explored in this
article, and the framework used to evaluate ad hoc teamwork in this article. We follow
this description by grounding this framework in two domains: the pursuit domain and
simulated robot soccer.

2.1. Ad Hoc Teamwork Description
The problem of ad hoc teamwork revolves around how an agent should cooperate

with teammates it knows little about. These teammates may not share a communication
protocol, but are expected to share the same goals. In the ad hoc team setting, agents can
assume that their teammates are attempting to accomplish the same goals, as opposed
to game theoretic settings in which agents must reason about ways that opponents can
exploit their behaviors. In this article, we assume that the teammates are given; the ad
hoc agent does not select its teammates. They may be selected by an earlier decision
the agent made or by human intervention. However, the ad hoc agent may not know
its teammates’ behaviors ahead of time; we investigate how an ad hoc agent can reuse
knowledge about past teammates to learn quickly about its new teammates.

This article explores a limited version of the greater ad hoc teamwork problem: how
an ad hoc agent should behave when it knows the environmental dynamics and has had
prior experiences with other teammates. In general, these past teammates’ behaviors
may be arbitrarily far from the current teammates’ behaviors. However, we hypothesize
that there are often similarities in these behaviors that can be exploited to speed up
learning.

To better understand the full ad hoc teamwork problem and how this work and past
research compares, we identify three dimensions that describe ad hoc teamwork prob-
lems. These dimensions affect how the ad hoc agent should behave and the difficulty

5

of the problem it faces, and allow us to more concretely specify which problems this
article and past works explore. While there are many possible ways that these scenarios
can vary, such as the size of the task’s state space and the stochasticity of the domain,
we find that the following three dimensions are the most informative for differentiating
among the algorithms in existing literature.

1. Team Knowledge: Does the ad hoc agent know what its teammates’ actions will
be for a given state, before interacting with them?

2. Environment Knowledge: Does the ad hoc agent know the transition and re-
ward distribution given a joint action and state before interacting with the envi-
ronment?

3. Reactivity of teammates: How much does the ad hoc agent’s actions affect those
of its teammates?

These dimensions affect the difficulty of planning in the domain in addition to how
much an ad hoc agent needs to explore the environment and its teammates. When an ad
hoc agent has good knowledge, it can plan without considering exploration, but when
it has incomplete knowledge, it must reason about the cost and benefits of exploration.
The exploration-exploitation problem has been studied previously, most notably in the
reinforcement learning literature, but adding in the need to explore the teammates’
behaviors and the ability to affect them considerably alters this tradeoff. We believe
that scenarios with lower amounts of team knowledge and environment knowledge and
higher amounts of teammate reactivity are more representative of the full, ad hoc team-
work problem. We expect that agents that are capable of dealing with these concerns
are robust, ad hoc team agents and are able to deal with nearly any ad hoc teamwork
scenario. Sections 2.1.1–2.1.3 provide further details about each of these dimensions,
how we measure them, and why they are important for ad hoc teamwork. Note that
while all of the equations in the following sections use summations, these summations
can be converted to integrals for domains with continuous states or actions.

We use these dimensions in this article to characterize our experiments (Sections 2.4.3
and 2.5.2) as well as related work (Section 7.5.1). We hypothesize that problems with
similar characteristics along these dimensions can be approached with similar algo-
rithms. The PLASTIC algorithm introduced in this article addresses a subset of such
problems. In Section 2.2, we specify that subset.

2.1.1. Team Knowledge
The ad hoc agent’s knowledge about its teammates’ behaviors gives insight into the

difficulty of planning in the domain. The agent’s knowledge can range from knowing
the complete behaviors of its teammates to knowing nothing about them. Settings with
partial information are especially relevant, because in many real world problems, the
exact behavior of a teammate may not be known, but some reasonable guidelines of
their behaviors exist. For example, when playing soccer, one can usually assume that a
teammate will not intentionally pass to the other team or shoot at the wrong goal. If the
behaviors are completely known, the agent can reason fully about the team’s actions,
while if the behaviors are unknown, the agent must learn about them and adapt to find
a good behavior.

To estimate the ad hoc agent’s knowledge about its teammates’ behaviors, we com-
pare the actions the ad hoc agent expects them to take and the ground truth of what ac-

6

tions they take. Specifically, we compare the expected distribution of teammate actions
to the true distribution that the teammates follow. To compute the difference between
the distributions, we use the Jensen-Shannon divergence measure, which was chosen
because it is a smoothed, symmetric variant of the popular Kullback-Leibler divergence
measure. When the ad hoc agent has no information about a teammate’s action, we as-
sume that it uses the uniform distribution to represent its actions. Therefore, we define
the knowledge measure as

K(T, Pred) =

1 if JS(T, Pred) = 0

1− JS(T, Pred)
JS(T, U)

if JS(T, Pred) < JS(T, U)

− JS(Pred, U)

JS(U, Point)
otherwise

(1)

where T is the true distribution, Pred is the predicted distribution, U is the uniform
distribution, Point is a distribution with all weight on one point (e.g. [1, 0, 0, . . .]), and
JS is the Jensen-Shannon divergence measure. By this definition, K(T, T) = 1, so the
knowledge is complete if the ad hoc agent knows the true distribution. K(T, U) = 0,
representing when the ad hoc agent has no knowledge and relies on the uniform distri-
bution. Finally, if the predicted distribution is less accurate than the uniform distribu-
tion, then K(T, Pred) is negative, with a minimum value of -1. This measure captures
the range [0,1] smoothly, but can still be used for the range [-1,0] 3. However, we gen-
erally expect the prediction to be a higher entropy distribution than the true distribution
as the ad hoc agent ought to correctly model its uncertainty in its teammates’ behaviors
rather than being confident and wrong, which keeps the measure in the range [0,1].

We define the ad hoc agent’s knowledge about its teammates’ behaviors as

TeamK =
1

nk

n�

s=1

k�

t=1

K(TrueActiont(s), PredActiont(s))

where 1 ≤ s ≤ n is the state, 1 ≤ t ≤ k specifies a teammate, TrueActiont(s) is the
ground truth action distribution for teammate t for state s, and PredActiont(s) is the
action distribution that the ad hoc agent predicts that teammate t will select for state s.

We assume that PredActiont(s) is the uniform distribution if the agent has no in-
formation about teammate t’s actions in state s. Thus, if the ad hoc agent has better
information about its teammates’ behaviors, the distance between the distributions will
be smaller and TeamK will be higher. If the ad hoc agent can limit possible actions
that its teammates may take or bias its predictions towards more likely actions, TeamK
will be higher. For instance, if there are 100 possible actions and the ad hoc agent can
narrow a teammate’s action to two choices, TeamK will be relatively large.

2.1.2. Environmental Knowledge
Another informative dimension is how much knowledge the ad hoc agent has about

the effects of a joint action given a state, for example the transition and reward func-

3One slight anomaly of this measure is that when T is the uniform distribution (e.g. [.5,.5]), K is either
1 when Pred is exactly correct at [.5 .5] or negative. For all other values of T , K smoothly spans the range
[-1,1].

7

tions. If the ad hoc agent has complete knowledge about the environment, it can plan
about what actions it should select more simply than if it must also consider unknown
effects of actions. However, if it has incomplete knowledge, it must explore its actions
and face the standard problem of balancing exploring the environment versus exploit-
ing its current knowledge.

Similarly to teammate knowledge, we formally define the ad hoc agent’s knowledge
about the environment’s transitions as

TransK =
1

nm

n�

s=1

m�

j=1

K(TrueTrans(s, j), PredTrans(s, j))

where 1 ≤ s ≤ n is the state, 1 ≤ j ≤ m is a joint action, K is taken from Equa-
tion (1), TrueTrans(s, j) is the ground truth transition distribution from state s given
joint action j, and PredTrans is the ad hoc agent’s predicted transition distribution. If
the agent has no information about the transitions, we assume that PredTrans(s, j) is
the uniform distribution. Intuitively, if the ad hoc agent knows more about the transition
function, then the distance between TrueTrans and PredTrans will be smaller and as a
result TransK will be higher. We define the agent’s knowledge about the environmental
rewards similarly, and let EnvK = (TransK,RewardK).

2.1.3. Teammate Reactivity
The optimal behavior for the ad hoc agent also depends on how much its teammates

react to its actions. If its teammates’ actions do not depend on the ad hoc agent at all,
the ad hoc agent can simply choose its actions to maximize the team reward, as if it
were a single agent problem. Considering the actions of its teammates separately from
that of the environment may still help computation by factoring the domain. However,
if the teammates’ actions depend strongly on the ad hoc agent’s actions, the ad hoc
agent’s reasoning should consider what its teammates’ reactions will be. If the ad hoc
agent is modeling its teammates and its teammates are modeling the ad hoc agent,
the problem can become recursive, as is directly addressed by Gmytrasiewicz et al.’s
Recursive Modeling Method [35].

A formal measure of the teammate reactivity needs to capture how different the
teammates’ actions will be when the ad hoc agent chooses different actions. We mea-
sure the distance between the resulting distributions of the teammate joint actions, us-
ing the pairwise Jensen-Shannon divergence measures. However, it is desirable for the
distance to be 1 when the distributions have no overlap, so we use a normalizing con-
stant of log 2. Thus, we define the reactivity of a domain in state s as

Reactivity(s) =
1

(m− 1)2 log 2

m�

a=1

m�

a�=1

JS(T (s, a), T (s, a�))

where JS is the Jensen-Shannon divergence measure, 1 ≤ a, a� ≤ m is the actions
available to the ad hoc agent, and T (s, a) is the distribution of the teammates’ joint
actions given the state s and the ad hoc agent’s action, a. We use m− 1 in the denom-
inator because we exclude the case where a = a�; in the numerator, the JS measure
will be 0 in this case. For the overall reactivity of the domain, we average over the
states, resulting in Reactivity = 1

n

�n
s=1 Reactivity(s). It is possible to consider how

an action affects the teammates’ actions further in the future, but we restrict our focus

8

to one step reactivity for this paper.
Note that all of the sums in this formulation can be converted to integrals for con-

tinuous states or actions. This formulation is similar to the empowerment measure used
by Jung et al. [47], but we consider the ad hoc agent’s ability to change the actions of
its teammates rather than the environment state.

2.2. Problem Description
In this article, we focus on exploring the dimension of teammate knowledge. Specif-

ically, we explore settings in which the ad hoc agent has prior experiences with past
teammates and is trying to use knowledge from these experiences to quickly adapt to
new teammates. We assume that the teammates B are drawn from a set of possible
teammate types A. Then, the question is how an ad hoc agent a should cooperate with
these teammates. However, the ad hoc agent may not know A or B. We explore differ-
ent amounts of prior knowledge given to the ad hoc agent. We primarily focus on the
setting in which the ad hoc agent has previously observed teams P operating in the cur-
rent domain. While it does not have access to their full decision-making process, the ad
hoc agent can learn about their behaviors by observing the world states and the teams’
actions. We hypothesize that the ad hoc agent can use the knowledge it learns from
these interactions to quickly learn to adapt to new teammates’ behaviors by exploiting
similarities between these behaviors.

In this article, we assume that all of the teammates and the ad hoc agent share a
common goal. In addition, we do not explore the environmental knowledge dimension;
we assume that the ad hoc agent fully knows the domain. Furthermore, we assume
that there is no shared protocol for explicit communication. Specifically, the ad hoc
agent cannot directly communicate its intentions to its teammates, and the agents can
only communicate through their movements in the world. Finally, we assume that the
teammates’ behaviors from A and P are stationary; the teammates only respond to the
ad hoc agent’s immediate actions and do not change their behaviors and learn over
time. As such, the algorithms put forth in this article address only a small subset of
possible ad hoc teamwork scenarios leaving much room for fruitful future research.

The difficulty of the problem we do consider is that the ad hoc agent does not
have full knowledge of its teammates’ behaviors, though it does have prior experiences
with other teammates. Nor does the agent have a shared communication protocol that
allows those teammates to explicitly communicate their intentions. Therefore, the ad
hoc agent must observe its teammates to determine their behaviors. Once it knows the
behaviors its teammates exhibit, the ad hoc agent can adapt accordingly. To speed up
the process of determining the teammates’ behaviors, the ad hoc agent can draw upon
its observations of past teammates, exploiting similarities between the current and past
teammates’ behaviors.

In this article, we consider scenarios in which the ad hoc agent has different amounts
of prior knowledge of its teammates. In terms of the dimensions of ad hoc teamwork,
we are exploring the team knowledge dimension, varying the accuracy of PredAction
and thus the value of TeamK. We consider the scenario where P = A, so the ad hoc
agent has seen all of the potential teammate types, but does not know which team was
drawn from A. We also consider the more complex scenario, where P and A do not
overlap, i.e. P ∩ A = ∅. This scenario occurs when the ad hoc agent has previously

9

attempted the task with other types of teammates, but not with the current teammate
type. When P ∩A = ∅, the accuracy of PredAction is lower, and thus the ad hoc agent’s
TeamK is lower.

In all of the scenarios in this article, TeamK is still relatively high given the ad hoc
agent’s previous experiences and the fact that the current teammate types are similar to
the past teammates. Note that while this similarity is assumed, it is not enforced by the
authors. Specifically, we use agent behaviors from a variety of independent developers,
and the results of PLASTIC show that there are similarities to exploit in the scenarios
explored in this article. We hypothesize that these sort of natural similarities occur in
many settings. While considering an ad hoc agent with no knowledge of its teammates
is interesting, we think that having some prior knowledge in the form of experience of
past teammates exhibiting other behaviors is more realistic. Agents will encounter a
number of teammates over their lifetime, and they should be able to draw upon these
experiences to learn more quickly when encountering new teammate types that have
similarities to these past teammate types.

In this article, we focus on the scenario where the ad hoc agent knows its environ-
ment, i.e. that EnvK = (1, 1). We believe that expanding this work to scenarios where
the ad hoc agent must simultaneously learn about its environment is an important av-
enue for future research. In terms of the dimensions, we believe that future research
should focus on how ad hoc agents should behave in scenarios that have low values of
both TeamK and EnvK.

In addition, this article focuses on problems with limited reactivity of its teammates.
While the agents do react to the ad hoc agent’s actions, they do not learn from it over
time. The ad hoc agent’s actions have limited effects on its teammates; hence, the values
of Reactivity are low to moderate for the domains in the article. We believe that future
research into teammates that learn about the ad hoc agent is needed; ad hoc agents
should be able to deal with higher amounts of teammate reactivity.

2.3. Evaluation Framework
Directly measuring teamwork is far from straightforward. In many cases, the only

easily measurable aspect is the overall performance of the team, which makes it difficult
to assign credit to each agent. By placing an agent on a variety of teams and measuring
those teams’ performances, we can estimate how good the agent is at teamwork.

Therefore, we adopt the evaluation framework introduced by Stone et al. [63] which
evaluates an ad hoc team agent while considering the teammates and domains it may
encounter. This framework is specified in Algorithm 1. According to this framework,
the performance of the ad hoc team agent a depends on the distribution of problem
domains D and the distribution of possible teammates A that it will cooperate with. For
the team B cooperating to execute the task d, s(B, d) is a scalar score representing their
effectiveness, where higher scores indicate better performance. The algorithm takes a
sampling approach to average the agent’s performance across a range of possible tasks
and teammates to capture the idea that a good ad hoc team player ought to be robust to a
wide variety of teamwork scenarios. We use smin as a minimum acceptable reward for
the team to be evaluated, because the ad hoc team agent may be unable to accomplish a
task if its teammates are too ineffective, regardless of its own abilities. It is mainly used
to reduce the number of samples required to evaluate the ad hoc agents and reduces

10

the noise in the comparisons. Metrics other than the sum of the rewards can be used
depending on the domain, such as the worst-case performance.

Algorithm 1 Ad hoc agent evaluation
1: function Evaluate:

inputs:
a � the ad hoc agent
A � the set of possible teammate agents
D � the set of possible domains

outputs:
r
n � the average performance (reward)

params:
smin � the minimal acceptable performance of a team
n � the number of iterations

2: Initialize: r = 0
3: for i = 1 to n do
4: Sample a task d from D
5: Randomly draw a subset of agents B, from A such that E[s(B, d)] ≥ smin

6: Randomly select one agent b ∈ B
7: Create the new team C = {a} ∪B\{b}
8: r = r + s(C, d)

9: return r
n

10: If Evaluate(a0, A,D) > Evaluate(a1, A,D) and the difference is significant, we
can conclude that a0 is a better ad hoc team agent than a1 in domains D over the
set of possible teammates A.

2.4. Pursuit Domain

As discussed in the previous section, the evaluation of ad hoc team agents depends
strongly on the domains that they may encounter. Therefore, this section describes the
first domain that is used for evaluating ad hoc team agents in this article. The pursuit
domain, also known as the predator-prey domain, is a popular problem in multiagent
systems literature as it requires cooperation between all of the teammates to capture the
prey while remaining simple enough to evaluate approaches well [66]. There are many
versions of the pursuit domain with different rules, but the pursuit domain revolves
around a set of agents called predators trying to capture an agent called the prey in
minimal time.

In the version of the pursuit domain used in this article, the world is a rectangular,
toroidal grid, where moving off one side of the grid brings the agent back on the oppo-
site side. Four predators attempt to capture the randomly moving prey by surrounding
it on all sides in as few time steps as possible. At each time step, each agent can select
to move in any of the four cardinal directions or to remain in its current position. All
agents pick their actions simultaneously, and collisions are handled using priorities that

11

are randomized at each time step. In addition, each agent is able to observe the posi-
tions of all other agents. A view of the domain is shown in Figure 2, and videos of the
domain can be viewed online.4

(a) Random starting position. (b) A valid capture position. (c) A second valid capture po-
sition.

Figure 2: A view of the pursuit domain, where the rectangle is the prey, the ovals are predators, and the oval
with the star is the ad hoc predator being evaluated.

2.4.1. Hand-Coded Teammates
In order to meaningfully test the proposed ad hoc teamwork algorithms, four hand-

coded predator algorithms with varying and representative properties were used. The
greedy (GR) predator moves towards the nearest open cell that neighbors the prey, ig-
noring its teammates’ actions. On the other hand, the teammate-aware (TA) predator
considers its teammates, and allows the predator that is farthest from the prey have
the cell closest to it. In addition, the teammate-aware predator uses the A* path plan-
ning algorithm to select its actions while the greedy predator only considers immediate
collisions. It is expected that the differences between these teammates will require the
ad hoc agent to adapt and reason about how its actions will influence its teammates’
actions. In addition to these two deterministic agents, two stochastic agents are used
that each select an action distribution at each time step. The greedy probabilistic (GP)
predator moves similarly to the greedy predator except that it has a chance of tak-
ing a longer path to the greedy destination. Finally, the probabilistic destinations (PD)
predator chooses a new destination near the prey at every time step, slowly encircling
the prey before converging on it.

These behaviors were chosen to provide a spread of representative behaviors. The
deterministic GR predator largely ignores its teammates’ actions while the determinis-
tic TA predator tries to move out of the way of its teammates, but it also assumes that
they will move out of its way when needed. It is expected that the ad hoc agent will
need to cooperate differently with these two types of agents based on their reactivity.
In addition to these two deterministic agents, we use the stochastic GP and PD agents.
We expect it to be fairly trivial for the ad hoc agent to differentiate the deterministic
agents, but harder to differentiate the stochastic agents. Therefore, the ad hoc agent will
be forced to reason about the uncertainty of its teammates’ behaviors for longer. Fur-
thermore, these behaviors are significantly different from the deterministic behaviors,

4http://www.cs.utexas.edu/˜larg/index.php/Ad_Hoc_Teamwork:_Pursuit

12

and interacting with them requires reasoning about noise in future outcomes.

