
In Artificial Intelligence (AIJ),

http://dx.doi.org/10.1016/j.artint.2016.07.004

A Synthesis of Automated Planning and Reinforcement
Learning for Efficient, Robust Decision-Making

Matteo Leonettia,c,∗, Luca Iocchib, Peter Stonea

aDepartment of Computer Science, The University of Texas at Austin, 2317 Speedway, Stop
D9500, Austin, TX 78712, USA

bDepartment of Computer, Control, and Management Engineering, Sapienza University of
Rome, Via Ariosto 25, 00185 Rome, Italy

cSchool of Computing, University of Leeds, LS2 9JT Leeds, UK

Abstract

Automated planning and reinforcement learning are characterized by comple-
mentary views on decision making: the former relies on previous knowledge and
computation, while the latter on interaction with the world, and experience.
Planning allows robots to carry out different tasks in the same domain, without
the need to acquire knowledge about each one of them, but relies strongly on
the accuracy of the model. Reinforcement learning, on the other hand, does not
require previous knowledge, and allows robots to robustly adapt to the envi-
ronment, but often necessitates an infeasible amount of experience. We present
Domain Approximation for Reinforcement LearnING (DARLING), a method
that takes advantage of planning to constrain the behavior of the agent to rea-
sonable choices, and of reinforcement learning to adapt to the environment, and
increase the reliability of the decision making process. We demonstrate the ef-
fectiveness of the proposed method on a service robot, carrying out a variety
of tasks in an office building. We find that when the robot makes decisions by
planning alone on a given model it often fails, and when it makes decisions by
reinforcement learning alone it often cannot complete its tasks in a reasonable
amount of time. When employing DARLING, even when seeded with the same
model that was used for planning alone, however, the robot can quickly learn
a behavior to carry out all the tasks, improves over time, and adapts to the
environment as it changes.

Keywords: Automated Planning, Reinforcement Learning, Autonomous
Robot, Robot Learning, Answer Set Programming

∗Corresponding author
Email addresses: m.leonetti@leeds.ac.uk (Matteo Leonetti), iocchi@dis.uniroma1.it

(Luca Iocchi), pstone@cs.utexas.edu (Peter Stone)

1. Introduction

A great deal of work has been carried out in automated planning, and delib-
eration in general, while the application of such work to autonomous agents is
much less developed [13]. The deployment of automated planning, especially in
robotic tasks, faces many challenges, mostly due to high levels of uncertainty,
which make completing a plan a significantly more difficult task than comput-
ing one. While low-level planning, such as navigation or motion planning, is
gaining momentum in robotics, high-level planning is often avoided altogether.
Behaviors are, instead, engineered by programming them directly.

The reason why plans are brittle can ultimately be attributed to imper-
fections in the models: relevant details overlooked, dynamics incorrectly rep-
resented, or assumptions violated. Nonetheless, making decisions in domains
of any interest unavoidably involves abstraction and approximation, causing
imperfect models to be widespread.

Execution Monitoring [24] and continual on-line planning [5] deal with un-
reliable models, but being able to recognize and react to failures might not be
enough: an intelligent agent should learn from its mistakes and avoid them as
much as possible in the future. The Reinforcement Learning (RL) [31] paradigm
suits perfectly to this scenario, since it is based on trial and error, and the agent
can have little knowledge about the domain before execution. Reinforcement
Learning on its own, however, without prior knowledge of the environment, re-
quires an enormous amount of experience. Applying RL methods directly is
often infeasible in many practical cases, especially involving physical systems
such as robots.

We propose to overcome the brittleness of the plans computed on a model
through reinforcement learning in the environment, and to restrict the explo-
ration of the environment through automated reasoning on the model. The re-
sulting approach, Domain Approximation for Reinforcement LearnING (DAR-
LING), exploits the synergy of the two methods allowing the agent, on the one
hand, to relax the requirements on the planner, which can work on a simplified,
abstract, representation of the domain. On the other hand, it allows the agent
to take advantage of previous knowledge, for reducing the experience required
by reinforcement learning. The automated reasoner provides a rational way
to constrain the exploration and reduce the search space, while reinforcement
learning eases the requirements on the accuracy of the model, which does not
need to incorporate transition probabilities and action costs, even if the agent
is in fact acting in a stochastic environment.