2.4.2. Externally-created Teammates
While the set of hand-coded teammates attempts to be representative, this set is

limited and possibly biased as the agents were designed by someone thinking about
ad hoc teamwork. Therefore, we also consider externally-created teammates to provide
a broader range of agents created by developers not planning for ad hoc teamwork
scenarios. Specifically, we use two additional sets of teammates in this article, both
created by undergraduate and graduate computer science students. These agents were
created for an assignment in two workshops on agent design with no discussion of ad
hoc teams; instead, the students were asked to create a team of predators that captured
the prey as quickly as possible. The agents produced varied wildly in their approaches
as well as their effectiveness. Both sets of agents come from a workshop taught by Sarit
Kraus at Bar Ilan University, one taught in the spring of 2010, and the other taught in
the spring of 2011. The first set of agents contains the best 12 student agents taken from
the first class of 41 students, filtered by their ability to capture a randomly moving prey
in a 5x5 world in less than 15 steps on average (i.e. smin = 15 in Algorithm 1). This set
of agents is called StudentSelected. The second set of agents, StudentBroad, comes from
a second offering of the course and contains 29 agents from a class of 31 students.
StudentBroad contains a wider range of performance than StudentSelected as it is filtered
less heavily. The better quality of agents in StudentBroad is due to the improvements
to the directions and architecture provided to the second class of students based on
the lessons learned from the first offering of the course. The only filtering of this set
was removing one student team for never capturing the prey and a second for taking
excessively long computation time.

2.4.3. Dimension Analysis
Given the problem description, we can analyze how the pursuit domain is described

by the dimensions introduced in Section 2.1. The ad hoc agent’s knowledge about its
team (TeamK) varies in the different tests, as does the reactivity of the teammates.
When the ad hoc agent knows its teammates’ behaviors, TeamK = 1. A variety of
other scenarios are summarized in Table 1, where we vary the type of teammates as
well as the prior knowledge the ad hoc agent has about its teammates. The ad hoc
agent completely knows the environment dynamics, leading to EnvK = (1, 1).

Teammate Type Prior Knowledge World Size TeamK Reactivity
Hand-coded Hand-coded 5x5 0.719 0.717
Hand-coded Hand-coded 20x20 0.360 0.801

StudentSelected Hand-coded 20x20 0.156 0.801
StudentSelected Known Learned Set 20x20 0.318 0.801
StudentBroad Hand-coded 20x20 0.098 0.800
StudentBroad Known Learned Set 20x20 0.301 0.800
StudentBroad Leave-one-out Known Learned Set 20x20 0.280 0.800

Table 1: TeamK and Reactivity for various settings in the pursuit domain.

13

The moderate reactivity values for most teammate types implies that it is vital to
understand and model the ad hoc agent’s teammates. However, the teammates do not
learn over time from the ad hoc agent’s actions. The lower values of team knowledge for
the student teammates shows the importance of quickly narrowing the field of models
to descriptive ones to allow for better planning. This hypothesis and approaches to
learning about teammates are explored empirically in Section 5.

2.5. Half Field Offense in the 2D RoboCup Simulator
While the pursuit domain provides an interesting multiagent domain for testing

teamwork, it is still fairly simple compared to real world problems. In order to test the
scalability of our approach, it is important to also consider more complex problems.
Therefore, we also consider a simulated robot soccer domain used in the 2D RoboCup
Simulation League.

The 2D Simulation League is one of the oldest leagues in RoboCup and is therefore
one of the best studied, both in competition and research. In this domain, teams of 11
autonomous agents play soccer on a simulated 2D field and must choose their actions
every 100 ms. Before each action, the agents receive noisy sensory information such
as their location, the location of the ball, and the locations of nearby agents. After
processing this information, agents select abstract actions that describe how they move
in the world, such as dashing, kicking, and turning. The 2D simulation server and the
full manual that includes the perception and action models can be found online.5 This
domain is used as it provides a testbed for teamwork in a complex domain without
requiring focus on areas such as computer vision and legged locomotion.

Rather than use full 10 minute 11 on 11 game, this article instead uses the quicker
task of half field offense introduced by Kalyanakrishnan et al. [48]. In Half Field Of-
fense (HFO), a set of offensive agents attempt to score on a set of defensive agents,
including a goalie, without letting the defense capture the ball. A view of this game is
shown in Figure 3, and more information and videos can be found online.6 This task
is useful as it allows for much faster evaluation of team performance than running full
games as well as providing a simpler domain in which to focus on ways to improve
ball control. In this article, we consider two versions of the HFO domain: 1) a limited
version with two offensive agents and two defensive agents including the goalie and
2) the full version with four offensive agents and five defensive agents including the
goalie. Videos of both versions of this domain can be viewed online.7 Hausknecht et
al. [39] has built upon the work in this article and released an open source version of
the half field offense domain.8

If the ball leaves the offensive half of the field or the defense captures the ball, the
offensive team loses. If the offensive team scores a goal, they win. In addition, if no
goal is scored within 500 simulation steps (50 seconds), the defense wins.

At the beginning of each episode, the ball is moved to a random location within
the 25% of the offensive half closest to the midline. Let length be the length of the

5http://sourceforge.net/projects/sserver/
6http://www.cs.utexas.edu/˜AustinVilla/sim/halffieldoffense/
7http://www.cs.utexas.edu/˜larg/index.php/Ad_Hoc_Teamwork:_HFO
8https://github.com/LARG/HFO

14

Figure 3: A screenshot of half field offense in the 2D soccer simulation league. The yellow agent number
11 is under our control, and remaining yellow players are its externally created teammates. These agents are
trying to score against the blue defenders.

soccer pitch. Offensive players start on randomly selected vertices forming a square
around the ball with edge length 0.2 · length with an added offset uniformly randomly
selected in [0, 0.1·length]. The goalie begins in the center of the goal, and the remaining
defensive players start randomly in the back half of their defensive half.

2.5.1. Externally-created Teammates
Unlike in the pursuit domain, we do not use hand-coded teammates as it is difficult

to define what a set of representative policies might be in this domain. Instead, it is more
productive to consider agents created for the RoboCup competition. It is expected that
these agents represent a far better spread of possible behaviors than any hand-coded
teammates, given the years of improvements implemented for the competitions.

As part of the 2D simulation league competition, teams are required to release
binary versions of their agents following the competition. Therefore, we use the binary
releases from the 2013 competition held in Eindhoven, Netherlands.9 These agents
provide an excellent source of externally-created teammates with which to test the
possible ad hoc team agents. Specifically, we use 6 of the top 8 teams from the 2013
competition, omitting 2 as they do not support playing games faster than real time. In
addition, we use the team provided in the code release by Helios [3], commonly called
agent2d, which serves as the basis of many teams in the league. Therefore, there are
a total of 7 possible teams that our agent may encounter: agent2d, aut, axiom, cyrus,
gliders, helios, and yushan.

In order to run some teams used in the RoboCup competition, it is necessary to field
the entire 11 player team for the agents to behave correctly. Therefore, it is necessary to
create the entire team and then constrain the additional players to stay away from play,
only using the agents needed for half field offense. These additional players are moved
to the other side of the field every time step. This approach may affect the players used
in the HFO, but our initial tests showed that the teams still perform well. We choose a

9http://www.socsim.robocup.org/files/2D/

15

fixed set of player numbers for the teammates, based on which player numbers tended
to play offensive positions in our observations of their play in initial experiments. In
the limited HFO task, defensive players use the helios behavior, while in the full HFO
task, they use the agent2d behavior.

2.5.2. Dimension Analysis
In order to better understand the properties of the half field offense domain and the

teammates that the ad hoc agent may encounter, we can use the dimensions described
in Section 2.1. We approximate the Jensen-Shannon divergence measure using Monte
Carlo sampling. Recall from Section 2.1 that JS(P,Q) = 1

2 (KL(P,M) + KL(Q,M))
where M = 1

2 (P +Q) and the Kullback-Leibler divergence is defined as

KL(P,M) =

�
P (X) log

P (x)

M(x)

The Monte Carlo approximation is given by

�KL(P,M) =
1

n

n�

i

log
P (xi)

M(xi)

where M(xi) = 1
2 (P (xi) + Q(xi)). As the number of samples goes to infinity, this

approximation converges to the true value of KL.
Given that the actions are also continuous, we need to consider an infinite number

of joint actions. In addition, the ad hoc agent does not directly observe the actions of
its teammates. Therefore, we use the resulting locations of the agents as an estimate
of their actions. We assume that the effects of these actions are noisy modeled with a
Gaussian distribution with standard deviation of 40 and 40◦ for distances and angles
respectively.

Applying this methodology with the calculation introduced in Section 2.1.1 leads
us to an approximate value of 0.425 for TeamK in the limited HFO task. In this task,
the ad hoc agent knows that its teammate’s behavior is drawn from the set of 7 potential
behaviors. In the full HFO task, this methodology calculates that TeamK ≈ 0.295.

We can similarly approximate the value of Reactivity by using the calculation in-
troduced in Section 2.1.3. Given that the 2D RoboCup simulator is open source and all
domain parameters are passed on to the players, the ad hoc agent completely knows
the environment dynamics. In addition, note that the opponents’ behaviors are known
by the ad hoc agent. Therefore, EnvK = (1, 1). However, it is worth noting that it
is complex to model the full domain, so in our tests, the ad hoc agent does not ex-
plicitly model the HFO dynamics. The 7 possible teams that the ad hoc agent may
encounter have an average reactivity of Reactivity = 0.263 in the limited HFO task
and Reactivity = 0.507 in the full version of the task.

The moderate reactivity means that the ad hoc agent can help its team and should
consider how its actions affect its teammates, especially in the full HFO domain. How-
ever, it also means that the teammates have limited ability to change based on the ad
hoc agent’s actions. For instance, they are not learning from the ad hoc agent over time.
In addition, the perfect environmental knowledge means that the agent does not need
to explore the environment. On the other hand, the lower teammate knowledge means
that it is helpful to explore the teammates’ behaviors, especially in the full HFO do-

16

main, where the space of its teammates’ behaviors is larger. Notice that these values
are close to those arising from the pursuit domain. Therefore, we once again expect
that a similar approach should be effective in this domain. However, the complexity of
fully modeling the domain means that methods applied to the other two domains may
run into issues here. Therefore, we expect that a model-free approach may be more
effective, but using teammate knowledge similarly should be effective. The model-free
approach is analyzed in more depth with empirical results in Section 6.

3. Background

While the previous section describes the general problem investigated in this article,
this section describes the mathematical model used to analyze this problem. In addition,
this section presents the existing algorithms that our approach builds upon.

3.1. Markov Decision Process

Agents that need to cooperate in ad hoc teams need to handle sequential decision
making problems; therefore, we choose to model these problems as Markov Decision
Processes [67]. An MDP is 4-tuple (S,A, P,R), where S is a set of states, A is a set
of actions, P (s�|s, a) is the probability of transitioning from state s to s� when after
taking action a, and R(s, a) is a scalar reward given to the agent for taking action a
in state s. In both domains, s ∈ S corresponds to the current positions of every agent
and a ∈ A is the action that the ad hoc agent chooses. In this framework, a policy π
is a mapping from states to actions, which defines an agent’s behavior for every state.
The agent’s goal is find the policy that maximized its long term expected rewards. For
every state-action pair, Q∗(s, a) represents the maximum long term reward that can be
obtained from (s, a) and is defined by solving the Bellman equation

Q∗(s, a) = R(s, a) + γ
�

s�

P (s�|s, a)max
a�

Q∗(s�, a�)

where 0 < γ < 1 is the discount factor representing how much more immediate re-
wards are worth compared to delayed rewards. The optimal policy π∗ can then derived
by choosing the action a that maximizes Q∗(s, a) for every s ∈ S.

Once we model a problem as an MDP, it becomes clear what the agent’s objective
is: to maximize long term expected reward. In our setting this translates into the ad hoc
agent optimally cooperating with its teammates to accomplish their shared goals. There
are a number of ways to calculate the actions that result in the best long term expected
reward. Value Iteration (VI) [67] is a dynamic programming approach to solve this
problem exactly. Monte Carlo Tree Search (MCTS) algorithms such as Upper Confi-
dence Bounds for Tree (UCT) [51] approximately calculate the actions that maximize
rewards using sampling. While VI requires a full model of the teammates’ actions and
the domain’s transition function, MCTS algorithms only require a way of sampling the
results of the agent’s actions. In addition, MCTS algorithms are often more computa-
tionally tractable on large domains than VI. A popular approach that does not require
any explicit modeling of the domain is the Fitted Q Iteration (FQI) algorithm intro-
duced by Ernst et al. [28]. Similar to VI, FQI iteratively backs up estimates of the

17

values of state-action pairs. However, FQI employs samples of states and the outcomes
of actions to approximate these values, which allows it to handle continuous domains.

These algorithms are explained in greater depth in Appendix A. Other algorithms
for solving MDPs can be used in PLASTIC, but the results in Sections 5 and 6 employ
these methods.

3.2. Transfer Learning

While the previous section discusses methods for how an ad hoc agent can compute
a policy for cooperating with its teammates given a model of its teammates, it does not
specify where these models come from. An approach that we employ in this article is to
learn models of past teammates, treating it as a supervised learning problem. When the
ad hoc agent has a limited amount of experiences with its current teammates in addition
to extensive experiences with past experiences, it may be able to learn models specific
to the current teammates. Unfortunately, the limited experiences with the current team-
mates makes learning a new model from scratch infeasible. However, it may be able to
reuse information it has learned about past teammates in addition to what it knows of
its current teammates to learn a new model of its teammates, an idea synonymous with
transfer learning.

In Transfer Learning (TL), the goal is to reuse information learned on a source data
set to improve results on a target data set. For TL, only the performance on the target
data matters; the source data is only used for training. Following this terminology, for
ad hoc teamwork settings, we consider the current teammates to be the target set, and
the previously observed teammates are the source set.

The transfer learning algorithm, TwoStageTransfer [14], used in this article is ca-
pable of transferring knowledge from multiple sources. TwoStageTransfer is inspired
by the TwoStageTrAdaBoost algorithm [57], and it is designed to explicitly leverage
multiple source data sets. TwoStageTransfer’s goal is to find the best possible weight-
ing for each set of source data and create a classifier using these weights. Rather than
trying all of possible weightings, TwoStageTransfer first evaluates each data source in-
dependently, and calculates the ideal weight of that data source using cross validation.
Then, it greedily adds the data sources in decreasing order of the calculated weights.
As it adds each data set, it finds the optimal weighting of that set when combined with
the data that has already been added. Finally, it adds the data with the optimal weight
and repeats the procedure with the next data set.

4. Planning and Learning to Adapt Swiftly to Teammates to Improve Coopera-
tion (PLASTIC)

This section introduces the Planning and Learning to Adapt Swiftly to Teammates
to Improve Cooperation (PLASTIC) algorithms that enable an ad hoc team agent to
cooperate with a variety of different teammates. One might think that the most appro-
priate thing for an ad hoc team agent to do is to “fit into” the team by following the
same behavior as its teammates. However, if the teammates’ behaviors are suboptimal,
this approach will limit how much the ad hoc agent can help its team. Therefore, in this
article, we adopt the approach of modeling possible teammate behaviors and planning

18

how to act based on these models. This approach allows an ad hoc agent to reason
about how well its models predict its teammates’ actions and then allows it to convert
these predictions into the actions it needs to take to accomplish its goals. If the models
are correct and the ad hoc agent is given enough time to plan, this approach will lead
to optimal performance of the ad hoc agent, helping its team achieve the best outcome,
as algorithms such as UCT provably converge to the optimal behavior. Note that this
may not be the optimal performance of any team, but it is optimal for the ad hoc agent
given that the behaviors of its teammates are fixed.

4.1. Overview

A visual overview of PLASTIC is given in Figure 4. The short summary of the
approach is that the ad hoc agent either learns about a set of prior teammates or is
given some hand-coded information about possible teammates. Then, the agent uses
this prior knowledge to select its actions and update its beliefs about its teammates by
observing their reactions to its behavior.

Environment

Agent

Agent

Team

Ad Hoc Agent

Action
Selection

Inference of
Teammate Type

Teammate
Knowledge

Updates

Use
d By

Joint
Action

State Reward

Learned
Knowledge of
Teammates

Hand Coded
Prior

Knowledge

Com
bi

ne

Com
bine

Ad Hoc
Agent’s
Action

Teammates’
Actions

Figure 4: Overview of using PLASTIC to cooperate with unknown teammates.

In this article, this general approach is realized in two algorithms. One algorithm,
PLASTIC–Model, focuses on a model-based approach. In this approach, the ad hoc
agent learns models of its past teammates, selects which models best predict its current
teammates, and then uses these models to plan how to act in order to cooperate with
the teammates. The second algorithm is called PLASTIC–Policy and uses a model-
free approach. In this variant, the ad hoc agent learns a policy to cooperate with each
of its past teammates, selects which policies best match how to cooperate with its cur-
rent teammates, and then selects actions using these policies. These two algorithms are
described in the remainder of the section. This general approach is specified in Algo-
rithm 2. The subroutines LearnAboutPriorTeammate, SelectAction, and UpdateBeliefs
are described for each of the two algorithms in the following section.

As shown in Algorithm 2, PLASTIC begins by initializing its knowledge using the
provided prior knowledge and what it has learned about previous teammates in Lines 2–
5.

19

Algorithm 2 Pseudocode of PLASTIC
1: function PLASTIC:

inputs:
PriorTeammates � past teammates the agent has encountered
HandCodedKnowledge � prior knowledge coded by hand
BehaviorPrior � prior distribution over the prior knowledge

� initialize knowledge using information from prior teammates
2: PriorKnowledge = HandCodedKnowledge
3: for t ∈ PriorTeammates do
4: PriorKnowledge = PriorKnowledge ∪ {LearnAboutPriorTeammate(t)}
5: BehaviorDistr = BehaviorPrior(PriorKnowledge) � initialize beliefs

� act in the domain
6: Initialize s
7: while s is not terminal do
8: a = SelectAction(BehaviorDistr, s)
9: Take action a and observe r, s�

10: BehaviorDistr = UpdateBeliefs(BehaviorDistr, s, a)

LearnAboutPriorTeammate is defined differently for the two variants, but in both al-
gorithms it learns information about the prior teammate, encoding the knowledge to
be used in the SelectAction subroutine. Lines 6–10 show how PLASTIC selects the
agent’s actions. PLASTIC updates its beliefs over the teammate models or policies by
observing their actions and using the UpdateBeliefs function implemented in the two
variants.

The core difference between PLASTIC–Model and PLASTIC–Policy is that the
former uses a model based approach, while the latter uses a policy based approach.
The pursuit domain has 4005 ≈ 1013 states and has nearly deterministic actions, as
the only non-determinism is in reconciling collisions. The half field offense domain
has continuous states leading to an effectively infinite base and more agents leading
to a higher exponent. In addition to this higher-dimension state space, the actions are
non-deterministic, leading to a much higher branching factor. The actions are also con-
tinuous, though we have discretized the ad hoc agent’s actions. Combining this larger,
continuous state space and the higher branching factor hampers the ability to search for
the best policy for the ad hoc agent. However, learning policies for behaving in this type
of complex domains is possible. Specifically, approaches such as Fitted Q Iteration can
handle learning policies in large, continuous state spaces. Therefore, PLASTIC–Policy
is capable of tackling more complex problems than PLASTIC–Model.

On the other hand, PLASTIC–Model is more scalable to diverse teams. It stores a
model of each type of teammate behavior, rather than each team. On the other hand,
PLASTIC–Policy stores a policy for cooperating with a team, which depends on the
behavior of each teammate. In addition, PLASTIC–Model is better able to handle
situations (not explored in this article) in which its models of teammate behaviors
change over time, such as when ongoing learning changes these models. As these
models change, PLASTIC–Model can simply adapt by planning a new behavior using

20

these models, while PLASTIC–Policy requires recalculating the policy for the result-
ing MDP. On the other hand, the main advantage of PLASTIC–Policy is its ability to
scale to more complex problems.

4.2. PLASTIC–Model
When an agent has a good model of its environment, it can use this model to plan

good actions using a limited number of interactions with the environment. For an ad
hoc agent to plan, it also needs to model its teammates; therefore, it is useful for the ad
hoc agent to build models of its teammates’ behaviors. Given that learning new models
online takes many samples, it is useful to reuse information learned from past team-
mates. This section describes PLASTIC–Model, a variant of the PLASTIC approach
that learns models of prior teammates and selects which models best predict its current
teammates. An overview of this approach is given in Figure 5 and the specification of
the LearnAboutPriorTeammate, SelectAction, and UpdateBeliefs functions are given
in Algorithm 3. These functions are described in depth in the remainder of this section.

Environment

Agent

Agent

Team

Ad Hoc Agent

Planning

Model Selection
Teammate

Models
Updates

Use
d By

Joint
Action

State Reward

Learned
Teammate

Models

Hand Coded
Teammate

Models

Com
bi

ne

Com
bine

Ad Hoc
Agent’s
Action

Teammates’
Actions

Figure 5: Overview of using the model-based approach of PLASTIC–Model to cooperate with unknown
teammates.

4.2.1. Model Selection
In Algorithm 3, it is also necessary to select from a set of possible teammate models

using SelectAction. Performing the simulations for the Monte Carlo rollouts or other
planners requires that the ad hoc agent has a model of how its teammates behave. If
there is a (presumably correct or approximately correct) single model for this behavior,
the planning is straightforward. On the other hand, if the ad hoc agent is given several
possible models to choose from, the problem is more difficult. Assuming that the ad
hoc agent starts with some prior belief distribution over which model correctly reflects
its teammates’ behaviors, the ad hoc agent can update these beliefs by observing its
teammates. In this context, P (model|actions) is the posterior probability of the model,
given the observed actions, which is the value we want to determine. Fortunately, this
value can be calculated using Bayes’ theorem:

P (model|actions) =
P (actions|model) ∗ P (model)

P (actions)

21

Algorithm 3 Instantiation of functions from Algorithm 2 for PLASTIC–Model.
1: function UpdateBeliefs:

inputs:
BehaviorDistr � probability distr. over possible teammate behaviors
s � the current environment state
a � previously chosen action

outputs:
BehaviorDistr � updated probability distr.

params:
η � bounds the maximum allowed loss

2: for m ∈ BehaviorDistr do
3: loss = 1− P (a|m, s)
4: BehaviorDistr(m)∗ = (1− ηloss)
5: Normalize BehaviorDistr
6: return BehaviorDistr

7: function SelectAction:
inputs:

BehaviorDistr � probability distr. over possible teammate behaviors
s � the current environment state

outputs:
a � the best action for the agent to take

params:
p � an MDP planner that selects actions, such as UCT

� simulateAction is derived from the known environment model and
� sampling from BehaviorDistr (the teammate behavior distribution)

8: a = p(s)
9: return a

10: function LearnAboutPriorTeammate:
inputs:

t � the prior teammate
outputs:

m � model of the teammate’s behavior
params:

learnClassifier � supervised learning algorithm
11: Data = ∅
12: repeat
13: Collect s, a for t
14: Data = Data ∪ {(s, a)}
15: m = learnClassifier(Data)
16: return m

22

where P (actions|model) is the probability of the ad hoc agent observing this series of
its teammates’ actions given that its teammates are acting using the specified model.
P (model) is the prior probability of the model, which we assume to be uniform across
the models in our experiments. This prior can be used to inject expert knowledge as to
the relative frequencies of models. P (actions) is the probability of observing the series
of the teammates’ actions, which is used as a normalizing constant. If the correct model
is in the given set of models, then the ad hoc agent’s beliefs will converge to this model
or a set of models that are not differentiable from this model.

On the other hand, if the correct model is not in the set, using Bayes rule may
drop a good model’s posterior probability to 0 for a single wrong prediction. 10 This
update may punish generally well-performing models that make a single mistake, while
leaving poor models that predict nearly randomly. Therefore, it may be advantageous
to update the probabilities more conservatively. Research in regret minimization has
shown that updating model probabilities using the polynomial weights algorithm is
near optimal if examples are chosen adversarially [17]. Since it is expected that the ad
hoc agent’s models are not perfect, the agent updates its beliefs using the polynomial
weights algorithm:

loss = 1− P (actions|model)
P (model|actions) ∝ (1− η ∗ loss) ∗ P (model)

where η ≤ 0.5 is a parameter that bounds the maximum loss, where higher values
converge more quickly. This scheme ensures that good models are not prematurely re-
moved, but it does reduce the rate of convergence. In practice, this scheme performs
very well as the observed examples of the teammates may be arbitrarily unrepresenta-
tive of the agent’s overall decision function.

If the true teammate model is in the set of models, the polynomial weights al-
gorithm is guaranteed to converge to the true teammate model [17]. However, in the
general case, the ad hoc agent has not previously seen the teammate and therefore does
not have the true model of the teammate in its set of models. In this case, we expect
that the more forgiving update used in the polynomial weights algorithm will perform
better than a pure Bayesian update; our informal tests supported this belief.

4.2.2. Planning
This section describes the SelectAction function in Algorithm 3. When an ad hoc

agent has a model of both the environment and its teammates, it can use this model to
plan about the effects of its actions and how it should adapt to its teammates. Formally,
the ad hoc agent can calculate P (s�|s, a∗), where s� is the state resulting from the ad
hoc agent taking action a∗ from state s.

In this article, rather than completely calculating out this probability, the ad hoc
agent uses a sample based planner to approximate this distribution. Specifically, the ad
hoc agent uses UCT to quickly determine the effects of its actions and plan a sequence
of actions that will be most beneficial to the team. UCT is used due to its speed and

10 P (model|action) =
P (action|model)P (model)

P (action)
=

0 · P (model)
P (action)

= 0

23

ability to handle large action and state spaces, allowing it to scale to large numbers
of teammates in complex domains. The modified version of the UCT algorithm that is
used in this article is explained in Appendix A.2. Other planning algorithms such as
Value Iteration (VI) or other approximate planners can also be used, but UCT is chosen
here as it shows good empirical performance in many large domains [51].

Given the current belief distribution over the models, the ad hoc agent can sam-
ple teammate models for planning, choosing one model for each rollout similar to the
approach adopted by Silver and Veness [60]. Sampling the model once per rollout is
desirable compared to sampling a model at each time step because this resampling can
lead to states that no model predicts. Ideally, state-action evaluations would be stored
and performed separately for each model, but that would require many more rollouts to
plan effectively. Instead, the state-action evaluations from all the models are combined
to improve the generalization of the planning.

While UCT is guaranteed to converge to the optimal policy, its convergence can be
exponential in the number of rollouts. In addition, if the planning is performed with
imperfect teammate models, the error of UCT’s calculated policy is unbounded, as is
the error of other approaches such as VI. Despite these limitations, UCT performs well
in practice and is significantly more computationally tractable than VI.

4.2.3. Learning Teammate Models
This section describes how teammate models are learned in the LearnAboutPriorTeammate

function of Algorithm 3. The previous sections described how the ad hoc agent can se-
lect the most accurate model and use it for planning, but they did not specify the source
of these models. One option is that the ad hoc agent is given hand-coded models from
human experts, as shown in Line 2 of Algorithm 2 and in Figure 5. However, there may
not always be a source of these models, or the models may be imperfect. Therefore, a
more general solution is for the ad hoc agent to learn the models. Learning allows the
agent to gain a good set of diverse models over its lifespan, allowing better performance
with arbitrary new teammates. The ad hoc agent builds models of past teammates’ be-
haviors offline and then selects from these learned models online while cooperating
with new teammates. It is expected that the past teammates are representative of the
distribution of future teammates, though the future teammates have not yet been seen.

In our setting, a model of a teammate specifies the probability of the teammate
taking each action from each state in the MDP. Formally, a model m of teammate i
specifies P (ai|m, s) for all states s in the MDP. If the teammate’s actions depend on
the ad hoc agent’s previous action (based on the reactivity of the teammates), the ad
hoc agent’s latest action should be included in the state in order to preserve the Markov
property of the MDP.

PLASTIC–Model treats building teammate models as a supervised learning prob-
lem, where the goal is to predict the teammates’ actions using the features extracted
from the world state. In this setting, the ad hoc agent is assumed to have observed
some past teammates’ actions, in the form of tuples (s, ai), where ai is the action that
teammate i from the MDP state s. The learning problem is to build a model m that
captures P (ai|s) from this data.

The ad hoc agent also has a model of the domain, which specifies P (s�|s, �a1, . . . , an�),
where �a1, . . . , an� is all of the agents’ actions. By combining the models of its team-

24

mates mj with the model of the domain, the ad hoc agent with index i can calculate
the probability of its action a∗ resulting in each next state by

P (s�|s, a∗) = P (s�|s, �a1, . . . , ai−1, a
∗, ai+1, . . . , an�)

�

j

P (aj |mj , s)

Using this equation, the ad hoc agent can reason about the results of its actions far into
the future.

In this article, our agent uses C4.5 decision trees as implemented in the Weka tool-
box [37] to learn these models. Several other classifiers were tried including SVMs,
naive Bayes, decision lists, and nearest neighbor approaches as well as boosted ver-
sions of these classifiers. However, in initial tests in the domains considered in this
article, decision trees outperformed these methods in a combination of prediction ac-
curacy and training time. On other domains, other learning algorithms may perform
better; PLASTIC does not depend on using decision trees. All model learning is per-
formed offline, reflecting past experience in the domain, but the ad hoc agent updates
its belief over the models online.

To capture the notion that the ad hoc agent is expected to have extensive prior gen-
eral domain expertise (as is assumed in the ad hoc teamwork setting), though not with
the specific teammates at hand, we pre-train the ad hoc agent with observations of a
pool of past teammates. We treat the observations of previous teammates as experience
given to PLASTIC prior to deploying the ad hoc agent.

4.2.4. Adapting Existing Teammate Models
The previous sections discuss how an ad hoc agent should cooperate with team-

mates it has interacted with before as well as how the agent should cooperate with
completely new teammates. However, in many cases, an ad hoc agent may have a lim-
ited amount of time to observe its current teammates before it interacts with them. In
addition, it has extensive observations from past interactions with other teammates.
For example, in pickup soccer, this scenario corresponds to having past experience in
pickup soccer, showing up to a new game, and watching a couple minutes before join-
ing in. This scenario fits the transfer learning (TL) paradigm, but requires the ability to
leverage multiple sources of related data. In the ad hoc teamwork scenario, the obser-
vations of prior teammates correspond to the source data sets and observations of the
current teammates form the target set.

In order to integrate transfer learning with PLASTIC–Model, only a minor change
needs to be made to Algorithm 2. Specifically, after Line 4, we insert the lines:
m = LearnModelTL(PriorKnowledge,Observations(Teammates))
PriorKnowledge = PriorKnowledge ∪ {m}

This alteration adds a new model to PriorKnowledge that is learned using transfer
learning, combining the information from previous teammates as well as the limited
observations of the new teammates.

In this setting, the transfer learning problem starts with observations over sev-
eral past teammates. For each past teammate i, these observations take the form of
Si = (st, ati), where ati is the action that teammate i took from state st and t is a past
timestep. In TL terminology, Si is a source data set. When the ad hoc agent encounters
a new teammate j, it observes a small number of this teammate’s actions, resulting in a

25

set T = (st, atj), called the target data set. Then, the ad hoc agent attempts to use these
data sources to build the best model of teammate j that correctly predicts the proba-
bility of the teammate taking action atj from state st: P (atj |st). The specifics of how
the agent combines the source data sets with the target data set depends on the transfer
learning algorithm.

We discuss one such transfer learning algorithm, TwoStageTransfer, in Section 3.2,
and other possible transfer learning algorithms in Section 7.4. A common approach
to the problem is to determine which source data set (previous teammate) is the most
similar to the target data set (current teammate) and transfer knowledge from only
this source data set, where the similarity refers to the probability of the teammates
taking the same actions from the same states. In this work, we find that TwoStage-
Transfer outperforms the other algorithms tested due to the fact that it is designed to
transfer knowledge from multiple data sources simultaneously. This capability allows
TwoStageTransfer to transfer knowledge from all previous teammates it has encoun-
tered, increasing the accuracy of its model of the teammate’s actions P (atj |st).

4.3. PLASTIC–Policy

In complex domains, planning algorithms such as UCT may perform poorly due
to the inaccuracies of their models of the environment. In addition, planning a suffi-
ciently effective behavior may be too computationally expensive to employ in these
scenarios. Therefore, it may be desirable to directly learn a policy for acting in this en-
vironment rather than planning online. Learning a policy directly prevents the ad hoc
agent from learning to exploit actions that work well in the model, but not in the real
environment. Given that the policy learned will depend heavily on the teammates that
the agent is cooperating with, it is desirable to learn a policy for each type of teammate.
Then, the ad hoc agent will try to pick which policy best fits new teammates it encoun-
ters. The remainder of this section describes the PLASTIC–Policy algorithm that uses
this approach, summarized in Figure 6. The subroutines used in PLASTIC–Policy are
specified in Algorithm 4.

Environment

Agent

Agent

Team

Ad Hoc Agent

Action
Selection

Policy Selection PoliciesUpdates

Use
d By

Joint
Action

State Reward

Learned
Policies for
Teammates

Hand Coded
Policies

Com
bi

ne

Com
bine

Ad Hoc
Agent’s
Action

Teammates’
Actions

Figure 6: Overview of using the model-free approach of PLASTIC–Policy to cooperate with unknown team-
mates.

26

Algorithm 4 Instantiation of functions from Algorithm 2 for PLASTIC–Policy.
1: function LearnAboutPriorTeammate:

inputs:
t � the prior teammate

outputs:
π � policy for cooperating with teammate t
m � nearest neighbors model of the teammate’s behavior

params:
Q-learning parameters: α, λ, and the function approximation

2: Data = ∅
3: repeat
4: Collect s, a, r, s� for t
5: Data = Data ∪ {(s, a, r, s�)}
6: Learn a policy π for Data using Q-Learning
7: Learn a nearest neighbors model m of t using Data
8: return (π,m)

9: function UpdateBeliefs:
inputs:

BehaviorDistr � probability distr. over possible teammate behaviors
s � the previous environment state
a � previously chosen action

outputs:
BehaviorDistr � updated probability distr.

params:
η � bounds the maximum allowed loss

10: for (π,m) ∈ BehaviorDistr do
11: loss = 1− P (a|m, s)
12: BehaviorDistr(m)∗ = (1− ηloss)
13: Normalize BehaviorDistr
14: return BehaviorDistr

15: function SelectAction:
inputs:

BehaviorDistr � probability distr. over possible teammate behaviors
s � the current environment state

outputs:
a � the best action for the agent to take

16: (π,m) = argmaxBehaviorDistr � select most likely policy
17: a = π(s)
18: return a

27

4.3.1. Learning the Policy
PLASTIC–Policy learns about its teammates using the LearnAboutPriorTeammate

function. Rather than explicitly modeling the MDP’s transition function as in PLASTIC–
Model, the agent directly uses samples taken from environment with its current team-
mates. However, online learning is sequential and can take a long time to learn a useful
policy on complex domains. Therefore, it is desirable to use a distributed approach that
takes advantage of the ability to run many tests simultaneously. To this end, PLASTIC–
Policy performs a number of interactions in which it explores the available actions in
parallel. It stores its experiences as the tuple �s, a, r, s��, where s is the original state, a
is the action, r is the reward, and s� is the resulting state.

Using these observations, PLASTIC–Policy can learn a policy for cooperating with
its teammates using existing learning algorithms. In this article, the agent uses Fitted
Q Iteration (FQI) [28], as described in Appendix A.3. Alternative policy learning algo-
rithms can be used, such as Q-learning [71] or policy search [26]. We chose to use FQI
due to its good performance with continuous domains and because it does not require
expert knowledge in the form of a parameterized policy.

4.3.2. Selecting Policies
This section describes the UpdateBeliefs and SelectAction functions from Algo-

rithm 4. When an agent joins a new team, it must decide how to act with these team-
mates. If it has copious amounts of time, it can learn a policy for cooperating with these
teammates. However, if its time is more limited, it must adapt more efficiently.

We assume that the agent has previously played with a number of different teams,
and the agent learns a policy for each of these teams. When it joins a new team, the
agent can then reuse the knowledge it has learned from these teams to adapt more
quickly to the new team. One way of reusing this knowledge is to select from these
learned policies. If the agent has previously learned a policy for cooperating with the
behaviors its teammates’ exhibit and it knows that its teammates are using these be-
haviors, the agent can directly use the learned policy. However, if it does not know
which behavior types its teammates are exhibiting, the agent must select from its set
of learned policies, determining which previously seen behavior best matches its team-
mates current behavior.

Many similar decision-making problems can be modeled as multi-armed bandit
problems when the problem is stateless. In this setting, selecting an arm corresponds to
playing one of the learned policies for an episode. Over time, the agent can estimate the
expected values (expected chance of scoring) of each policy by selecting that policy a
number of times and observing the outcome.

However, this type of learning may require a large number of trials as the out-
comes of playing each policy may be very noisy depending on the complexity of the
domain. Therefore, it is desirable to select from the policies more quickly. To this end,
PLASTIC–Policy employs an approach based on maintaining the probability of the
new team being similar to a previously observed team. At each time step, PLASTIC–
Policy takes the action selected by the policy that has the highest probability of corre-
sponding to the current teammates.

These probabilities are updated by observing the actions the team performs and
using Bayes’ theorem. However, Bayes’ theorem may drop the posterior probability

28

of a similar team to 0 for a single wrong prediction. Therefore, as in Section 4.2.1,
PLASTIC–Policy adopts the approach of updating these probabilities using the poly-
nomial weights algorithm from regret minimization [17]:

loss = 1− P (actions|model)
P (model|actions) ∝ (1− η ∗ loss) ∗ P (model)

where η ≤ 0.5 is a parameter that bounds the maximum loss, where higher values
converge more quickly.

The learned policies do not directly give the probability of a past team taking an
action. However, the experiences (�s, a, r, s��) used in learning the policies can help
because they provide estimates of the teams’ transition function. When the agent ob-
serves a state s and the next state s�, it can update the probability of the new team being
similar to each old team. For each old team, the agent finds the stored state ŝ closest
to s and its next state ŝ�. Then, for each component of the state, it computes the differ-
ence between s� and ŝ�. We assume that the MDP’s noise is normal, so each difference
results in a probability that it was drawn from the noise distribution. Multiplying these
factors together results in a point estimate of the probability of the previous team taking
the observed action.