The main idea behind this work was introduced by Leonetti et al. [16] in the
context of Hierarchical Reinforcement Learning, where a finite-state controller
was induced by reasoning in Linear Temporal Logics (LTL), and used to con-
strain the exploration during a subsequent reinforcement learning phase. This
article contributes a new formulation in terms of partial policies, an implemen-
tation of the planning phase through Answer Set Programming (ASP) instead
of model-checking on LTL, and a thorough experimental validation conducted
in several new domains. The use of ASP allowed us to scale the applicabil-

2

ity of DARLING to real-world domains. In particular we deployed it to our
autonomous mobile robots, carrying out and learning several tasks in a real-
world office environment (the Gates-Dell Complex at the University of Texas at
Austin).

2. Background and Notation

This work leverages both reinforcement learning in Markov Decision Pro-
cesses and automated reasoning in Answer Set Programming. In this section
we introduce these two formalisms, along with the notation we will use in the
rest of the article.

2.1. Markov Decision Processes

A Markov Decision Process is a tuple D = 〈S,A, f, r〉 where:

• S is a set of states

• A is a set of actions. If not differently specified, every action is available
in every state. When that is not the case, we denote with A(s) the set of
actions available in state s ∈ S.

• f : S ×A×S → [0, 1] is the transition function. The function f(s, a, s′) =
Pr(St+1 = s′|St = s,At = a) is the probability that the current state
changes from s to s′ by executing action a. If f(s, a, s′) = {0, 1} the
system is said to be deterministic, otherwise it is stochastic.

• r : S×A×S×R→ [0, 1] is the reward function. The function r(s, a, s′, g) =
Pr(Rt+1 = g|St = s,At = a, St+1 = s′) is the probability of getting a
reward g for being in state s, executing action a, and reaching state s′.
The reward is said to be deterministic if r(s, a, s′, g) = {0, 1} ∀s, s′ ∈ S,
a ∈ A, and g ∈ R. If the reward is negative, we will also refer to it as a
cost.

We consider the system at discrete time steps. Let t ∈ N be the current
time, and St be the state at time t. The agent interacts with the environment
by choosing an action At and perceiving the next state St+1, such that:

St+1 ∼ f(St, At, ·) = Pr(St+1 = s′|St = s,At = a), s, s′ ∈ S and a ∈ A

It also receives a reward Rt+1:

Rt+1 ∼ r(St, At, St+1, ·)

If a state is never left, after it is entered for the first time, it is said to be a
terminal or an absorbing state. If s is a terminal state then St+1 = s holds
almost surely given that St = s. If an MDP has a terminal state it is said to be
episodic.

3

The behavior of the agent is represented as a function π : S × A → [0, 1]
called a (stationary) policy, where π(s, a) = Pr(At = a|St = s) is the probability
of selecting action a in state s at time t. If π(s, a) = {0, 1} ∀ s ∈ S and a ∈ A
the policy is deterministic, in which case we will denote the action chosen by the
policy as a = π(s). A policy π and an initial state s0 determine a probability
distribution over the possible sequences (〈St, At, Rt+1〉, t ≥ 0). Given such a
sequence, we define the cumulative discounted reward as:

G =
∑
t≥0

γtRt+1

where 0 < γ ≤ 1 is the discount factor. If γ = 1 the reward is undiscounted,
which is only allowed if the MDP is episodic and the agent receives a reward of 0
in the absorbing states, otherwise the total reward could diverge. The discount
factor expresses the preference towards earlier rewards over later ones.

A number of methods to compute policies in MDPs are based on the esti-
mation of the expected cumulative discounted reward (the return), that is the
reward expected from each state s following a policy π, as:

vπ(s) = E

∑
t≥0

γtRt+1 |S0 = s

where Rt+1 is the reward in the sequence (〈St, At, Rt+1〉, t ≥ 0) generated by
π. The function v : S → R is called the value function. Analogously to the
value function we can define an action value function, that returns the expected
cumulative discounted reward for executing each action from each state. It is
usually represented as q : S ×A → R. Its value is given by:

qπ(s, a) = E

∑
t≥0

γtRt+1 |S0 = s, A0 = a

The reward is accumulated by executing a in s and following π thereafter.
Given an MDP, the agent aims at identifying the policy π∗ such that vπ∗(s)
is maximum for each s. We denote such an optimal value function as v∗ (and
analogously q∗ for the action value function). If we represent with Πstat the set
of all stationary policies, and with rs′ the expected value of Rs′ ∼ r(s, a, s′, ·),
the reward extracted according to r, v∗ is defined as:

v∗(s) = max
π∈Πstat

vπ(s) = max
a∈A

q∗(s, a), s ∈ S (1)

q∗(s, a) =
∑
s′∈S

f(s, a, s′)(rs′ + γ v∗(s′)), s ∈ S, a ∈ A (2)