Note that in domains in which the state has ordinal or symbolic components, differ-
ent distance measures should be used. Also, while this distance function performs well
in the experiments in the article, it is possible that states that are close by this measure
will still be far at the behavior level, resulting in a bad estimate of the similarity. The
use of the polynomial weights algorithm mitigates the effects of a small number of poor
similarity estimates, but it can be overwhelmed if this measure is frequently incorrect.

5. Pursuit Results

This section presents an empirical analysis of PLASTIC’s performance in the pur-
suit domain introduced in Section 2.4. The first tests show that PLASTIC–Model is
effective for cooperating with known teammates and that UCT performs well as the
planning algorithm for PLASTIC–Model. These results show that PLASTIC–Model
outperforms matching its teammates’ behaviors. The next tests show that PLASTIC–
Model can learn to cooperate with a number of unknown teammates given prior hand-
coded models of its potential teammates’ behaviors for HandCodedKnowledge, and
the following tests show that these hand-coded models can enable PLASTIC–Model to
cooperate with a variety of previously unseen teammates.

The initial tests are used to evaluate parts of PLASTIC–Model, whether its planning
is effective and whether it can select among a set of models. The next set of tests inves-
tigates the core question in this paper: whether PLASTIC–Model can reuse knowledge
it learns from previous teammates in order to speed up teammates exhibiting unknown
behaviors. Our first tests demonstrate that PLASTIC–Model can effectively learn mod-
els of past teammates and use these models to quickly adapt to unknown teammates.
Furthermore, the results show that PLASTIC–Model is effective even when the new
teammates are drawn from a substantially different set than its previous teammates.
Additional tests show that TwoStageTransfer is effective for learning models of new
teammates using only a small amount of observations of these teammate combined

29

with many observations of past teammates. Using TwoStageTransfer with PLASTIC–
Model allows an ad hoc agent to cooperate with a variety of unknown teammates,
outperforming only reusing previously learned models.

5.1. Methods

In the pursuit domain, our ad hoc agent uses PLASTIC–Model to select its actions.
To employ PLASTIC–Model, we model the pursuit domain as an MDP. States in the
MDP are the current positions of all agents, and the actions are to move in one of the
four cardinal directions or stay still. The transition function is deterministic except for
collisions, which are handled based on a random priority assigned each time step. The
reward function returns 1.0 when the prey is captured and 0 otherwise.

In Sections 5.5 and 5.6, PLASTIC–Model learns models of its teammates, as dis-
cussed in Section 4.2.3. Learning allows the agent to gain a good set of diverse models
over its lifespan, allowing better performance with arbitrary new teammates. The ad
hoc agent builds models of past teammates’ behaviors offline and then selects from
these learned models online while cooperating with new teammates. It is expected that
the past teammates are representative of the distribution of future teammates, though
the future teammates have not yet been seen.

To predict its past teammates’ actions, the ad hoc agent uses a decision tree learning
algorithm to predict the actions its teammates’ would take from a given state. Rather
than use a single number to represent the state, the ad hoc agent uses a factored repre-
sentation. We assume that each of the resulting features is informative and that states
with similar features will result in similar actions from the teammates.

Description Num. Features Values
Predator Number 1 {0, 1, 2, 3}
Prey x position 1 {−10, . . . , 10}
Prey y position 1 {−10, . . . , 10}

Predatori x position 3 {−10, . . . , 10}
Predatori y position 3 {−10, . . . , 10}
Neighboring prey 1 {true,false}

Cell neighboring prey is occupied 4 {true,false}
Previous two actions 2 {←,→, ↑, ↓, •}

Table 2: Features for predicting a teammate’s actions. Positions are relative to the teammate.

The features in Table 2 are mostly the relative locations of other agents in the do-
main. The features also include whether the predator is currently neighboring the prey
and whether each of the four cells around the prey are occupied by predators, which
gives information about which direction the predator may move to fill the empty spots.
Also, we include which of the four numbers the predator is assigned in case agents on
a team are specialized based on their number. Finally, the previous two actions give a
succinct, but imperfect summary of the predator’s intentions; we expect that predators
are likely to continue in their current direction, but the learning algorithm figures out
how this history predicts the next action.

30

To capture the notion that the ad hoc agent is expected to have extensive prior gen-
eral domain expertise (as is assumed in the ad hoc teamwork setting), though not with
the specific teammates at hand, PLASTIC–Model observes a number of past team-
mates. Specifically, it watches teams of four predators for 50,000 steps for each past
teammate type, and builds a separate model for each type of teammate. Preliminary
tests show that less data can still be effective, but the focus of this research is about
minimizing observations of the current teammates, not the previous ones. We treat the
observations of previous teammates as experience prior to deploying the ad hoc agent.
If some observations of the current teammates are available, we can improve our results
using transfer learning as discussed in Section 5.6.

We evaluate how PLASTIC–Model compares to the baseline of directly copying
the teammates’ behaviors. Copying the teammates’ behaviors tests how the team would
perform if it had another teammate that matched the team rather than the ad hoc team
agent. Two other possible baselines would be to have the ad hoc agent not move or
select actions randomly, both of which result in the team never capturing the prey.
Therefore, these baselines are not used in this article. We use the following performance
metric: given 500 steps, how many times can the predators capture the prey. Whenever
the prey is caught, it is randomly relocated and the predators try to capture the prey
again. Results are averaged over 1,000 trials, and statistical significance is tested using
a Wilcoxon signed-rank test with p < 0.01.

5.2. Cooperating with Known teammates

Before analyzing whether PLASTIC–Model is effective at cooperating with un-
known teammates, it is first informative to test whether it can cooperate with known
teammates on a known task. Specifically, we test its performance with the hand-coded
teammates presented in Section 2.4.1. PLASTIC–Model is given the prior knowl-
edge in the form of the correct hand-coded policy of its teammates behaviors for
HandCodedKnowledge. Although the ad hoc team agent has a full model of its team-
mates, this scenario is still an ad hoc teamwork setting because there is no opportunity
for the team to coordinate prior to starting the task: the agent must determine its strat-
egy online. We hypothesize that PLASTIC–Model will effectively plan to deal with its
known teammates and outperform matching their suboptimal behaviors.

When both the teammates and the task are known, finding the optimal behavior with
PLASTIC–Model simplifies to a planning algorithm. As presented in Appendix A.1,
Value Iteration (VI) is a planning algorithm that is guaranteed to compute the optimal
behavior for the ad hoc agent, but it is computationally intensive to calculate. In order
to scale to larger problems, it is desirable to use more efficient, approximate methods
such as Upper Confidence bounds for Trees (UCT), which is discussed in Appendix
A.2. Ideally, the approximate solutions will not lose too much compared to the opti-
mal solutions. Therefore, we look at the performance of these two different planning
algorithms for PLASTIC–Model, as well as the baseline of matching the teammates’
behaviors.

Results for three sizes of worlds are given in Figure 7. These results show that the
ad hoc agent can do much better than just copying the behavior of its teammates by
using PLASTIC–Model. In the 5x5 world, following the optimal behavior found by

31

VI captures the prey an average of 92.82 and 81.04 times respectively when cooperat-
ing with Greedy and Teammate-aware teammates as opposed to 67.77 and 63.88 times
when mimicking their behavior. The improvements of planning over mimicking the
teammates increase as the worlds get larger, although VI does not scale well enough
computationally to calculate the optimal behavior for these worlds. For example, on the
20x20 world, using PLASTIC–Model with UCT allows the agent to capture the prey on
average 15.07 times per 500 steps when cooperating with Greedy Probabilistic team-
mates compared to 6.12 times when mimicking the teammates’ behavior. Similarly,
the agent using PLASTIC–Model captures the prey 14.47 times rather than 2.60 times
when paired with Probabilistic Destinations teammates. All differences are statistically
significant with p < 0.01.

GR TA GP PD
Teammate Type

0

20

40

60

80

100

Ti
m

es
P

re
y

C
ap

tu
re

d

(a) 5x5 World

GR TA GP PD
Teammate Type

0

10

20

30

40

Ti
m

es
P

re
y

C
ap

tu
re

d

(b) 10x10 World

GR TA GP PD
Teammate Type

0

5

10

15

20

25

30

Ti
m

es
P

re
y

C
ap

tu
re

d

(c) 20x20 World

PLASTIC-Model(VI)
PLASTIC-Model(UCT)
Match

(d)

Figure 7: Results with known hand-coded teammates.

However, using the approximate planning of UCT in PLASTIC–Model is not much
of a compromise, since it performs nearly as well as VI despite using much less com-
putation time. In the 5x5 world, the agent captures the prey 91.68 and 80.45 times with
Greedy and Teammate-aware agents when planning with UCT, as opposed to 92.82
and 81.043 times with VI. The difference in performance could be lowered by using
more playouts in the UCT at the cost of more computation time. Given the close ap-
proximation to optimal that UCT provides, the most important difference between the
methods is the time it takes to plan. On the 5x5 world, an entire UCT episode takes
less than 10 seconds compared to VI’s 12 hour computation (although VI only needs
to run once, rather than for each episode). Furthermore, UCT is an anytime algorithm,
so it can be used to handle variable time constraints and can modify its plan online as
the models change. Given the good performance of UCT as well as its computational

32

efficiency, we use it as the planning algorithm for PLASTIC–Model for the remainder
of this section.

5.3. Cooperating with teammates drawn from a known set

While Section 5.2 considers the case in which the ad hoc agent knows the behav-
iors of its teammates, the ad hoc agent may not always be this well informed. Instead,
ad hoc agents will need to adapt to new teammates on the fly. Therefore, we now ex-
pand the problem, considering the case in which the ad hoc agent may encounter any
of the four hand-coded predators as teammates, but it does not know which behavior
its current teammates are using. The ad hoc agent does know that these teammates
are drawn from the set of hand-coded predators. In other words, PLASTIC–Model re-
ceives all four hand-coded behaviors as HandCodedKnowledge and needs to determine
which one best represents its teammates online. This setting is closer to the general ad
hoc teamwork scenario, because it shows how well an ad hoc agent can do if it only
knows that its teammates are drawn from a larger set A of possible teammates. These
evaluations test whether PLASTIC–Model can determine which type of teammates it
encounters and adapt to them. We hypothesize that PLASTIC–Model will outperform
matching their behaviors and perform only marginally worse than when PLASTIC–
Model knows their behaviors before interacting with them. In Sections 5.4–5.6, we
explore a setting with a much larger set of possible teammates.

Ideally, assuming PLASTIC–Model has a set of possible models for its teammates
as input, it should be able to determine which model is correct and plan with that
model appropriately. In this setting, PLASTIC–Model uses the polynomial weights
method described in Section 4.2.1 to maintain its beliefs over the teammates’ types.
PLASTIC–Model is given a uniform prior over the teammate types for BehaviorPrior,
but PLASTIC–Model knows that the teammates are homogeneous; i.e. there were
no teams with some agents following the Greedy behavior and others following the
Teammate-aware behavior. The results for this scenario are displayed in Figure 8. Dif-
ferentiating the deterministic teammate behaviors is straightforward because as soon
as they take one action that is not expected by the deterministic behavior, the incorrect
model can be removed. However, the stochastic teammate behaviors are more difficult
to differentiate, as there is significant overlap in the actions that are possible for them
to take.

We compare PLASTIC–Model being given the four hand-coded teammate behav-
iors as
HandCodedKnowledge to a version of PLASTIC–Model that is given only the cor-
rect model of its teammates as HandCodedKnowledge. We keep the baseline of trying
to fit into the teammates’ pre-designed team, denoted Match. The results are shown
in Figure 8. PLASTIC–Model is statistically significantly better than Match in all
scenarios. In the 5x5 world, PLASTIC–Model(All) is statistically significantly worse
that PLASTIC–Model(True) for GR, GP, and PD teammates. In the 10x10 world,
PLASTIC–Model(True) is significantly better than PLASTIC–Model(All) only for GR
teammates, and in the 20x20 world, PLASTIC–Model(True) is significantly better
than PLASTIC–Model(All) for the GR and PD teammates. These results show that
PLASTIC–Model is able to quickly determine the behaviors of its teammates, losing

33

GR TA GP PD
Teammate Type

0

20

40

60

80

100

Ti
m

es
P

re
y

C
ap

tu
re

d

(a) 5x5 World

GR TA GP PD
Teammate Type

0

10

20

30

40

Ti
m

es
P

re
y

C
ap

tu
re

d

(b) 10x10 World

GR TA GP PD
Teammate Type

0

5

10

15

20

25

30

Ti
m

es
P

re
y

C
ap

tu
re

d

(c) 20x20 World

PLASTIC-Model(True)
PLASTIC-Model(All)
Match

(d)

Figure 8: Results with unknown hand-coded teammates.

only a small amount compared to when it knows the correct teammate behavior ahead
of time.

5.4. Unmodeled teammates

To this point, PLASTIC–Model has always had the benefit of having the correct
model of its teammates in HandCodedKnowledge, even when HandCodedKnowledge
includes incorrect models. However, PLASTIC–Model may not always be this for-
tunate. Therefore, we now consider the case where there are agents in A for which
PLASTIC–Model does not have a correct model in HandCodedKnowledge. We again
give PLASTIC–Model the four hand-coded teammate behaviors as HandCodedKnowledge,
but the ad hoc agent encounters teammates not drawn from this set. To make sure we
have not biased the creation of these agents towards being better for ad hoc teamwork,
we used the externally-created teammates described in Section 2.4.2 as StudentBroad.
PLASTIC–Model exploits similarities between the current teammates’ behaviors and
past teammates’ behaviors, but these teammates are not explicitly designed to be simi-
lar. Nonetheless, PLASTIC–Model is able to identify and exploit similarities between
teammates coming from a variety of developers.

Note that all the agents on each team used here are produced by the same student:
we did not mix and match agents from different students. However, on some of the
students’ teams, not all of the agents use the same behavior. For this and all following
tests, we focus on the 20x20 world because it is more complex and interesting than the
small worlds. We hypothesize that PLASTIC–Model will be able to determine which
models best fit its teammates and use them to plan to effectively cooperate with its

34

teammates. Our expectation is that PLASTIC–Model will outperform matching their
behaviors and be outperformed by planning when their true behavior is known.

As explained in depth in Section 4.2, PLASTIC–Model maintains the probabilities
of the four known models and samples from this distribution while planning. While
these models are not correct, PLASTIC–Model tries to determine which of these be-
haviors best matches how its current teammates are behaving.

StudentBroad
Teammate Type

0

2

4

6

8

10

12

14

16

Ti
m

es
P

re
y

C
ap

tu
re

d

(a)

PLASTIC-Model(True)
PLASTIC-Model(HC)
Match

(b)

Figure 9: Results with unobserved externally-created teams (StudentBroad) on a 20x20 world.

We compare 3 possible strategies for the ad hoc agent:
1. Match – match the teammates’ behaviors
2. PLASTIC–Model(True) – use PLASTIC–Model with the HandCodedKnowledge

initialized to the current teammates’ true behavior
3. PLASTIC–Model(HC) – use PLASTIC–Model with the 4 hand-coded models

provided as HandCodedKnowledge
Strategies 1 and 2 require the ad hoc agent to know the true behavior of its current
teammates, which is not always possible. These two strategies therefore serve as base-
lines to compare strategy 3, which represents the true ad hoc scenario of encountering
previously unseen teammates. The results in Figure 9 show that the ad hoc agents do
quite well despite the incorrect models. All differences are statistically significant. For
example, the PLASTIC–Model agent captures the prey 13.36 times per 500 steps rather
than 9.97 times if it matched its teammate’s behaviors. This result is surprising because
one would assume that planning using an incorrect model would perform worse than
playing the behavior of the student’s agent that the ad hoc agent replaced. While there
is some loss compared to if the ad hoc agent knew the true behavior of its teammates,
these 4 hand-coded models are representative enough of these externally-created team-
mate to achieve good results. This experiment shows that it is possible for an agent to
cooperate with unknown teammates by using a set of known, representative models.

5.5. Learning About Teammates

In this section, we explore the scenario where the ad hoc agent has previously ob-
served a number of past teammates. These past teammates are expected to be similar
to the current teammates. Ideally, the ad hoc agent should be able to use the observa-
tions of its past teammates to better cooperate with its current teammates. To this end,
this section evaluates how well PLASTIC–Model learns models of past teammates and
then selects between these models. Specifically, PLASTIC–Model observes each past

35

teammate for a total of 50,000 steps. This number was chosen to give the agent an
excess of information for learning models as we do not care about the speed of learn-
ing. Then, PLASTIC–Model learns a decision tree to represent the behavior of each
past teammate, as discussed in Section 4.2.3. This section tests the hypothesis that
PLASTIC–Model can learn models of past teammates and reuse these learned models
to cooperate with new teammates. The results show that this approach only marginally
loses compared to knowing the teammates’ true behaviors and outperforms matching
their behaviors.

The teammates used in this section are those from StudentBroad, described in Sec-
tion 2.4.2. These teammates are externally-created, being designed by students for a
class assignment. We consider 5 behaviors for the ad hoc agent:

1. Match – match the teammates’ behaviors
2. PLASTIC–Model(True) – use PLASTIC–Model with the HandCodedKnowledge

initialized to the current teammates’ true behavior
3. PLASTIC–Model(CorrectLearned) – use PLASTIC–Model with PriorTeammates

being only the current teammates
4. PLASTIC–Model(SetIncluding) – use PLASTIC–Model with PriorTeammates

including all 29 possible teammates from StudentBroad, including the current ones
5. PLASTIC–Model(SetExcluding) – use PLASTIC–Model with PriorTeammates

including 28 possible teammates from StudentBroad, excluding the current ones
Once again, strategies 1 and 2 serve as baselines and require knowledge of the cur-
rent teammates true behaviors. PLASTIC–Model(CorrectLearned) evaluates the per-
formance of the learning algorithm, where PLASTIC–Model knows which teammates
the agent is cooperating with and uses its past observations of these teammates to learn
a model of them. PLASTIC–Model(SetIncluding) evaluates the more general ad hoc
teamwork scenario where the current type of teammate is unknown, but the current
teammates have been previously observed. Finally, PLASTIC–Model(SetExcluding)
shows the true ad hoc teamwork scenario, when the ad hoc agent has never seen the
current teammates, but uses PLASTIC–Model to reuse knowledge it has learned from
previous teammates.

StudentBroad
Teammate Type

0

2

4

6

8

10

12

14

16

Ti
m

es
P

re
y

C
ap

tu
re

d

(a)

PLASTIC-Model(True)
PLASTIC-Model(CorrectLearned)
PLASTIC-Model(SetIncluding)
PLASTIC-Model(SetExcluding)
Match

(b)

Figure 10: Results with PLASTIC–Model learning models of previously observed teammates when encoun-
tering teams from StudentBroad on a 20x20 world.

Figure 10 shows the performance of these five approaches; all differences are sta-
tistically significant. PLASTIC–Model(True) shows an unattainable level of perfor-

36

mance as it requires perfect knowledge of the current teammates. However, learning
a model by observing the current teammates does not lose too much performance, as
shown by the PLASTIC–Model(CorrectLearned) line. Furthermore, having observed
many teammates and needing to select from these past teammates does not gener-
ate too much loss either, as shown by the PLASTIC–Model(SetIncluding) line. Fi-
nally, PLASTIC–Model(SetExcluding) shows the performance of PLASTIC–Model
when encountering a previously unseen teammate. Its performance shows that the
models learned from previous teammates can do a good job of capturing the behav-
ior of new teammates. This problem is the true ad hoc teamwork problem, when the
ad hoc agent encounters teammates for which it has no prior knowledge. The gap
between PLASTIC–Model(SetExcluding) and PLASTIC–Model(SetIncluding) shows
that there is still room to improve for new teammates.

It is possible that the agents created by the class are biased to be similar, so all
agents from StudentBroad may share some characteristics. Therefore, we would also like
to test how these learned models allow PLASTIC–Model to cooperate with teammates
drawn from another set. In this scenario, we never learn models on the StudentSelected
teammates. Instead, we evaluate how well PLASTIC–Model performs when it is given
StudentBroad for PriorTeammates, but then encounters teammates from StudentSelected.
Specifically, PLASTIC–Model learns 29 models, one for each teammate behavior in
StudentBroad, but then encounters a 30th teammate, drawn from StudentSelected.

StudentSelected
Teammate Type

0

5

10

15

20

25

Ti
m

es
P

re
y

C
ap

tu
re

d

(a)

PLASTIC-Model(True)
PLASTIC-Model(SetExcluding)
Match

(b)

Figure 11: Results with PLASTIC–Model learning models of previously observed teammates when encoun-
tering teams from StudentSelected on a 20x20 world.

Figure 11 gives the results of these tests, with all differences being statistically sig-
nificant. Once again, PLASTIC–Model(True) shows the upper bound on performance,
when PLASTIC–Model is given information about the true behavior of the teammates,
which is not accessible in most scenarios. However, PLASTIC–Model(SetExcluding)
performs quite well, showing that the learned models are generally useful. This ap-
proach still far outperforms matching the teammates’ behaviors, despite the inaccura-
cies of the models. For visual comparison, videos of ad hoc agents using PLASTIC–
Model to adapt to its teammates and videos of ad hoc agents using other strategies can
be found online.11

11http://www.cs.utexas.edu/˜larg/index.php/Ad_Hoc_Teamwork:_Pursuit

37

5.6. Learning about New Teammates

The previous section assumes that PLASTIC–Model has observed previous team-
mates, but not the current teammates. If instead, PLASTIC–Model observes the current
teammates for a small number of steps, it can try to use this information to learn a new
model about these teammates. However, given that the learning is about the current
teammates, we care about the speed of learning. Therefore, PLASTIC–Model com-
bines this information with that coming from previously observed teammates to learn a
better model. Specifically, this setting permits PLASTIC–Model to use transfer learn-
ing to learn a better model of its current teammates. These evaluations test the hypoth-
esis that using transfer learning allows PLASTIC–Model to narrow the gap between
PLASTIC–Model(SetExcluding) and PLASTIC–Model(CorrectLearned) seen in the
previous section.

In our tests, we assume that the ad hoc agent has previously observed 50,000 train-
ing steps of each of the past 28 teammates from StudentBroad. In addition, it has seen
100 training steps of the current teammates. Note that this is significantly less than
the testing time of 500 steps, but once testing begins, PLASTIC–Model is not learning
online other than adapting its belief distribution over the possible models. PLASTIC–
Model could also improve its models, but we focus on evaluating the transfer learning
algorithms with a fixed amount of observations of the current teammates. Both the past
and current teammates in this test are taken from StudentBroad.

We evaluate four different transfer learning algorithms: TwoStageTrAdaBoost, TrAd-
aBoost, TrBagg, and TwoStageTransfer (discussed in Section 3.2) in PLASTIC–Model.
The goal of transfer learning is to produce a model that performs well on the target data
set (current teammates) by using the source data sets (past teammates). We hypothesize
that TwoStageTransfer will perform the best as it explicitly reasons about the fact that
the source data is coming from multiple sources. In addition, we compare these trans-
fer learning algorithms to the performance of purely reusing the previously learned
teammate models, PLASTIC–Model(SetExcluding). All of the transfer learning algo-
rithms use decision trees as their base learning algorithm. To make the evaluations as
fair as possible, for TwoStageTransfer and TwoStageTrAdaBoost, 10 different weight-
ings were used. In TrAdaBoost and TwoStageTrAdaBoost, 10 boosting iterations were
used. For TrBagg, a total of 1,000 sets were used for training classifiers, and a Naive
Bayes classifier served as the fallback model. Each algorithm has some set of parame-
ters that can be tuned, and their values were chosen in preliminary tests based on their
performance and computational tractability.

Figure 12 shows the results of the four transfer learning algorithms used as sub-
routines of PLASTIC–Model, with all differences being statistically significant. In
PLASTIC–Model, all learning of the models is performed offline with only model
selection happening online during the evaluation. One baseline for comparison is if
PLASTIC–Model ignores the previously observed teammates and learns a new model
from just the observed 100 steps of the current teammates, shown as PLASTIC–Model(CorrectLearned100).
As an upper baseline, we compare to the unattainable performance of using a ver-
sion of PLASTIC–Model that observes 50,000 steps of the current teammate, shown
as PLASTIC–Model(CorrectLearned50,000), which represents the best performance at-
tainable using models learned given large amounts of data.

38

StudentBroad
Teammate Type

0

2

4

6

8

10

12

14

16

Ti
m

es
P

re
y

C
ap

tu
re

d

(a)

PLASTIC-Model(True)
PLASTIC-Model(CorrectLearned50,000)

PLASTIC-Model(TwoStageTransfer+SetExcluding)
PLASTIC-Model(SetExcluding)
PLASTIC-Model(TwoStageTransfer)
PLASTIC-Model(TrAdaBoost)
PLASTIC-Model(TwoStageTrAdaBoost)
Match
PLASTIC-Model(CorrectLearned100)

PLASTIC-Model(TrBagg)

(b)

Figure 12: Comparing different transfer learning algorithms in PLASTIC–Model to improve results with
ad hoc agents that have limited observations of their current teammates. Tests are in a 20x20 world with
StudentBroad teammates.

In these results, TwoStageTransfer statistically significantly outperforms the other
transfer learning algorithms. In addition, combining the models learned with TwoStage-
Transfer with the models learned from representative teammates in the PLASTIC–
Model(TwoStageTransfer + SetExcluding) setting helps, reaching results that are sta-
tistically significantly better than PLASTIC–Model(SetExcluding). TrBagg performed
poorly in this setting, mis-transferring information, possibly due to the fallback model
used or the balance of target and source data. Several values of these parameters were
tested, but performance remained similar.

StudentBroad
Teammate Type

0

2

4

6

8

10

12

14

16

Ti
m

es
P

re
y

C
ap

tu
re

d

(a)

PLASTIC-Model(True)
PLASTIC-Model(CorrectLearned50,000)

PLASTIC-Model(TwoStageTransfer10,000)

PLASTIC-Model(TwoStageTransfer1,000)

PLASTIC-Model(TwoStageTransfer100)

PLASTIC-Model(TwoStageTransfer10)

PLASTIC-Model(CorrectLearned100)

(b)

Figure 13: Evaluating PLASTIC–Model using TwoStageTransfer with varying amounts of target data. Tests
are in a 20x20 world with StudentBroad teammates.

In addition, it is important to see how much target data TwoStageTransfer needs
to perform well. Therefore, we vary the order of magnitude of target data and run
PLASTIC–Model(TwoStageTransferi) where i is the amount of target data provided.
Figure 13 shows results with varying amounts of target data, but constant amounts of
source data. The difference between the results with 1,000 steps of target data and 100
is statistically significant, but the differences between 10,000 and 1,000 or 100 and 10
are not. The results show that the performance of TwoStageTransfer does improve with
more target data, but the improvement is not smooth. These results show that as few
observations as 10 steps of the current teammates are sufficient for TwoStageTransfer
to perform produce useful models in this scenario. We used 100 steps in Figure 12 to
give other transfer learning methods enough data to perform adequately, though the

39

results show that TwoStageTransfer still significantly outperforms them.

5.7. Summary
This section showed that PLASTIC–Model enables ad hoc team agents to cooper-

ate with a variety of hand-coded and externally-created teammates in the pursuit do-
main. PLASTIC–Model gets good results when given a set of hand-coded behaviors as
HandCodedKnowledge or when it has experienced a number of previous teammates as
PriorTeammates. PLASTIC–Model performs well even when it has never seen the cur-
rent teammates before if the ad hoc agent has experience with previous teammates that
exhibit similar behaviors. Furthermore, transfer learning can learn new models quickly,
allowing PLASTIC–Model to quickly adapt to new teammates. Specifically, combining
models learned from TwoStageTransfer with the models of past teammates outperforms
the other approaches considered. PLASTIC–Model allows the ad hoc agent to adapt to
a variety of teammates. Also, the agent’s behavior differs greatly when cooperating
with different teammates, indicating that it is not just following a single policy with all
teammates. These results show that PLASTIC–Model allows agents to reuse knowl-
edge about previous teammates to quickly adapt by exploiting similarities to observed
teammates’ behaviors in the pursuit domain.

6. Half Field Offense Results

The previous section showed that PLASTIC allows ad hoc agents to cooperate with
a variety of teammates in the pursuit domain given prior experiences with other team-
mates. However, while the pursuit domain requires a number of agents to cooperate,
it is still simple compared to many realistic scenarios. Therefore, this section looks
into scaling PLASTIC to a more complex domain, namely that of half field offense
(HFO), described in Section 2.5. All past research on HFO has focused on creating full
teams that are pre-coordinated, but this section shows that PLASTIC can handle un-
known teammates without prior coordination. Given the complexity of HFO, planning
using UCT requires many samples and runs into issues with imperfect modeling of
the environment. Therefore, we evaluate PLASTIC–Policy in HFO. PLASTIC–Policy
is more effective in this setting because it avoids the complexity of modeling the do-
main and teammates. Instead, PLASTIC–Policy directly learns policies for cooperating
with previous teammates and then selects between these policies online for the current
teammates. PLASTIC–Policy is described in depth in Section 4.3.

The results in this section show that in the HFO domain, PLASTIC–Policy is effec-
tive allowing an ad hoc team agent to reuse knowledge from past teammates to improve
cooperation with its teammates. Our tests evaluate PLASTIC–Policy with teams that
competed in the 2013 RoboCup 2D Simulation League and are complex, being devel-
oped over several years, which are discussed in Section 2.5.1. Despite this complexity,
PLASTIC–Policy is able to learn policies for cooperating with each type of teammate,
and the results show that these policies are specialized to the teammate type. There-
fore, PLASTIC–Policy’s approach of maintaining the probabilities of each teammate
type and selecting the best policy significantly outperforms the other approaches. This
section shows that PLASTIC can scale to domains with continuous states and sophis-
ticated teammates.

40

6.1. Grounding the Model
Before we discuss how to learn or act in HFO, it is important to understand how we

model the problem. Therefore, this section describes how we model the HFO domain
as an MDP.

6.1.1. State
A state s ∈ S describes the current positions, orientations, and velocities of the

agents as well as the position and velocity of the ball. In this article, we use the noiseless
versions of these values to permit for simpler learning.

6.1.2. Actions
In the 2D simulation league, agents act by selecting whether to dash, turn, or kick

and specify values such as the power and angle to kick at. Combining these actions
to accomplish the desired results is a difficult problem. Therefore, this article builds
on the code release by Helios [3]. This code release provides a number of high level
actions, such as passing, shooting, or moving to a specified point.

We use 6 high level actions when the agent has the ball:
1. Shoot – shoot the ball at the goal, avoiding any opponents
2. Short dribble – dribble the ball while maintaining control
3. Long dribble – kick ball and chase it
4. Pass0 – pass to teammate 0
5. Pass1 – pass to teammate 1
6. Pass2 – pass to teammate 2

Each action considers a number of possible movements of the ball and evaluates their
effectiveness given the locations of the agent’s opponents and teammates. Each action
therefore represents a number of possible actions that are reduced to discrete actions
using the agent2d evaluation function. While using these high level actions restricts
the possibilities that the agent can take, it also enables the agent to learn more quickly
and prune out ineffective actions, allowing it to select more intelligent actions with
fewer samples.

Additionally, the agent can select how it moves when it is away from the ball. As
the agent can take a continuous turn action or a continuous dash action every time step,
it is helpful to again use a set of high level actions, in this case 7:

1. Stay in the current position
2. Move towards the ball
3. Move towards the opposing goal
4. Move towards the nearest teammate
5. Move away from the nearest teammate
6. Move towards the nearest opponent
7. Move away from the nearest opponent

These actions provide the agent a number of possible actions that adapt to its changing
environment, while constraining the number of possible actions.

6.1.3. Transition and Reward Functions
The transition function is defined by a combination of the simulated physics of the

domain as well as the actions selected by the other agents. The agent does not directly

41

model this function; instead, it stores samples observed from played games as described
in Section 6.2.

The reward function is 1,000 when the offense wins, -1,000 when the defense wins,
and -1 per each time step taken in the episode. The value of 1,000 is chosen to be greater
than the effects of step rewards over the whole episode, but not so great as to completely
outweigh these effects. Other values were tested with similar results.

6.2. Methods
PLASTIC–Policy learns policies for cooperating with each previously encountered

team. In this article, we use Fitted Q Iteration (FQI), introduced by Ernst et al. [28].
We treat an action as going from when an agent has possession of the ball until the
action ends, another agent holds the ball, or the episode has ended. Given that we only
control a single agent, the teammates follow their own policies. The agent collects
data about its actions and those of its teammates’ in the form �s, a, r, s�� where the a
is our agent’s actions. The agent does not directly store the actions of its teammates,
instead storing the resulting world states, which include the effects of its teammates’
actions. If we controlled all of the agents, we would also consider the action from the
teammates’ perspectives. The agent observes 100,000 episodes of HFO with each type
of teammate. These episodes contain the agent’s actions when the agent has the ball as
well as when it is away from the ball.

There are many ways to represent the state of a game of half field offense. Ideally,
we want a compact representation that allows the agent to learn quickly by generaliz-
ing its knowledge about a state to similar states without over-constraining the policy.
Therefore, we select 20 features given that there are 3 teammates:

• X position – the agent’s x position on the field
• Y position – the agent’s y position on the field
• Orientation – the direction that the agent is facing
• Goal opening angle – the size of the largest open angle of the agent to the goal,

shown as θg in Figure 14
• Teammate i’s goal opening angle – the teammate’s goal opening angle
• Distance to opponent – distance to the closest opponent
• Distance from teammate i to opponent – the distance from the teammate to the

closest opponent
• Pass opening angle i – the open angle available to pass to the teammate, shown

as θp in Figure 14

θ
p

θ
g

Figure 14: Open angle from ball to the goal avoiding the blue goalie and the open angle from the ball to the
yellow teammate.

42

6.3. Evaluation Setup

Results are averaged over 1,000 trials, each consisting of a series of games of half
field offense. In each trial, the agent is placed on a team randomly selected from the 7
teams described in Section 2.5.1. Performance is measured by the fraction of the time
that the resulting team scores.

In this article, we use two variations on the HFO task: 1) the limited version with
two offensive players attempting to score on two defenders (including the goalie) and 2)
the full version with four attackers attempting to score on five defenders. In order to run
some existing teams used in the RoboCup competition, it is necessary to field the entire
11 player team for the agents to behave correctly. Therefore, it is necessary to create
the entire team and then constrain the additional players to stay away from play, only
using the agents needed for half field offense. This approach may alter the behavior of
the players used in the HFO, but our initial tests suggested that the resulting teams still
perform well on the task. We choose a fixed set of player numbers for the teammates,
based on which player numbers tended to play offensive positions in observed play. The
defensive players use the behavior created by Helios in the limited version of HFO. In
the full HFO, the defense uses the agent2d behavior provided in the code release by
Helios [3].

We compare several strategies for selecting from the policies learned by playing
with previously encountered teammates. The performance is bounded above by the
Correct Policy line, where the agent knows its teammate’s behavior type and therefore
which policy to use. The lower bound on performance is given by the Random Policy
line, where the agent randomly selects which policy to use. The Combined Policy line
shows the performance if the agent learns a single policy using the data collected from
all possible teammates, representing what an agent might do if treating this as a single
agent learning problem instead of an ad hoc teamwork problem. Other options for
baselines would be to have the ad hoc agent either not move or select actions randomly.
However, in this setting, these behaviors result in the offense almost never scoring.
Thus, these baselines are excluded from the results.

We then compare two more intelligent methods for selecting models, as described
in Section 4.3.2. Specifically, our agent must decide which of the 7 policies to fol-
low as it does not know its new teammate’s behavior type. The Bandit line represents
PLASTIC–Policy that uses an �-greedy bandit algorithm to select policies. Other ban-
dit algorithms were tested as were other values of �, but �-greedy with � = 0.1 linearly
decreasing to 0 over the length of the trial outperformed these other methods. The
PLASTIC–Policy line shows the performance of our approach, using loss-bounded
Bayesian updates to maintain probabilities over which previously learned policy to use.
We set η = 0.1 for updating the probabilities of the models in Equation 2. We model
the noise in predicting actions using a normal distribution. This noise affects the loss
function by controlling the probability function P (actions|model). For differences in
distance predictions, we use σ = 4.0, and, for orientation differences, we use σ = 40◦.

6.4. Limited Half Field Offense

Our first set of results are in the limited version of the HFO game which uses 2
offensive players competing against 2 defenders (including the goalie). Therefore, the

43

agent only needs to adapt to a single teammate. This limited version of the problem
reduces the number of state features to 8 and the number of actions while holding the
ball to 4, while the number of actions away from the ball stays at 7. These evaluations
test the hypothesis that PLASTIC–Policy can quickly converge to selecting the best
policy, losing only a small amount compared to the correct policy. In addition, we
hypothesize that PLASTIC–Policy will converge much faster than the bandit-based
approach and will also outperform combining the data from all of the agents to learn
a single, combined policy. The results are shown in Figure 15, with the error bars
showing the standard error.

0 5 10 15 20 25
Episode

0.34

0.36

0.38

0.40

0.42

0.44

Fr
ac

tio
n

S
co

re
d

Correct Policy
PLASTIC-Policy
Combined Policy
Bandit
Random Policy

Figure 15: Scoring frequency in the limited half field offense task.

The difference between the Correct Policy and Random Policy lines shows that se-
lecting the correct policy to use is important for the agent to adapt to its teammates. The
gap between the Correct Policy and Combined Policy shows that knowing the correct
teammate is better that grouping all teammates together. While the Bandit line does not
show much learning in Figure 15, it does continue learning over time. Its performance
converges to scoring 0.418 of the time after approximately 10,000 episodes, though it
does score approximately equal to the combined policy (0.382) after 1,750 episodes.
Its slow speed is due to the fact that its observations are noisy estimates of the policies’
effectiveness and are only received after each game of HFO. In addition, the scoring
fractions of the different strategies are fairly close, so determining the best one given
the amount of noise is difficult.