The value, and action value functions often cannot be represented exactly,
storing a value for each state in tabular form, but have to be approximated.
For continuous state spaces a tabular form is not even possible at all. Function

4

approximation also allows the agent to generalize between similar states (where
the similarity depends on the function approximation involved). A popular ap-
proximation scheme is linear function approximation, where the state is encoded
with a set of features and the approximated function is a linear combination of
the features. With discrete actions a standard approach consists in employing
a function approximator per action:

qπ,a(s) = θ>φ(s), (3)

where φ(s) is the feature vector, and θ is the parameter vector to learn.
A popular function approximator, for which implementations are widely

available, is Tile Coding with hashing [31]. In tile coding the state space is
partitioned into tiles, where the union of a layer of tiles forms a tiling. A fea-
ture φi(s) ∈ {0, 1} corresponds to each tile, and therefore, only one feature can
return 1 per tiling. It is desirable to have multiple tilings (possibly at different
resolutions) slightly shifted from each other span the state space. Since the vast
majority of the features returns 0, the linear function approximator of Equation
3 is fast to compute. It is also possible to group the tiles through hashing,
reducing the total memory usage.

We will use Sarsa(λ) [31] for control, estimating the value function with
True Online TD(λ) [28]. The action value function will be represented either in
tabular form, where possible, or using tile coding with hashing. The exploration
will be an ε-greedy strategy. With the ε-greedy strategy, the agent chooses the
current optimal action according to qπ with probability 1 − ε, and a random
action with probability ε.

2.2. Answer Set Programming

Answer Set Programming is a form of declarative programming, based on
the stable model semantics of logic programming [18]. It is a propositional
formalism, whose syntax is defined in terms of atoms, literals, and rules. An
atom is an elementary proposition, such as p or -q, while a literal is an atom
with or without negation, such as p or not q. A rule is is an expression of the
form:

p, . . ., q :- r, . . ., s, not t, . . ., not u

where “:-” is the (prolog-style) implication sign. The part of a rule on the
left-hand side of the implication sign is called the head, while the part on the
right-hand side is called the body of the rule. The head is a disjunction of literals,
while the body is a conjunction of literals.

A set of rules forms an ASP theory. A model of an ASP theory is an Answer
Set, that is a set of atoms compatible with the theory. Informally, each rule
has to be interpreted as follows: if r, . . . , s are in the answer set, and t, . . . ,
u are not, then at least one in {p, . . . , q} is in the answer set. For a formal
definition of the stable model semantics we refer to Gelfond and Lifschitz [12].
The symbol not is often referred to in the literature as negation as failure. The
classical negation of an atom p is denoted with -p, and is another atom, with

5

the implicit constraint that if p is in the answer set then -p cannot be in the
answer set, and vice versa.

A choice rule is a particular rule whose syntax is as follows:

{p, . . ., q} :- r, . . ., s, not t, . . ., not u

and means that if the body is verified by the answer set, then any number of
atoms (including zero) in {p, . . . , q} may be in the answer set.

Two other important special cases of rules are facts and constraints. A fact
is a rule in which the body is missing, and is denoted by omitting the implication
sign:

p

means that p has to belong to every answer set. A constraint, on the other
hand, is a rule in which the head is missing:

:- q,

and it means that q cannot belong to any answer set.

Non-monotonicity. Answer set programming is a non-monotonic formalism. In
monotonic formalisms, such as classical logics, if a set of rules entails a partic-
ular preposition, it is also entailed by any superset of the rules. Representing
entailment with the symbol |=, we can give the following definition of mono-
tonicity.

Definition (Monotonic formalism). Let R be a set of logical formulas in a
formalism F , and φ be a logical formula. The formalism F is monotonic iff:

R |= φ⇒ R ∪ ψ |= φ (4)

for any formula ψ.

That is, adding formulas does not restrict the set of logical sentences that
are entailed (hence, the monotonicity).

Non-monotonic reasoning allows expressing defaults, that is sentences that
typically hold unless evidence to the contrary is provided. The technical element
which introduces non-monotonicity into ASP is the negation as failure.

The theory of non-monotonic logics is extensive and complex. In this con-
text, we provide only a simple example in first-order logics, which helps us
illustrate later how we make use of defaults in planning. We want to represent
in our model the optimistic assumption that all doors are open, and that d is a
door.

∀D, door(D) ⇒ open(D)

door(d).

From these formulas, it is possible to derive that d is open. Imagine that a new
piece of information becomes available at this point, namely that the door d is,

6

in fact, an automatic door which closes by itself, and is, therefore, closed unless
held open:

∀D, automatic(D) ∧ ¬held(D) ⇒ ¬open(D)

automated(d)

¬held(d).

It is now possible to derive both that d is open and that it is not. Indeed, the
knowledge base is now inconsistent, and every sentence can be derived from it.
This principle is known as ex falso quodlibet : from falsehood, anything (follows).

The initial statement about all doors being open seems now too rigid. What
we would like to say is that all doors are open, unless we have any evidence to
the contrary. This is expressed in ASP through negation as failure:

open(D) :- door(D), not -open(D)

door(d)

where we denote variables with uppercase letters and constants with lowercase
letters. The use of variables is only for syntactic brevity since the formalism
is propositional: before solving a given ASP query, the system has to ground
every rule. Grounding a rule means generating all the possible rules obtained
by substituting the variables with constants in all possible ways.

The first sentence can be informally interpreted as: if d is a door, and we
cannot prove that d is not open, then we can derive that d is open. In this
example, we see the important difference between true negation and negation
as failure. Indeed, if we interpreted not as true negation, and substituted the
double negation with the positive open(D), we would obtain a tautology, which
does not add anything to the knowledge base. The new information about the
door being an automatic one can then be added as:

-open(D) :- automatic(D), -held(D)

automatic(d)

-held(d).

Since it is now possible to derive -open(d), it is not possible to derive open(d)

anymore, hence no inconsistency has been introduced.

2.3. Planning in Answer Set Programming

We want to represent a transition system Dm = 〈Sm,A, fm〉 (where the
subscript stands for model) in answer set programming, where Sm is a set of
states, A is a set of actions and fm : Sm × A → Sm is the transition function.
This representation has to allow for fast planning, therefore in our models the
set Sm is always discrete, and the function fm is always deterministic.

DARLING does not depend on ASP directly, and other formalisms or plan-
ners could be used. We chose ASP for a number of reasons. First, we decided
to restrict ourselves to discrete deterministic models, because they are compu-
tationally less demanding than stochastic ones, and we show in Section 4.4 that

7

there is no advantage in using a stochastic model regarding the policies that can
be learned. Second, we require a planner to be able to compute all solutions
with certain criteria, and Clingo can be used as one such planner while most
others can only return a single plan. Third, ASP allows the designer to spec-
ify constraints on plan trajectories: an important feature as will be explained
later, to limit the number of plans processed. Lastly, ASP is a non-monotonic
formalism. Non-monotonicity lets us establish certain defaults, which result in
very compact theories, and allow for optimism in the face of uncertainty which
is fundamental to favor exploration.

The set of states is represented in terms of predicates whose truth value may
change at different time steps and that, for this reason, are called fluents. A
fluent is a predicate such as at(roomA,0) in which the last parameter is always
the time step to which the predicate refers. In ASP, a fluent may appear in an
answer set, appear negated in an answer set, or not appear at all. Given a finite
set of fluents, F , the set of states Sm = 3F is the set of all possible assignments
(positive, negative, or unknown) to the fluents in F . Therefore, a set of fluents
uniquely determines the state space of a transition system.

Actions are represented in the same way as fluents, and are syntactically
indistinguishable from them. For instance, openDoor(d1,0), is an atom that
means that the action openDoor is executed on door d1 at time step 0.

The transition function fm is represented in the ASP theory by determining
how fluents are carried over from one time step to the next by actions, or just by
the passage of time. We mentioned above that rules containing variables have
to be grounded before the solver is invoked. An important variable is the time
step, which is grounded up to a constant n, the maximum time step that will
be considered.

The pre-condition of actions, that is, what must be true in a state for an
action to be executable, is represented with constraints. For instance:

:- openDoor(D,I), not facing(D,I), door(D), I=0..n

means that it is not possible to execute action openDoor(D) on any door D at
time step I and facing(D) cannot be derived at time step I. This means that
facing(D) is a pre-condition for the action openDoor(D).

The effect of actions is represented with rules such as:

open(D,I+1):- openDoor(D,I), door(D), I=0..n

which means that executing the action openDoor(D) at time step I causes the
door to be open at time step I+1. An example of a full domain implementation
is reported in the Appendix.