On the other hand, the PLASTIC–Policy line shows fast improvement, converging
to the performance of the Correct Policy line. This quick adaptation is due to two fac-
tors: 1) the better estimations of which policy fits the teammates and 2) the frequency
of the updates. The estimations of the probabilities are better as they measure how
each agent moves, rather than only using a noisy estimate of how the policy performs.
The updates are performed after every action rather than after each episode; so up-
dates are much more frequent. These two factors combine to result in fast adaptation to
new teammates using PLASTIC–Policy. The differences between the performance of
PLASTIC–Policy and Combined Policy and Bandit are statistically significant using a
two population binomial test with p < 0.01 for all episodes shown in Figure 15. Note
that while PLASTIC–Policy outperforms Correct Policy in the final episodes, this dif-

44

ference is due to noise and is not statistically significant. Videos of the performance of
PLASTIC–Policy compared to other strategies can be viewed online.12

To understand the learning of PLASTIC–Policy, it is useful to look at its beliefs,
shown in Figure 16. This graph shows the probability of the correct model of the current
teammates as well as the probability that correct model has the highest probability (with
ties contributing a probability of 1

#tied). While the probability of the correct model
takes over 15 episodes to reach above 90% probability, the correct model becomes
the maximal model 90% of the time after just 5 episodes. This result explains why
taking the maximal model gives such good performance in PLASTIC–Policy. Note
that choosing the maximal model does not create premature convergence because each
action the teammates take allows PLASTIC–Policy to update the probability of those
teammates.

0 5 10 15 20 25
Episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

Prob that correct model is max
Prob of correct model

Figure 16: Belief of the probability of the correct model (P (m∗|s, a)) and probability of the correct model
having the highest probability (P (p∗ = max pi|s, a)) calculated by PLASTIC–Policy in the limited HFO
task.

In summary, the results in this section show that PLASTIC–Policy is effective for
cooperating with unknown teammates on a complex domain with continuous state and
continuous actions. PLASTIC–Policy is able to learn policies for cooperating with pre-
vious teammates and quickly select from these policies to efficiently cooperate with
new teammates.

6.5. Full Half Field Offense

Our second set of results are in the full HFO game with 4 offensive players versus
5 defenders (including the goalie). In this setting, our agent needs to adapt to its three
teammates to score against the five defenders. This setting tests the hypothesis that
PLASTIC–Policy can learn intelligent policies for cooperating with its three teammates
and quickly select between these policies when cooperating with unknown teammates.
We expect that PLASTIC–Policy will outperform selecting policies using a bandit-
based approach or learning a single policy to cooperate with all teammates. In addition,

12http://www.cs.utexas.edu/˜larg/index.php/Ad_Hoc_Teamwork:_HFO

45

we hypothesize that PLASTIC–Policy will only lose marginally compared to the gold
standard of knowing the best policy before interacting with its teammates.

The results for this setting are shown in Figure 17. As in Section 6.4, the upper
bound on performance is given by Correct Policy and the lower bound is given by
Random Policy. The Bandit setting learns slowly, reaching a performance of 0.357 af-
ter approximately 20,000 episodes. It outperforms the combined policy (0.350) after
12,000 episodes. Once again, PLASTIC–Policy quickly converges to the correct pol-
icy’s performance, outperforming the Bandit and Combined lines. These results show
that PLASTIC–Policy quickly learns to cooperate with unknown teammates. Using a
two population binomial test with p < 0.05, PLASTIC–Policy’s performance is sta-
tistically significantly better than Combined Policy and Bandit from episode 3 on. For
visual comparison, videos of ad hoc agents using PLASTIC–Policy and other strategies
to cooperate with its teammates can be viewed online.13

0 5 10 15 20 25
Episode

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Fr
ac

tio
n

S
co

re
d

Correct Policy
PLASTIC-Policy
Combined Policy
Bandit
Random Policy

Figure 17: Scoring frequency in the full half field offense task.

We again look at PLASTIC–Policy’s beliefs over time in Figure 18. In this fig-
ure, we can see that PLASTIC–Policy takes several episodes to be convinced that the
correct model is the true model of the current teammates because of the noise of the
whole team’s actions. However, greedily selecting the highest probability model’s cor-
responding policy performs well because the correct model is maximal 90% of the time
after just 5 episodes. This result shows that PLASTIC–Policy learns quickly and can
take advantage of its continuing exploration of its teammates despite only selecting
what it believes in the current best policy.

6.6. Summary

The results in this section demonstrate that PLASTIC–Policy can scale to complex
domains requiring coordinating with many teammates, continuous states, and continu-
ous actions. PLASTIC–Policy can efficiently select good policies for cooperating with
its current teammates from a set of policies learned for cooperating with past team-
mates. Playing any one of these policies would perform poorly across the spread of

13http://www.cs.utexas.edu/˜larg/index.php/Ad_Hoc_Teamwork:_HFO

46

0 5 10 15 20 25
Episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

Prob that correct model is max
Prob of correct model

Figure 18: Belief of the probability of the correct model (P (m∗|s, a)) and probability of the correct model
having the highest probability (P (p∗ = max pi|s, a)) by PLASTIC–Policy in the full HFO task.

possible teammates. However, PLASTIC–Policy is able to quickly select a good policy
for the specific teammates with which it is cooperating.

7. Related Work

While the preceding sections discuss the research problem and the approach used
to tackle that problem, this section focuses instead on the problem of situating this
article in literature. We first provide overviews of some areas that are closely related
to ad hoc teamwork, beginning with general multiagent coordination research and then
moving on to research into opponent modeling. We follow this with a discussion of
selected works that use the domains discussed in this article. Finally, we conclude with
a discussion of current research on ad hoc teamwork.

While there is a large amount of work related to this research, this article brings
many new ideas to the table. With respect to ad hoc teamwork, this article moves ad
hoc teamwork to an empirical setting and tackles more complex problems than those
studied previously. Rather than requiring shared communication and coordination pro-
tocols like past research on multi-agent teams, this work describes agents that can coop-
erate without these shared protocols. Compared to opponent modeling, this work cre-
ates agents that adapt more quickly to other agents at the price of making the stronger
assumption that they are cooperating towards a shared goal. Furthermore, this article
expands the formulation of the pursuit and RoboCup domains to include teammates
that come from a variety of sources that need to learn to cooperate on the fly.

7.1. Multi-Agent Teams

A large body of research on coordinating multi-agent teams exists, specifying stan-
dardized protocols for communication and shared algorithms for coordination. One
such algorithm is STEAM [68], in which team members build up a partial hierarchy
of joint actions. In addition, agents monitor the progress of their plans, adapting their
plans when conditions change. STEAM is designed communicate selectively, reduc-
ing the amount of communication required to coordinate the team. STEAM has been

47

shown to be effective in a number of domains, ranging from simulated RoboCup soccer
domains to controlling a number of autonomous helicopters for attack scenarios.

Another approach to coordinating multi-agent teams is Generalized Partial Global
Planning (GPGP) [25]. GPGP works with heterogeneous teams on a variety of tasks
and allows for a number of modular coordination mechanisms. Decker and Lesser find
that different coordination mechanisms perform better for different tasks and endorse
the idea that there should be a library of coordination mechanisms to choose from for
new tasks.

STEAM and GPGP expect that agents know the team’s goal as well as the tasks
required to accomplish the goal. However, another line of research explores domains
in which this information is not known; instead, agents must learn the tasks required
to accomplish their goals. An example of this approach is Lauer and Riedmiller’s work
which introduces Distributed Q-learning [53] for learning in multiagent, fully cooper-
ative settings. The authors model the problem as a multiagent MDP and adopt a model
free approach. In Distributed Q-learning, each agent maintains a local policy and Q-
value function that depends only on its own actions. Using this approach, the agents’
policies converge to the optimal joint-actions in deterministic domains.

However, all of these approaches expect that the entire team shares the same co-
ordination algorithm. PLASTIC does not require any shared communication or coor-
dination protocols and does not assume that the teammates are necessarily adapting to
the ad hoc team agent.

7.2. Opponent Modeling
The work discussed in the previous section assumes that the whole team is coopera-

tive, trying to accomplish a shared goal. Another scenario that may occur in multiagent
teams is the fully competitive setting, where agents attempt to achieve mutually ex-
clusive goals. Opponent modeling research explores this problem, explicitly modeling
the other agents in the domain. While research into cooperative teams appears to be
more similar to ad hoc teamwork given that agents are trying to accomplish shared
goals in both settings, opponent modeling is often more similar to ad hoc teamwork.
This similarity stems from the importance of understanding and reasoning about the
other agents in the domain in opponent modeling, which is also necessary for robust ad
hoc team agents. Rather than trying to represent the entire field of opponent modeling,
this section summarizes some of the major lines of inquiry into the problem that are
relevant to this article.

One such line of inquiry is theoretically motivated, exploring what can be proven
about interacting with opponents. An algorithm that shows this reasoning is the AWE-
SOME algorithm [23]. AWESOME is a learning algorithm for repeated normal form
games. When it plays against opponents that use the same algorithm, the AWESOME
agents will converge to playing the Nash equilibrium, the optimal behavior if all agents
are rational. When playing against stationary opponents, an AWESOME agent learns to
exploit them optimally. These results show that the same algorithm can exploit simple
opponents while still not getting exploited by smart agents. In the same vein of theo-
retical analysis, Chakraborty and Stone developed the CMLeS algorithm [21]. CMLeS
extends to exploiting memory-bounded teammates while retaining the convergence to
the Nash equilibrium in self play. CMLeS reverts to playing a maximin strategy when

48

playing adversaries that are not memory-bounded, retaining good payoffs in the worst
case scenario.

Another exciting line of opponent modeling research is into using game theory to
solve real world security problems. For example, Korzhyk et al. [52] discuss the use of
the Stackelberg game model to design intelligent strategies. This work has been applied
for deploying security at the LAX airport as well as scheduling the US Federal Air Mar-
shals. In Stackelberg games, the leaders act first, and their opponents can observe these
actions before responding. The solution to this problem is robust to the opponents’ ac-
tions, minimizing the risk. This line of research shows that game theoretic approaches
can be applied to real world problems with great effect, minimizing the resources re-
quired to protect a resource while maximizing its safety. In this research, the authors
generally assume that other agents are opponents and act optimally, while in ad hoc
teamwork the other agents are teammates and may not act optimally.

One avenue of research that combines theoretical analysis with empirical results
is in the area of computer poker. For example, Bard et al. [10] look at how to adapt
to an opponent’s strategy in heads-up limit Texas hold’em poker. The authors approxi-
mate the Nash equilibrium strategy through the use of counterfactual regret (CFR) [78],
which limits the amount that their agent can be exploited. To adapt to weaknesses in
other players while remaining robust to being exploited, Bard et al. learn a portfolio of
counter strategies that are limited best responses to expected opponents’ behaviors.

7.3. Experimental Domains

Isaacs performed seminal research on pursuit and evasion [44], and the problem
was further explored by Benda et al. [15]. Benda et al. explore varying predators’ ability
to communicate, even considering a central strategy, but communication carries a cost.
In this setting, communication may be limited or may lower the amount of computation
time taken per step. More research into the range of research possibilities in the pursuit
domain is explained in the survey paper by Stone and Veloso [66].

Most previous research focused on developing coordinating the predators before
deploying them, rather than learning to adapt to unseen teammates. For example, MAPS [70]
considers the pursuit problem in dynamic and partially observable environments. In this
work, the prey intelligently plans its actions to avoid capture. MAPS uses two coordina-
tion strategies to position the predators in locations to cover possible escape directions
of the prey.

Ishiwaka et al. [45] focus on the pursuit task in which all of the predators are learn-
ing online, using reinforcement learning. The predators start as homogeneous agents,
but diverge during the learning process. This work considers the pursuit task with par-
tial observability in a continuous domain.

In addition to the research performed in the pursuit domain, there has also been sub-
stantial amounts of research in RoboCup, including walking, positioning, and vision.
However, the most relevant research from RoboCup is in the area of team coordination.

One early exploration of learning in the RoboCup simulation domain was per-
formed by Stone [62]. This book describes a flexible team structure as well as a novel
learning approach called layered learning. In particular, it introduces the concept of
a “locker-room agreement.” Locker-room agreements are pre-determined multiagent

49

protocols that define the flexible teamwork structure and the inter-agent communica-
tion protocols. However, this work relies on the entire team sharing this locker-room
agreement, which cannot be assumed in ad hoc teamwork.

Another aspect of research in RoboCup is how to characterize the teams’ behaviors
in these complex multiagent systems. Almeida et al. [9] explore this problem in the
RoboCup 2D simulated robotic soccer league, using logs of play as their input infor-
mation. The authors explore the complexity of team’s behaviors as well as discovering
guidelines for creating new plans for teamwork. However, the proposed approach re-
quires a substantial amount of observations of the team, which is not usually available
in ad hoc teamwork scenarios.

One set of online adaptations to other agents is from the Small Size League (SSL)
of RoboCup. Biswas et al. [16] explore how to plan about opponents’ strategies. Their
approach attempts to pull opponents out of position, leaving openings that their strategy
can then exploit. In addition, they detect potential threats based on the positions of
opponents and adapt to defend these threats. These online adaptations show that agents
can adapt to other agents in the domain on the fly, in just a single game. While this
general approach could be applied to other multiagent settings, the current version of it
relies on strong assumptions about the domain.

RoboCup encourages a substantial amount of research into multiagent systems in
complex domains. The majority of this research focuses on coordinated teams of agents
and is thus not directly applicable to ad hoc teamwork.

7.4. Transfer Learning
In Section 3.2, we discuss the transfer learning algorithm, TwoStageTransfer [14],

that we use for transferring knowledge from many past teammates to the current ones.
However, there are several other transfer learning algorithms that can be used. TrAd-
aBoost [24] is a boosting-based algorithm, in which the source and target data sets are
lumped together and then a model is learned via boosting. TwoStageTrAdaBoost [57]
was designed in response to problems of TrAdaBoost overfitting the training data.
Therefore, TwoStageTrAdaBoost first searches over a set of possible weightings of
the source data points, and determines which weighting is best using cross-validation.
While the other transfer learning algorithms described here focus on using boosting,
bagging approaches have also shown promise, specifically in the form of TrBagg [50].
The TrBagg algorithm uses bootstrap sampling to create a number of data sets taken
from the combined source and target data sets. Then, a model is learned on each data
set, and these models then undergo a filtering phase, using cross validation to determine
which models are most helpful.

There has also been some research into transferring knowledge from multiple sources.
Yao and Doretto [74] introduced two transfer learning algorithms for handling mul-
tiple sources. The first, MultiSourceTrAdaBoost, uses an instance-transfer approach,
reusing data from the source tasks for training the target classifier. Alternatively, Task-
TrAdaBoost employs a parameter-transfer approach where it is assumed that the target
data shares some parameters with some of the source data sets. Another approach for
transfer learning with multiple source sets is the work of Huang et al. [42]. They pro-
pose the SharedBoost algorithm to select the best features for prediction from a small
number of source data sets for text classification. Zhuang et al. [77] investigate using

50

autoencoders to determine a feature mapping that allows them to train multiple clas-
sifiers from the source domain and apply them effectively on the target domain. Simi-
larly, Fang et al. [29] introduce an algorithm that determines a shared subspace among
the labels for multiple sources, where each sample is given multiple labels. Then, this
subspace is used to transfer knowledge to the target domain. Another approach was
developed by Ge et al. [30]. The authors introduce an online algorithm that transfers
knowledge from multiple sources in a principled way, achieving a no-regret guarantee
compared to the offline algorithm. These algorithms provide a promising step towards
effectively handling multiple sources. Further progress on transfer learning from mul-
tiple sources may lead to exciting advances in the area of ad hoc teamwork and can be
incorporated into the learning component of PLASTIC.

7.5. Ad Hoc Teamwork
A significant portion of research on ad hoc teamwork takes a theoretical approach

to the problem. These approaches focus on simple settings such as the bandit domain or
matrix games and try to prove the optimality of their approach under certain conditions.
Other researchers focus on empirical approaches, showing that their algorithms apply
to ad hoc teamwork problems in practice. Let us first consider theoretical contributions
coming from analysis of ad hoc teamwork in the bandit domain.

One example of the theoretical approach using the bandit domain is Stone and
Kraus’s research [65]. In this work, the authors consider a multiagent version of the
setting with a knowledgeable agent attempting to teach its novice teammate. This work
differs from existing teaching literature in that the teacher is embedded in the domain,
so its teaching actions have an explicit cost. This line of research proves that the ad
hoc agent acting as teacher can optimally lead its teammate to achieve the best team
payoff. These papers differ from the work in this article in that they assume that the
novice teammate’s policy is known (TeamK = 1) and their results are only directly
applicable to the bandit domain, while we consider domains that are too large to be
proven to be tractable in a similar fashion.

While the bandit domain allows for multiagent research, the majority of work on
it is single agent and therefore not focusing on the ad hoc teamwork problem. A more
common domain for looking at interactions between agents is in matrix games, where
agents act simultaneously and receive rewards. This domain allows for multiagent in-
teractions, but remains simple enough for theoretical analysis.

An early paper that looks into ad hoc teamwork in matrix games was that of Braf-
man and Tennenholz [19]. In their paper, they investigate agents performing a repeated
joint task, where one agent attempts to teach a novice agent. The authors could only
affect the ad hoc agent, i.e. the agent acting as a teacher. In this work, they use a game-
theoretic framework and only consider teammates that either maximize their expected
utility or use reinforcement learning. Overall, they consider a number of strategies for
the agent to play, including a reinforcement learning agent as well as some well estab-
lished hand-coded policies.

Building on this idea, Stone et al. [64] investigate ad hoc teamwork in matrix games
with a theoretical focus. They explore how an ad hoc agent should cooperate with a best
response teammate while maximizing the team’s shared rewards. Best response agents
choose the action that gives the highest payoff assuming that its teammates continue

51

playing their last observed action. In this work, the ad hoc agent knows the payoff
matrix as well as the teammate’s behavior (TeamK = 1), so the difficulty is to plan
the optimal path to lead the best response teammate to the best payoff. This work was
expanded by Agmon and Stone [2] to include more than one teammate. Agmon and
Stone show that the best payoff is not always reachable when the team is larger than
two agents, but they come up with a way of describing the optimal team payoff as
the optimal steady cycle and show how to lead a team to that cycle. This work was
further expanded to the case where the teammates’ behaviors are not fully known [1]
(TeamK < 1), instead assuming that the ad hoc agent knows that its teammates are
using a behavior from a known set. The authors describe an algorithm, REACT, that
balances the potential costs of different assumptions about the teammates’ behaviors
and show that REACT empirically performs well on a large number of matrices. This
line of research differs from that of this article due to its focus on theoretical analysis,
which limits the work to the simple matrix game setting. In addition, this article con-
siders a wider range of possible teammate behaviors as well as cases where the ad hoc
agent has less knowledge of its teammates.

Stone et al. [64] and Agmon and Stone [2] both assume that the teammates’ behav-
iors are known, though Agmon et al. [1] relax this assumption, instead assuming that
the teammates’ behaviors are drawn from a known set. Chakraborty and Stone [22] fur-
ther relax this knowledge of the teammates’ behaviors in ad hoc teamwork scenarios
in matrix games. This work extends earlier work by Chakraborty and Stone [21] for
opponent modeling. The authors propose a new algorithm, LCM, that tries to achieve
optimal performance with teammates that use a limited features derived from the his-
tory. With other teammates, LCM ensures that the team receives the security value of
the matrix game. LCM does this by determining which features best explain its team-
mate’s behavior, and, if no set of features explains its behavior, LCM reverts to playing
the safety strategy. This approach performs optimally with some teammates, but this
form of learning takes substantially longer than PLASTIC. Unlike PLASTIC, LCM
does guarantee a safety value with any teammates, but in practice this safety value is
often low compared to what the team could receive and ensuring a safety value in more
complex tasks requiring coordination is often impossible.