As introduced above, ASP allows the representation of defaults as soft con-
straints on the presence of individual atoms in an answer set. For instance, the
rule:

open(D,I+1):- open(D,I) not -open(D,I+1), door(D), I=0..n-1

8

means: if open(D,I) is in the answer set, and -open(D,I+1) is not in the answer
set, then open(D,I+1) is in the answer set. Through negation as failure, this
rule specifies that the door D remains open unless some other rule imposes it to
be closed, that is it remains open by default. In the case of a robot, it is also
possible that the theory has certain properties carried over by default, but some
perceptions contradict them. For example, we can specify that the position of
the robot is inertial, that is by default it does not change:

at(L,I+1):- at(L,I), not -at(L,I+1), location(L), I=0..n-1

-at(L2,I) :- at(L1,I), L1 != L2, location(L1), location(L2),

I=0..n-1.

The second line expresses that if the robot is at a certain location, it is not
anywhere else. It may happen, however, that the localization module all of a
sudden realizes that the robot is at a different location, even though it was not
moving. We may have:

at(office,0)

at(lab,1)

even though no action has been taken. The localization module generates the ob-
servation at(lab,1) and it does not cause any inconsistency, simply at(lab,1)

causes -at(office,1) to be derived, which prevents the inertial law to carry
over the fluent at by default. On the robot, with real noisy data, this ability to
incorporate unexpected but acceptable pieces of information is particularly con-
venient. At the same time, certain observations may be deemed unacceptable
and discarded. For instance, should the localization module output:

at(office,1)

at(lab,1)

this would cause the ASP theory to be unsatisfiable, therefore, this observation
according to which the robot would be at two locations at the same time has to
be discarded as a localization error.

Non-monotonicity, therefore, proved to be helpful to us in at least two ways:
by allowing the specification of optimistic defaults, in the absence of more spe-
cific knowledge; and in being able to distinguish between constraints that should
generally be assumed but may be violated, and others that must always hold.

Planning Problem. A planning problem P = 〈Dm, s0,G〉 is a tuple where Dm is
a transition system, s0 is the initial state, and G is a set of goal states. The initial
state is specified through a set of facts about the time step 0, while the goal state
is specified through constraints excluding, from the possible set of states at the
last time step, all the states that do not fulfill a given goal. The ASP reasoner
grounds all the rules, and generates a theory up to a given time step n, whose
answer sets are all and only the histories of the form 〈s0, a0, . . . , sn−1, an−1, sn〉,
where sn ∈ G. The sequence of actions p = 〈a0, . . . , an−1〉 is a plan that achieves
a goal state in G.

9

3. Related Work

Many different types of reasoning have been referred to as planning in the
literature. For the purpose of this article, we consider planning as any looka-
head reasoning process that makes use of a known model of action effects to
select actions. A wide variety of action representations have been considered,
ranging from purely atomic representations as employed in Dyna [30] to first
order relational representations as used by STRIPS and its derivatives. For the
purpose of this article, we consider planning as being in contrast to learning,
by which we mean either selecting actions without reference to an action model
or learning the action model itself. Furthermore, planning is a purely cognitive
activity, which does not involve acting in the environment, while learning is
based on experience gathered by performing actions.

Automated planning and reinforcement learning both aim at solving an im-
portant class of decision-making problems. Their intersection has been consid-
ered for different purposes, using different techniques, and from various perspec-
tives. This section gives an overview of previous work in the area of combining
the model-based lookahead of planning with the hindsight view of learning.

Planning has been part of reinforcement learning since its inception, partic-
ularly in model-based RL, where the agent learns a model of the environment
to plan subsequently on it. Dyna [30] is one of the earliest of such systems, in
which a reactive component is responsible for choosing actions in real time, while
the system computes a value function from both real experiences and simulated
ones. Abbeel et al. [1] proposed a method close in motivation to ours, in which
the agent uses a crude model of a deterministic dynamical system to identify
a direction for policy improvement, and then executes trials in the real world
along that direction only, updating the model with the data from the environ-
ment. All of the work on model-based RL is driven by the acknowledgment of
the fact that real experience is both too expensive, to the extent necessary for
achieving an optimal behavior, and potentially dangerous for physical agents.
By building a model, and generalizing from experience, agents can learn from
simulated actions as if they had been executed in the real world. The premise
for model-based RL is shared by this work too. We also acknowledge, however,
that all models are wrong, but some are useful [3]. Therefore, we do not rely
on the model to compute the optimal policy, but only to constrain the MDP
in which the agent acts. This constraint allows the agent to make use of a
much simpler model, in particular ignoring probabilities and costs which are
considered in model-based RL, and can be difficult to estimate. In this work
we do not have the agent learn the model. Therefore, we take a perspective
more characteristic of the planning community. Nonetheless, nothing prevents
the model used in our method to be learned or automatically adjusted. What
sets our work apart from model-based RL is how that model is used (and only
partially trusted), that is, to limit the MDP of the task and not to solve it.

The way in which we constrain the search space for an optimal policy is by
computing a partial policy on our model. Similar technique is used by Pinto
and Fern [25] in planning, in order to reduce the dependency of sample based

10

planners on the branching factor. In their work, the planner learns the partial
policy from previous instances of planning problems in a given domain, as a form
of domain-specific knowledge to exploit in further instances. That work is an
example of a line of research in combining machine learning and planning which
has been fostered by the introduction of the learning track in the International
Planning Competition from 2008 [10]. The emphasis is posed by the planning
community on more effective domain-independent planners, while the execution
of those plans in an actual environment is not taken into account. On the
other hand, our focus is on the robustness of the agent’s behavior, and on
the adaptivity to a changing environment. Differently from the aforementioned
work in planning, we use a representation simple enough to compute a partial
policy from a single planning instance, and perform reinforcement learning on
the execution of that task in the world. Learning to plan faster from previous
tasks is independent of our approach.

Envelope-based planning [6] is another method introduced to limit the search
space given time constraints, and it is a pure planning technique which does
not involve learning. A first plan is generated through a depth-first search on a
stochastic model, considering action outcomes in decreasing order of probability.
An initial policy is defined over this plan, and the domain of such a policy (that
is, the states over which it is defined) is called the envelope of the policy. A
reduced MDP is then constructed over the envelope, where the actions that
lead outside of it are redirected towards a special absorbing state out. The
algorithm then proceeds in turns, in which the envelope is first expanded by
adding the states reachable from the envelope in one step that are most likely
to provide a policy improvement, and then computing the new optimal policy
for the extended MDP. Given enough time, the algorithm extends the envelope
to the full MDP and computes an optimal policy for the original problem. Our
method is reminiscent of Envelope-based planning in the definition of a reduced
MDP, but it differs from it on how such an MDP is computed. Instead of growing
the MDP around a single plan, we define it from a set of plans, which can reach
(within a particular plan length) non-contiguous areas of the MDP. We do not
assume an accurate probabilistic model, and therefore do not solve this MDP
through planning but RL in the actual environment. We expand the MDP at run
time, and only if the agent falls outside of the set of states initially computed.
State TArgeted R-MAX (STAR-MAX) [19] is a reinforcement learning approach
related to envelope-based planning, in which the exploration is limited to a given
envelope. In STAR-MAX, the authors do not provide a general way to compute
the envelope, showing that the agent can learn one from demonstration, obtain
one by simply dropping a given percentage of the states, or just rely on domain
knowledge by a human to provide the envelope to the agent. The envelope only
constraints the states, while our partial policy also constraints the actions (the
constraints on the state space are, in our case, a consequence of some regions
becoming unreachable).

Constraining the behavior of Reinforcement Learning agents is also a criti-
cal aspect of Hierarchical Reinforcement Learning [2]. In Hierarchy of Abstract
Machines (HAM) [23] a manually specified state machine is employed at each

11

layer as a partial policy to constrain the choices available at the lower layer of
the hierarchy. The lowest level of such a hierarchy is the MDP of the environ-
ment, and the application of the levels above it define a Semi-Markov Decision
Process (SMDP). Leonetti et al. [16] introduced a method to generate a HAM
from planning, which is a precursor of the one presented here. The only other
work relating to both our own work, and constructing a hierarchy for RL from
planning, is the one by Ryan [26]. Ryan used teleo-reactive operators [22], and
planning with means-end analysis [20], to generate a tree with all possible op-
erators from the current state to the goal state. At each step, more than one
operator can be active. Which operator to execute is learned hierarchically,
together with the underlying behavior associated with each operator. This ar-
chitecture was previously introduced in RL-TOPS [27], where planning is used
to generate a single plan that dictates which lower-level behavior to activate at
any given time. The system introduced by Ryan [26] is similar to ours in that it
computes all possible (shortest) plans to a given goal to choose which low-level
behavior to activate. It is different, however, in that its aim is to construct
a hierarchy and not to make the planned behavior robust. As a consequence,
it does not consider the possibility of the model being incorrect, and does not
compute any plan longer than the shortest plan. We show that considering
plans that are longer in terms of number of actions is necessary, because they
might in practice have a lower cost than the shortest plans, or be able to get
the agent out of a dead-end.