While matrix games serve as a good testbed for looking at interactions between
agents in ad hoc teamwork scenarios, they are limited to stateless interactions. Wu et
al. [72] scale theoretical analysis of ad hoc teamwork to some more complex, though
still theoretically tractable, domains. In this work, the authors investigate ad hoc team-
work with few assumptions about the behaviors of the teammates. Their ad hoc agent
plans using MCTS and uses biased adaptive play to predict the actions of teammates.
Biased adaptive play can be used to estimate the policies of teammates from their previ-
ous actions. They test their agent on three domains: cooperative box pushing, meeting
in a 3× 3 grid, and multi-channel broadcast. They consider the case where the ad hoc
agent knows the environment, but not its teammates. These teammates are referred to
as unknown teammates (UTM), and two types of teammates are used in each domain:
UTM-1 agents that follow a fixed set of actions and UTM-2 agents that try to play the
optimal behavior but have partial observations. Their work shows that their approach
can adapt to these teammates to accomplish their tasks. While this work explores sev-
eral domains, all of the domains used are fairly simple. Additionally, their ad hoc agent

52

is given a large amount of expert knowledge and the set of possible teammates is lim-
ited compared to this article.

Another approach to scaling ad hoc teamwork beyond only matrix games is the
work of Albrecht and Ramamoorthy [4, 5], though they also consider matrix games
in their work. In this work, they consider the case where the ad hoc agent is given a
set of possible types of its teammates and introduce a new formal model to represent
this problem. In their setting, the problem is for the ad hoc agent to determine the type
of its teammates. Their approach (HBA) combines the idea of Bayesian Nash equi-
libria with the Bellman optimality equation. HBA maintains the probability of each
of the provided teammate types and maximizes its expected payoffs according to the
Bellman principle. In later research [6], Albrecht and Ramamoorthy explore the con-
vergence bounds of HBA. Specifically, they prove convergence bounds when an ad hoc
agent knows its teammates are drawn from a known set and consider how accurate
the expert-provided types need to be for HBA to solve its task. This line of research
is closely related to that of this article, but differs in some notable ways. Given the
similarity of HBA and PLASTIC, we expect that much of their analysis could be gen-
eralized to PLASTIC. However, HBA assumes that the agent is provided with expert
knowledge about possible teammates. In this article, we show that PLASTIC can learn
from previous teammates and can apply these imperfect learned models to cooperate
with new teammates. Furthermore, we show that PLASTIC scales to more complex do-
mains than those used to evaluate HBA. Specifically, reusing precalculated policies to
adapt to new teammates allows PLASTIC–Policy to handle substantially harder prob-
lems than those explored by Albrecht and Ramamoorthy.

While theoretical analysis of problems can create exciting new algorithms for ad
hoc teamwork, an important question is how well these algorithms fare in more com-
plex empirical analyses. A work that looks at more complex coordination in ad hoc
teams is that of Bowling and McCracken [18]. In the domain of robot soccer, Bowling
and McCracken measure the performance of a few ad hoc agents, where each ad hoc
agent is given a playbook that differs from that of its teammates. In this paper, a play
refers to a team plan that specifies when the play applies, termination conditions, and
roles for the players. In this domain, the teammates implicitly assign the ad hoc agent
a role, and then react to it as they would any teammate. The ad hoc agent analyzes
which plays work best over hundreds of games and predicts the roles that its team-
mates will play. This work explores a very similar setting to that used in this work,
though it learns over a significantly longer time scale. However, they focus on agents
that are constrained to be similarly designed but have a different playbook, rather than
being designed completely independently. In addition, their approach relies on having
a playbook of possible plays that specifies roles for all agents on the team. In many
domains, agents may not have such a playbook, so this approach cannot be directly
applied to these domains.

Jones et al. [46] also consider robotic ad hoc teams, but they expand their analysis
to heterogeneous robots. The authors explore ad hoc teams operating in the treasure
hunt domain and implement their algorithms on real heterogeneous robots searching
new environments for treasure. The authors focus on how agents can allocate roles
amongst a team in a decentralized fashion. However, they assume that the agents share
a communication protocol that they use to bid on different roles in an auction as well as

53

a shared coordination protocol for how to assign tasks given this communication. This
article explores scenarios in which these shared protocols do not exist, as they may not
always be present in ad hoc teamwork scenarios.

While the previous works mainly focus on small teams of agents, there is also
research into how to affect large teams of agents. Specifically, researchers have investi-
gated how to use a small number of agents under their control (ad hoc agents) to affect
the behavior of flocks of agents, such as flocks of birds or fish. The ad hoc agents en-
courage the team to reach a specified goal. An early paper in this area was written by
Han et al. [38], prior to Stone et al.’s formulation of ad hoc teamwork. This work fo-
cused on adding a “shill” agent to the flock, that corresponds to the ad hoc team agent
in our terminology. This agent was designed by the authors and attempts to move the
flock in a desired direction. Further research on this line includes the work of Genter et
al. [32] and Genter and Stone [33]. This research proves bounds on the number of ac-
tions required to control the flock’s behavior. In addition, they provide an algorithm
that empirically outperforms other methods by using short-term lookahead planning.
The authors expand the problem to consider multiple ad hoc agents. This line of re-
search differs from this article in that it focuses on scenarios in which the teammates’
behaviors are known (TeamK = 1), rather than needing to learn about teammates.

While the previous works all consider how an ad hoc agent should act to improve
the performance of its team, another consideration is how to choose agents to form a
new team given a much larger set of possible agents. Liemhetcharat and Veloso [54]
explore this idea, selecting which agents will form a new ad hoc team. Given that
different agents are better at performing different roles on the team, it is important to
select agents that fill the roles in a beneficial way. In addition, there are synergies in the
team, where some pairs of agents work better with each other than with other agents.
These complexities lead to interesting questions into how to select teammates from this
set of agents. The authors come up with a novel representation of this problem, called
a synergy graph, and show how to learn this graph. While it also investigates ad hoc
teamwork, this research focuses on the problem of selecting agents for an ad hoc team
rather than the question explored in this article, how an agent should act on the ad hoc
team.

One such way is as an Interactive POMDP (I-POMDP) [34]. I-POMDPs model
adversarial interactions of agents by examining what an agent believes about the other
agents and these agents’ beliefs. The graphical counterparts of I-POMDPs are known
as Interactive Dynamic Influence Diagrams (I-DIDs) [27]. I-DIDs provide concise rep-
resentations of the beliefs about other agents and allow for nesting I-DIDs to represent
these beliefs. Both I-POMDPs and I-DIDs could be used to model the problems stud-
ied in this article. However, both have issues with the potential exponential blowup of
beliefs as the size of the problem grows. While work has been performed to increase
the efficiency of algorithms for these models [61, 75, 76], they remain computationally
intractable for the size of problems studied in this article.

I-POMDP Lite [41] is an especially relevant formulation of I-POMDPs which im-
proves scalability by modeling other agents as nested MDPs. Current implementations
of I-POMDP Lite have been shown to scale up to problems with 18,000 states. In the
pursuit domain, there are approximately 1013 states, and in the HFO domain, the states
are continuous and therefore infinite. Applying I-POMDP Lite to ad hoc teamwork is

54

an exciting area for future research, but the current instantiations of it have not been
shown to scale to the size of problems considered in this paper.

7.5.1. Dimension Analysis
For this related work in ad hoc teamwork, it may be helpful or informative to con-

sider where these problems fall on the dimensions described in Sections 2.1. We would
like to calculate the exact values of the dimensions for each of the domains as we did
in Sections 2.4 and 2.5, but this calculation requires more information about the exact
formulations of the domains and teammates than is typically available in the publi-
cations that are available to us. Therefore, we instead give some rough estimates of
where these problems lie on the dimensions. The three dimensions we consider are
team knowledge, environment knowledge, and the reactivity of teammates.

We begin by discussing the team knowledge (TeamK) of ad hoc agents in these
domains, which shows how much the ad hoc agent knows about its teammates prior to
cooperating with them. The majority of the related research considers cases where the
teammates are known, so TeamK is 1 or close to 1. Notable exceptions of this include
Liemhetcharat and Veloso’s work [54] as well as Wu et al.’s work [72] which consider
completely unknown teammates, where TeamK is 0. Also, Agmon et al. [1] and Al-
brecht and Ramamoorthy [5] assume that their teammates are drawn from a known
set, so TeamK is between 0 and 1; we estimate that TeamK lies in the range [0.3,0.7]
for these works. Additionally, Bowling and McCracken [18] consider situations with
teammates that do not share a codebook with the ad hoc agent. We estimate that TeamK
is fairly high in these settings, in the range [0.6,0.8], given that effective soccer plays
are similar compared to random movement of teammates. From this analysis, we can
see that most existing works focus on situations where the teammates are fairly well
known; only a few consider scenarios where the teammates are initially unknown.

Let us now consider the environmental knowledge (EnvK) of these domains, where
the environmental knowledge explains how much the ad hoc agent knows about the
transition and reward dynamics of the domain before beginning. The majority of the
works in this section assume that the ad hoc agent has full knowledge of the domain,
so EnvK = (1, 1) for these settings. While there may be noise in these domains, the ad
hoc agent is expected to know the level of noise and therefore know the true distribu-
tion of next states. Exceptions to this include Jones et al. [46] and Liemhetcharat and
Veloso [54] where the ad hoc agent does not initially know the reward function and may
have limited knowledge of the transition function. We estimate that the knowledge of
the transition function lies in [0.7,1.0] for these works, and the reward knowledge lies
in [0,0.5]. This analysis suggests that research into ad hoc teamwork has not focused
on learning about the domain. Instead, agents are assumed to know the domain and
instead focus on learning about teammates and planning how to cooperate with them.

The reactivity of the teammates in these domains (Reactivity) covers a large spread
of values. All of the domains assume that the teammates are at least partially reactive
to the ad hoc agents, or it would not be worth considering the problem as a multiagent
setting. This reactivity varies significantly based on the domain. When ideal actions are
fairly obvious to teammates, interactions with the ad hoc agent are unlikely to change
the teammates’ behaviors, leading Reactivity to be close to 0. On the opposite end of
the spectrum, when the teammates have high uncertainty about the best actions ahead

55

of time, the ad hoc agent’s actions can significantly affect their actions, leading to val-
ues of Reactivity close to 1. Given that so much research assumes that ad hoc agents
know their teammates and the domain well, the majority of focus has been on how
to plan to cooperate effectively with teammates. Exploring planning in ad hoc team-
work encourages researchers to investigate settings with varying amounts of teammate
reactivity, as this dimension is the most influential on planning.

While calculating the exact values for each of the three dimensions (TeamK, EnvK,
and Reactivity) for each domain studied in the related work would be useful, it is
impossible to calculate these values without complete knowledge of the domain and
teammates. Even so, these rough estimates of the dimensions for these problems lead
to some interesting conclusions. Specifically, existing research has done a good job of
exploring how to plan to cooperate with teammates, covering the gamut of teammate
reactivity. On the other hand, ad hoc team research has focused largely on problems
with high team knowledge and high environmental knowledge, with less work explor-
ing how agents can learn about their teammates and the domain. Future work in ad hoc
teamwork should address this gap and explore settings in which the ad hoc agent needs
to learn more about its teammates and the domain. In real world scenarios, robots will
need to be constantly adapting to their changing environments as well as new team-
mates they may encounter. Therefore, it is important for ad hoc teamwork research to
explore these settings, where agents must reason about the tradeoff between exploring
the domain, exploring their teammates, and exploiting their current knowledge.

7.5.2. Summary
In summary, this section presented a survey of the research on ad hoc teamwork

that is relevant to this article. A large amount of these works focus on simple domains
and provide theoretical analyses. In addition, a substantial number of them assume that
they know their teammates or share some communication or coordination protocols,
but these works are still ad hoc teamwork because not all agents are designed by the
same developers and the provided protocols are decentralized. However, these works
do not consider the ad hoc teamwork problems investigated in this article, where the
teammates may be completely unknown prior to the coordination. Finally, this article
is the only work that we are aware of that learns about previous teammates and reuses
this knowledge to quickly adapt to new teammates.

8. Conclusion

Given the growing numbers of agents in the world in the form of both robots and
software agents, it is becoming a necessity for agents to cooperate to achieve their
goals. However, cooperating with pre-designed teams is not enough; the agents will
need to cooperate with a variety of teammates designed by other developers. Therefore,
it is vital that the agents can reason about ad hoc teams, in which the agents adapt to
their teammates on the fly.

This article investigates a limited version of the ad hoc teamwork problem, in which
the ad hoc agent knows the environmental dynamics and has had previous interactions
with other teammates and can exploit similarities between the teammates’ behaviors. It

56

is an ad hoc teamwork problem due to the fact that the ad hoc agent does not know the
behavior of its teammates and its past teammates are not necessarily representative of
its current teammates. PLASTIC reuses knowledge learned from past teammates and
combines this knowledge with any advice provided by domain experts. This approach
allows PLASTIC to quickly adapt to new teammates on the fly. We show that PLASTIC
performs well on two disparate domains with a variety of teammates and differing
amounts of knowledge about its teammates. While PLASTIC assumes that the current
teammates’ behaviors are similar to past teammates’ behaviors, in our experiments,
the behaviors were not explicitly designed to be similar. Instead, the teammates were
created by a variety of independent developers. Nonetheless, PLASTIC was still able
to discover similarities between these teammates’ behaviors.

While this article covers many topics on research about ad hoc teams, it also raises
many interesting questions. The teammates in this article are not explicitly learning
about the ad hoc agent as it interacts with them. Therefore, one question is how to learn
about these teammates while they are learning about the ad hoc agent. One approach to
tackling this problem is for the ad hoc agent to maintain additional models of learning
algorithms its teammates may be using. These models’ learning algorithms would be
updated with new observations in addition to updating the probabilities of the models
relative to each other. Another approach is to consider the problem in the recursive
modeling setting [20], whereby the ad hoc agent would reason about how its teammates
are reasoning about it.

Additionally, PLASTIC may perform arbitrarily poorly when it encounters new
teammates. PLASTIC relies on what it has learned about previous teammates, and
if the new teammates’ behaviors are arbitrarily far from these previous teammates,
PLASTIC’s performance may be arbitrarily bad. Falling back to learning from scratch
is promising, but too slow for the time periods considered in this article. Instead, falling
back to using a behavior with known bounds on the team’s performance, like a safety
strategy, is promising. However, calculating a behavior with bounded performance on
ad hoc teamwork problems remains an open question.

A further interesting topic is to evaluate how well agents on ad hoc teams can learn
about their environment as they also learn about their teammates. To simultaneously
learn about unknown tasks and unknown teammates, an ad hoc team agent will need to
balance the trade-off between exploiting its current knowledge, exploring the dynam-
ics of the task, and exploring the behavior of its teammates. A possible approach to
quickly learn in this scenario is for the ad hoc agent to also consider a set of previous
environmental models to select from and update these models over time.

We look forward to future research along all these directions and believe that this
article takes a significant step towards making such novel research on ad hoc teamwork
possible.

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at the
Artificial Intelligence Laboratory, The University of Texas at Austin. LARG research
is supported in part by grants from the National Science Foundation (CNS-1330072,

57

CNS-1305287), ONR (21C184-01), and AFOSR (FA8750-14-1-0070, FA9550-14-1-
0087). This research was supported by the ISRAEL SCIENCE FOUNDATION (grant
No. 1488/14), and by ERC Grant #267523. Peter Stone serves on the Board of Directors
of Cogitai, Inc. The terms of this arrangement have been reviewed and approved by the
University of Texas at Austin in accordance with its policy on objectivity in research.

References

[1] Agmon, N., Barrett, S., Stone, P., May 2014. Modeling uncertainty in leading
ad hoc teams. In: Proceedings of the Thirteenth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS).

[2] Agmon, N., Stone, P., June 2012. Leading ad hoc agents in joint action settings
with multiple teammates. In: Proceedings of the Eleventh International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS).

[3] Akiyama, H., 2010. Agent2d base code release.
Http://sourceforge.jp/projects/rctools.

[4] Albrecht, S., Ramamoorthy, S., February 2013. A game-theoretic model and best-
response learning method for ad hoc coordination in multiagent systems. Tech.
rep., School of Informatics, The University of Edinburgh, United Kingdom.

[5] Albrecht, S., Ramamoorthy, S., May 2013. A game-theoretic model and best-
response learning method for ad hoc coordination in multiagent systems (ex-
tended abstract). In: Proceedings of the Twelfth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS). St. Paul, Minnesota, USA.

[6] Albrecht, S., Ramamoorthy, S., July 2014. On convergence and optimality of best-
response learning with policy types in multiagent systems. In: Proceedings of the
30th Conference on Uncertainty in Artificial Intelligence (UAI). Quebec City,
Canada.

[7] Albus, J. S., 1971. A theory of cerebellar function. Mathematical Biosciences
10 (12), 25 – 61.

[8] Albus, J. S., 1975. A new approach to manipulator control cerebellar model artic-
ulation control (CMAC). Transactions on ASME, J. of Dynamic Systems, Mea-
surement, and Control 97 (9), 220–227.

[9] Almeida, F., Abreu, P. H., Lau, N., Reis, L., 2013. An automatic approach to
extract goal plans from soccer simulated matches. Soft Computing 17 (5), 835–
848.

[10] Bard, N., Johanson, M., Burch, N., Bowling, M., 2013. Online implicit agent
modelling. In: Proceedings of the Twelfth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS). pp. 255–262.

58

[11] Barrett, S., Stone, P., June 2012. An analysis framework for ad hoc teamwork
tasks. In: Proceedings of the Eleventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).

[12] Barrett, S., Stone, P., January 2015. Cooperating with unknown teammates in
complex domains: A robot soccer case study of ad hoc teamwork. In: Proceedings
of the Twenty-Ninth Conference on Artificial Intelligence (AAAI).

[13] Barrett, S., Stone, P., Kraus, S., May 2011. Empirical evaluation of ad hoc team-
work in the pursuit domain. In: Proceedings of the Tenth International Conference
on Autonomous Agents and Multiagent Systems (AAMAS).

[14] Barrett, S., Stone, P., Kraus, S., Rosenfeld, A., July 2013. Teamwork with limited
knowledge of teammates. In: Proceedings of the Twenty-Seventh Conference on
Artificial Intelligence (AAAI).

[15] Benda, M., Jagannathan, V., Dodhiawala, R., July 1986. On optimal cooperation
of knowledge sources - An empirical investigation. Tech. Rep. BCS–G2010–28,
Boeing Advanced Technology Center, Boeing Computing Services.

[16] Biswas, J., Mendoza, J. P., Zhu, D., Choi, B., Klee, S., Veloso, M., January 2014.
Opponent-driven planning and execution for pass, attack, and defense in a multi-
robot soccer team. Proceedings of the Thirteenth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS).

[17] Blum, A., Mansour, Y., 2007. Algorithmic Game Theory. Cambridge University
Press, Ch. Learning, regret minimization, and equilibria.

[18] Bowling, M., McCracken, P., 2005. Coordination and adaptation in impromptu
teams. In: Proceedings of the Twentieth Conference on Artificial Intelligence
(AAAI). pp. 53–58.