Another area related to combining symbolic reasoning and RL is Relational
Reinforcement Learning (RRL) [7, 32]. The aim of RRL is making use of a
relational, first-order, representation to generalize through logic induction. It
is particularly powerful in domains that can be naturally expressed in terms
of objects and relations among them. For instance, in the well-known blocks
world, the policy or the value function can be computed independently from the
number of blocks. Even if generalizing through first-order lifted inference, RRL
methods still calculate values and policies for the full domain, while our method
uses Answer Set Programming (which is a propositional formalism) to reduce
the portion of the region to explore. Generalizing through symbolic reasoning
is not one of the objectives of this work, even though it is a possible interesting
extension.

Lastly, planning has been combined with RL through reward shaping [8, 14].
Reward shaping is a technique to hasten Reinforcement Learning when the
reward is sparse, and the agent has to execute a long sequence of actions before
getting any feedback about its choices. The reward function is enriched by
adding a term which provides feedback for intermediate states, helping guide
the agent towards the goal. Grzes and Kudenko proposed a method [14] in
which the agent computes a plan on a STRIPS representation of the domain,
and uses it to define a shaping function. The function guides the agent along
the plan, helping it find the goal sooner. Reward shaping does not constrain the
behavior of the agent and, if the shaping function is potential-based, it does not
alter the optimal policy [21]. As a consequence, the agent still has to explore the
whole environment to learn the optimal policy, even though it can do so more

12

quickly. In large environments, and in particular with physical agents, it may
be infeasible. In contrast, we do prevent the agent from exploring the whole
domain, selecting the area to explore through automated reasoning. Our method
has the potential cost of never discovering the optimal policy, but in exchange
for the advantage of learning good behaviors quickly. It is particularly effective
when the domain is such that reaching the optimal policy in an acceptable
amount of time is impossible in any case.

4. Method definition

We assume that the domain can be modeled as an MDP D = 〈S,A, f, r〉,
where S can be either discrete or continuous, A is finite, and f and r are
stochastic and unknown. The MDP D is the one for which an RL method would
learn a policy to act in the real domain. Furthermore, we expect the designer
to create a model of D which we will denote as Dm = 〈Sm,A, fm〉. This model
may or may not include the reward function. In the rest of this article, we will
only use models that do not. The model Dm is the one on which a planning
algorithm would compute a plan to execute in the real domain. A planning
algorithm cannot plan on D since the transition function of D is unknown (and
so is the reward function). We also require the designer to specify a mapping
o : S → Sm which for every state in S returns a corresponding state in Sm. In
order to make sure that what is computed on the model is indeed executable
in the environment, the mapping function o has to preserve the applicability of
actions, that is:

a ∈ A(sm)⇒ a ∈ A(s),∀s ∈ o−1(sm), sm ∈ Sm,

where by A(s) we denote the subset of actions of A applicable in state s (cf.
Section 2.1). Through our method we will define a new MDP Dr (where the
subscript stands for reduced), computed by planning over Dm, that models the
same domain as D but is a reduced version of it. We will then let the agent
perform RL over Dr.

In order to illustrate DARLING we will make use of a running example, a
grid world shown in Figure 1. We will denote the squares starting from 〈0, 0〉
for the bottom left corner to 〈19, 19〉 for the top right corner. The agent has to
navigate from the start state marked with S (〈10, 0〉), to the goal state marked
with G (〈10, 10〉). The darker and thicker lines are walls while the red line is a
door. The actions available are moving in one of the four cardinal directions and
can be applied wherever they would not lead into a wall or outside of the grid.
The actions are deterministic, except for the action that goes through the door,
which fails if the door is closed, and the agent stays in its current state. The
cost of actions depends on the state the action leads into, and will be specified
with the full details of the domain in Section 5.2.1.

DARLING is composed of three steps:

1. plan generation: generate all the plans that have a cost lower than a given
threshold in the model (cf. Section 4.1);

13

Figure 1: Example domain

2. plan filtering and merging: exclude the plans that are certainly subop-
timal, and merge the remaining ones into a partial policy (cf. Section
4.2);

3. execution and learning: during execution, choose only actions that are
returned by the partial policy, and learn their expected cumulative long-
term reward in order to converge to the optimal solution (cf. Section
4.3).

4.1. Plan Generation

The plan generation step requires a planner able to return all plans that can
reach the goal from the initial state within a certain cost threshold. DARLING
does not depend on any specific planner or model type, and the designer should
find a good compromise between the expressive power of the model and planning
time. Thanks to the subsequent learning phase, the accuracy of this model is
less critical than if planning were used with no learning. For this reason, in all
our experiments we chose to use a symbolic, discrete, deterministic model of the
environment, which does not represent action costs. Therefore, as the metric
for the threshold, we used plan length.