[19] Brafman, R. I., Tennenholtz, M., 1996. On partially controlled multi-agent sys-
tems. Journal of Artificial Intelligence Research (JAIR) 4, 477–507.

[20] Carmel, D., Markovitch, S., 1996. Incorporating opponent models into adversary
search. In: Proc. of AAAI. pp. 120–125.

[21] Chakraborty, D., Stone, P., June 2010. Convergence, targeted optimality and
safety in multiagent learning. In: Proceedings of the Twenty-Seventh Interna-
tional Conference on Machine Learning (ICML).

[22] Chakraborty, D., Stone, P., May 2013. Cooperating with a markovian ad hoc team-
mate. In: Proceedings of the Twelfth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).

[23] Conitzer, V., Sandholm, T., May 2007. AWESOME: A general multiagent learn-
ing algorithm that converges in self-play and learns a best response against sta-
tionary opponents. Machine Learning (MLJ) 67.

59

[24] Dai, W., Yang, Q., Xue, G.-R., Yu, Y., 2007. Boosting for transfer learning. In:
Proceedings of the Twenty-Fourth International Conference on Machine Learning
(ICML). pp. 193–200.

[25] Decker, K. S., Lesser, V. R., June 1995. Designing a family of coordination al-
gorithms. In: International Conference on Multi-Agent Systems (ICMAS). pp.
73–80.

[26] Deisenroth, M. P., Neumann, G., Peters, J., 2013. A survey on policy search for
robotics. Foundations and Trends in Robotics 2 (1-2), 1–142.

[27] Doshi, P., Zeng, Y., 2009. Improved approximation of interactive dynamic influ-
ence diagrams using discriminative model updates. In: Proceedings of the Eighth
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS).

[28] Ernst, D., Geurts, P., Wehenkel, L., 2005. Tree-based batch mode reinforcement
learning. In: Journal of Machine Learning Research (JMLR). pp. 503–556.

[29] Fang, M., Guo, Y., Zhang, X., Li, X., 2015. Multi-source transfer learning based
on label shared subspace. Pattern Recognition Letters 51 (0), 101 – 106.

[30] Ge, L., Gao, J., Zhang, A., 2013. OMS-TL: A framework of online multiple
source transfer learning. In: Proceedings of the 22nd ACM International Confer-
ence on Information & Knowledge Management. CIKM ’13. ACM, New York,
NY, USA, pp. 2423–2428.

[31] Gelly, S., Wang, Y., December 2006. Exploration exploitation in Go: UCT for
Monte-Carlo Go. In: Advances in Neural Information Processing Systems 19
(NIPS).

[32] Genter, K., Agmon, N., Stone, P., May 2013. Ad hoc teamwork for leading a
flock. In: Proceedings of the Twelfth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).

[33] Genter, K., Stone, P., September 2014. Influencing a flock via ad hoc teamwork.
In: Proceedings of the Ninth International Conference on Swarm Intelligence
(ANTS).

[34] Gmytrasiewicz, P. J., Doshi, P., Jul. 2005. A framework for sequential planning
in multi-agent settings. Journal of Artificial Intelligence Research (JAIR) 24 (1),
49–79.

[35] Gmytrasiewicz, P. J., Durfee, E. H., Wehe, D. K., 1991. A decision-theoretic ap-
proach to coordinating multi-agent interactions. In: IJCAI. Vol. 91. pp. 63–68.

[36] Grosz, B., Kraus, S., 1996. Collaborative plans for complex group actions. Arti-
ficial Intelligence (AIJ) 86, 269–368.

60

[37] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H.,
November 2009. The WEKA data mining software: an update. SIGKDD Explo-
rations 11, 10–18.

[38] Han, J., Li, M., Guo, L., 2006. Soft control on collective behavior of a group of
autonomous agents by a shill agent. Journal of Systems Science and Complexity
19, 54–62.

[39] Hausknecht, M., Mupparaju, P., Subramanian, S., Kalyanakrishnan, S., Stone, P.,
May 2016. Half field offense: An environment for multiagent learning and ad hoc
teamwork. In: AAMAS Adaptive Learning Agents (ALA) Workshop. Singapore.

[40] Hester, T., Stone, P., 2013. TEXPLORE: real-time sample-efficient reinforcement
learning for robots. Machine Learning (MLJ) 90 (3), 385–429.

[41] Hoang, T. N., Low, K. H., 2013. Interactive pomdp lite: Towards practical plan-
ning to predict and exploit intentions for interacting with self-interested agents.
In: The 23th International Joint Conference on Artificial Intelligence (IJCAI).
AAAI Press, pp. 2298–2305.

[42] Huang, P., Wang, G., Qin, S., 2012. Boosting for transfer learning from multiple
data sources. Pattern Recognition Letters 33 (5), 568 – 579.

[43] Huang, Y.-W., Sasaki, Y., Harakawa, Y., Fukushima, E., Hirose, S., sept. 2011.
Operation of underwater rescue robot anchor diver III during the 2011 Tohoku
earthquake and tsunami. In: OCEANS 2011. pp. 1 –6.

[44] Isaacs, R., 1965. Differential Games: A Mathematical Theory with Applications
to Warfare and Pursuit, Control and Optimization. Dover Publications.

[45] Ishiwaka, Y., Sato, T., Kakazu, Y., 2003. An approach to the pursuit problem on
a heterogeneous multiagent system using reinforcement learning. Robotics and
Autonomous Systems 43 (4), 245 – 256.

[46] Jones, E., Browning, B., Dias, M. B., Argall, B., Veloso, M. M., Stentz, A. T.,
May 2006. Dynamically formed heterogeneous robot teams performing tightly-
coordinated tasks. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). pp. 570 – 575.

[47] Jung, T., Polani, D., Stone, P., 2010. Empowerment for continuous agent-
environment systems. Tech. Rep. AI-10-03, The University of Texas at Austin
Computer Science Department.

[48] Kalyanakrishnan, S., Liu, Y., Stone, P., 2007. Half field offense in RoboCup soc-
cer: A multiagent reinforcement learning case study. In: RoboCup-2006: Robot
Soccer World Cup X. Vol. 4434 of Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin, pp. 72–85.

[49] Kalyanakrishnan, S., Stone, P., July 2011. Characterizing reinforcement learn-
ing methods through parameterized learning problems. Machine Learning (MLJ)
84 (1–2), 205–247.

61

[50] Kamishima, T., Hamasaki, M., Akaho, S., Dec. 2009. TrBagg: A simple transfer
learning method and its application to personalization in collaborative tagging.
In: Ninth IEEE International Conference on Data Mining (ICDM). pp. 219 –228.

[51] Kocsis, L., Szepesvari, C., 2006. Bandit based Monte-Carlo planning. In:
Prooceedings of the Seventeenth European Conference on Machine Learning
(ECML).

[52] Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M., May 2011. Stack-
elberg vs. Nash in security games: An extended investigation of interchange-
ability, equivalence, and uniqueness. Journal of Artificial Intelligence Research
(JAIR) 41 (2), 297–327.

[53] Lauer, M., Riedmiller, M., 2000. An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. In: Proceedings of the Seventeenth
International Conference on Machine Learning (ICML). Morgan Kaufmann, pp.
535–542.

[54] Liemhetcharat, S., Veloso, M., 2014. Weighted synergy graphs for effective team
formation with heterogeneous ad hoc agents. Artificial Intelligence (AIJ) 208 (0),
41 – 65.

[55] Murphy, R., Dreger, K., Newsome, S., Rodocker, J., Steimle, E., Kimura, T., Mak-
abe, K., Matsuno, F., Tadokoro, S., Kon, K., November 2011. Use of remotely
operated marine vehicles at Minamisanriku and Rikuzentakata Japan for disaster
recovery. In: Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE Interna-
tional Symposium on. pp. 19 –25.

[56] Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Yoshida,
T., Koyanagi, E., Hada, Y., November 2011. Redesign of rescue mobile robot
Quince. In: Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE Interna-
tional Symposium on. pp. 13 –18.

[57] Pardoe, D., Stone, P., June 2010. Boosting for regression transfer. In: Proceedings
of the Twenty-Seventh International Conference on Machine Learning (ICML).

[58] Richardson, D., May 2011. Robots to the rescue? Engineering Technology 6 (4),
52 –54.

[59] Silver, D., Sutton, R. S., Müller, M., 2008. Sample-based learning and search with
permanent and transient memories. In: Proceedings of the Twenty-Fifth Interna-
tional Conference on Machine Learning (ICML).

[60] Silver, D., Veness, J., 2010. Monte-Carlo planning in large POMDPs. In: Ad-
vances in Neural Information Processing Systems 23 (NIPS).

[61] Sonu, E., Doshi, P., 2012. Generalized and bounded policy iteration for finitely-
nested interactive POMDPs: Scaling up. In: Proceedings of the Eleventh Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS).
International Foundation for Autonomous Agents and Multiagent Systems, Rich-
land, SC, pp. 1039–1048.

62

[62] Stone, P., 2000. Layered Learning in Multiagent Systems: A Winning Approach
to Robotic Soccer. MIT Press.

[63] Stone, P., Kaminka, G. A., Kraus, S., Rosenschein, J. S., July 2010. Ad hoc au-
tonomous agent teams: Collaboration without pre-coordination. In: Proceedings
of the Twenty-Fourth Conference on Artificial Intelligence (AAAI).

[64] Stone, P., Kaminka, G. A., Rosenschein, J. S., November 2010. Leading a best-
response teammate in an ad hoc team. In: AAMAS Workshop on Agent Mediated
Electronic Commerce (AMEC).

[65] Stone, P., Kraus, S., May 2010. To teach or not to teach? Decision making under
uncertainty in ad hoc teams. In: Proceedings of the Ninth International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS).

[66] Stone, P., Veloso, M., July 2000. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots 8 (3), 345–383.

[67] Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, USA.

[68] Tambe, M., 1997. Towards flexible teamwork. Journal of Artificial Intelligence
Research (JAIR) 7, 81–124.

[69] Taylor, M. E., Stone, P., 2009. Transfer learning for reinforcement learning do-
mains: A survey. Journal of Machine Learning Research (JMLR) 10 (1), 1633–
1685.

[70] Undeger, C., Polat, F., 2010. Multi-agent real-time pursuit. Autonomous Agents
and Multi-Agent Systems (JAAMAS) 21 (1), 69–107.

[71] Watkins, C. J. C. H., May 1989. Learning from delayed rewards. Ph.D. thesis,
King’s College, Cambridge, UK.

[72] Wu, F., Zilberstein, S., Chen, X., 2011. Online planning for ad hoc autonomous
agent teams. In: The 22th International Joint Conference on Artificial Intelligence
(IJCAI).

[73] Xuan, P., Lesser, V., Zilberstein, S., 2001. Communication decisions in multi-
agent cooperation: model and experiments. In: Proceedings of the Fifth Interna-
tional Conference on Autonomous Agents (AGENTS).

[74] Yao, Y., Doretto, G., June 2010. Boosting for transfer learning with multiple
sources. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR).

[75] Zeng, Y., Chen, Y., Doshi, P., 2011. Approximating model equivalence in interac-
tive dynamic influence diagrams using top k policy paths. Web Intelligence and
Intelligent Agent Technology, IEEE/WIC/ACM International Conference on 2,
208–211.

63

[76] Zeng, Y., Doshi, P., Jan. 2012. Exploiting model equivalences for solving inter-
active dynamic influence diagrams. Journal of Artificial Intelligence Research
(JAIR) 43 (1), 211–255.

[77] Zhuang, F., Cheng, X., Pan, S., Yu, W., He, Q., Shi, Z., 2014. Transfer learn-
ing with multiple sources via consensus regularized autoencoders. In: Calders,
T., Esposito, F., Hllermeier, E., Meo, R. (Eds.), Machine Learning and Knowl-
edge Discovery in Databases. Vol. 8726 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 417–431.

[78] Zinkevich, M., Johanson, M., Bowling, M., Piccione, C., 2008. Regret minimiza-
tion in games with incomplete information. In: Advances in Neural Information
Processing Systems 20 (NIPS). pp. 905–912.

64

Appendix A. Markov Decision Process Algorithms

This appendix provides descriptions of the algorithms used to solve MDPs in the
results presented in Sections 5 and 6. Note that other algorithms for solving MDPs can
be used in PLASTIC, and we recommend selecting algorithms suited for the domain
considered.

Appendix A.1. Value Iteration

One way to calculate the optimal policy is by using Value Iteration (VI) [67]. VI re-
quires a complete model of the environment, specifically the full transition and reward
functions. Given these models, VI can calculate the optimal value function Q∗(s, a)
and therefore the optimal policy π∗. Value iteration relies on dynamic programming to
solve for the optimal state-action values for all state-action pairs. VI initializes the state-
action values arbitrarily, and then improves these estimates using an update version of
the Bellman optimality equation given in Equation 3.1. These updates are repeated it-
eratively until convergence, and the final calculated state-action values are guaranteed
to be optimal.

While VI provably converges to the optimal policy, this convergence may take a
substantial amount of time. VI has difficulties in scaling to large domains as it re-
quires visiting each state-action over many iterations. In ad hoc teamwork scenarios,
this problem is especially costly as the number of agents greatly increases the state
space. In many problems, the team’s state space becomes exponential in the size of the
domain, with a power proportional to the number of agents, (# positions)(# agents). Given
the symmetries of a specific problem, it is sometimes possible to reduce the number of
possible states, but the scaling is still poor. For example, in initial tests into ad hoc
teamwork in the pursuit domain (described in Section 2.4), VI on a 5x5 world took
approximately 12 hours on the University of Texas Mastodon computing cluster. In a
5x5 world, there are 255 ≈ 1e7 states to consider ignoring symmetries, given that there
are 5 agents moving around the 25 world positions. Scaling up to a larger problem of a
20x20 world, there are 4005 ≈ 1e13 states of the entire team. Thus, there are more than
a million times more states than the 5x5 world, leading to this problem to be computa-
tionally infeasible. Due to the exponential blowup of the size of the state space, many
ad hoc teamwork problems are not suitable for VI, even if the teammates’ behaviors
are fully known and the problem can be described as an MDP.

Appendix A.2. Monte Carlo Tree Search

Value Iteration is one approach for solving MDPs, and it would allow an ad hoc
agent to optimally cooperate with its teammates if were it to have a complete model
of its teammates and the environment. However, VI is often infeasible to run in a rea-
sonable time and requires a complex model. Rather than calculating the exact opti-
mal value of every state-action, it is much more computationally tractable to instead
learn an approximately optimal value for relevant state-actions. When the state space
is large and only small sections of it are relevant to the agent, it can be advantageous
to use a sample-based approach to approximating the values of actions, such as Monte

65

Carlo Tree Search (MCTS). Specifically, the MCTS algorithm called Upper Confi-
dence bounds for Trees (UCT) [51] is used as a starting point for creating the primary
planning algorithm used in this article.

MCTS does not require a complete model of the environment. Rather than knowing
the full probability distribution of next states and rewards resulting from the transition
and reward functions, MCTS only needs a model that allows sampling these next states
and rewards. Furthermore, rather than treating all of the state-actions as equally likely,
UCT focuses on only calculating the values for relevant state-actions. UCT does so by
performing a number of playouts at each step, starting at the current state and sampling
actions and the environment until the end of the episode. It then uses these playouts
to estimate the values of the sampled state-action pairs. Also, it maintains a count
of its visits to various state actions, and estimates the upper confidence bound of the
values to balance exploration and exploitation. When selecting actions, UCT greedily
chooses the action with the highest upper confidence bound. UCT has been shown
to be effective on domains with a high branching factor, such as Go [31] and large
POMDPs [60]. As such, we reasoned it should be able to handle the branching factor
caused by the number of agents.

In this article, UCT is modified to use eligibility traces and remove the depth index
to help speed up learning. The pseudocode of the algorithm can be seen in Algorithm 5,
with s being the current state. Similar modifications were made by Silver et al., with
good success in Go [59]. In addition, work by Hester and Stone [40] show good results
in a number of other reinforcement learning domains.

Appendix A.3. Fitted Q Iteration
While UCT is effective for quickly computing an approximately optimal policy in

an MDP, it does require a model of the MDP that permits sampling from the transi-
tion and reward functions. This model can either be given or learned given enough
data. VI requires a stronger model; a model that gives the full probability distribution
of next states and rewards for the transition and reward functions. However, other ap-
proaches attempt to directly learn the values of state-actions without a model of the
transition function, and these approaches are called model-free. Model-free approaches
do not require building a model of the domain which can be more tractable in hard to
model domains. In addition, model-free algorithms are often computationally simpler.
In complex domains, it may be difficult for ad hoc agents to compute the model of
their environment and teammates, so it may be useful for the ad hoc agent to employ a
model-free learning method to find a good policy for cooperating with its teammates.

In this work, our agent uses the Fitted Q Iteration (FQI) algorithm introduced by
Ernst et al. [28]. Similar to Value Iteration (VI), FQI iteratively backs up rewards to
improve its estimates of the values of states. Rather than looking at every state and
every possible outcome from each state, FQI uses samples of these states and outcomes
to approximate the values of state-action pairs. This approximation allows FQI to find
solutions for complex, continuous domains. Alternative policy learning algorithms can
be used, such as Q-learning [71] or policy search [26].

To collect samples of the domain, the agent first performs a number of exploratory
actions. From each action, the agent stores the tuple �s, a, r, s��, where s is the original
state, a is the action, r is the reward, and s� is the resulting state. An advantage of the

66

Algorithm 5 The modified version of UCT used in this article
1: function UCTSelect:

inputs:
s � the current state

outputs:
a � action selected by UCT

params:
γ � discount factor, parameter of the MDP
NumPlayouts � number of Monte Carlo playouts to perform
c � weight given to the confidence bound
λ � eligibility trace parameter - affects amount of backup
simulateAction(s, a) � an environment model that samples next states

2: for i = 1 to NumPlayouts do
3: Search(s)
4: return a = argmaxa Q(s, a)

5: function Search(s):
6: a = bestAction(s)
7: while s is not terminal do
8: (s�, r) = simulateAction(s, a)
9: a� = bestAction(s�)

10: e(s, a) = 1
� Update the Q-values

11: δ = r + γQ(s�, a�)−Q(s, a)
12: for all s∗, a∗ do
13: Q(s∗, a∗) = Q(s∗, a∗) + e(s∗, a∗) ∗ δ

visits(s∗,a∗)

14: e(s∗, a∗) = λe(s∗, a∗)

15: s = s�; a = a�;

16: function bestAction(s):

17: return argmaxa Q(s, a) + c

�
ln visits(s)
visits(s, a)

67

FQI algorithm is that this data can be collected in parallel from a number of tests. At
each iteration, the agent updates the following equation for each tuple

Q(s, a) = r + γ ∗max
a�

Q(s�, a�)

where Q(s, a) is initialized to 0. Q is an estimate of the optimal value function, Q∗,
and this estimate is iteratively improved by looping over the stored samples. To handle
continuous state spaces, Q is not stored exactly in a table; instead, its value is estimated
using function approximation. In this article, the continuous state features are converted
into a set of binary features using CMAC tile-coding [7, 8], and the estimate of Q(s, a)
is given by

Q̂(s, a) =
�

i

wifi

where fi is the ith binary feature and wi is the weight given to the feature with updates
split uniformly between the active features. This approach uses a set of overlapping
tilings to cover the space with binary activations [67]. The advantages of tile coding
include simple computation, binary output, and good control over the generalization of
the model.

68