We used Answer Set Programming to represent our models, and the answer
set solver Clingo [11] to reason and plan. Planning is a particular type of
reasoning possible with Clingo, where other reasoning tasks are, for instance,
execution monitoring, and plan repair. We make use of non-monotonic reasoning
by assuming certain system dynamics by default, and reconcile this assumption
with perceptions during execution. For instance, the door in our example will
optimistically be assumed to be open, unless the agent knows otherwise.

Optimistic assumptions are instrumental to simplifying the model, and low-
ering planning time: instead of considering all possible outcomes of an action,

14

the reasoner will take into account only the default one. Clearly, having good
defaults is critical to reduce the chance of replanning. While defaults could
be learned, that falls outside of the scope of this article. We will show, how-
ever, that the learning phase alleviates the problem of an incorrect default, and
reduces the burden on the correctness of the model.

In ASP, plans are computed in order of length. We take advantage of this
feature to define the threshold of plan length as a function of the length of the
shortest plans. Since the length of a plan is not an accurate estimation of its
cost, we also consider plans that are longer than the shortest plans, because they
can, in fact, have a lower cost. Considering plans that are suboptimal according
to the model would be necessary even if we did model costs, as there is always
the possibility that the model is incorrect. Therefore, it is always advisable to
generate plans that are suboptimal up to some extent, according to the model,
and let the learning phase verify which one is the optimal plan in practice.

Planning

Given an initial state and a goal, we want to compute all the plans of length
less than a certain threshold. We define the threshold as a function of the length
of the shortest plans, but any other definition is valid. Let l be the length of
the shortest plans. We want to generate all the plans of length at most L = l·µ
where µ >= 1 is a parameter which gauges the sub-optimality the designer is
willing to consider regarding the number of actions. The system first generates
the shortest plans, it computes L, and then generates all the plans of length up
to L.

In ASP, differently from most planners including state-of-the-art ones from
the International Planning Competition, it is possible to compute all the plans
of a given length. We take advantage of this feature and do not contribute
reasoning or planning methods, using Clingo as a black box. With respect to
our first implementation of using automated reasoning for generating finite-state
controllers, based on Linear Temporal Logics [16], ASP allowed us to scale to
much larger domains, and to take advantage of non-monotonic reasoning.

Given an encoding of the initial state and the goal, all the answer sets re-
turned for the maximum time step incrementally increased up to L are all the
plans of length at most L. All the queries with different maximum lengths up to
L would be separate, but the answer set solver Clingo is particularly efficient at
this computation. It has an incremental version of the solver designed specifi-
cally for planning, which efficiently concatenates these queries for different plan
lengths retaining the fluents grounded at the previous iteration. The iterative
solver makes Answer Set Planning [17] comparable in terms of planning time
with state-of-the-art heuristic planning.

The answer set solver returns sequences 〈si, ai〉 where si is a state, that is
a set of fluents, and ai is the action executed in state si, at time step i. Let P
be the set of shortest plans of length l, we denote with p = {〈si, ai〉} ∈ P where
i = 0..l − 1, a plan in P. We then augment P with all the plans of length up
to L = l·µ. In our example, the only shortest plan has length 10 (ten north

15

actions), there are 0 plans of length 11, 71 plans of length 12, and so on. In
every domain considered in this article, we set µ = 1.5.

4.2. Plan Filtering and Merging

While every action in one of the shortest plans is necessary by definition,
when forcing the length of the generated plans to be greater than the length of
the shortest plans this may no longer be true. The planner can add actions that
are irrelevant to reach the goal, and therefore would just sidetrack the agent.
For example, in our grid world a plan might contain a cycle, or if an action
paintwall were available, it could add such an action to the plans, even if it
was not necessary to achieve the goal. A necessary sequence of actions, on the
other hand, is one such that, if removed, makes the remaining plan invalid.

Having useless actions in the plans does not affect the correctness nor the
asymptotic performance of the method: the learning phase will eventually avoid
suboptimal actions. Nonetheless, one of the main advantages of the proposed
approach is to reduce the exploration in the reinforcement learning phase signif-
icantly. Hence, we want to get rid, at planning time and as much as possible, of
actions that do not contribute to reaching the goal. Limiting the exploration is
critical for physical agents, where taking actions in the real world is expensive,
and it is worth spending some computation on reducing the set of actions to
execute.

The most effective way to eliminate unnecessary actions, particularly in ASP,
is to specify constraints on plan trajectories as part of the goal, and avoid useless
actions to be generated in the first place. For instance, in our example we could
add the rule:

:- pos(X,Y,I1), pos(X,Y,I2), I2 > I1.

which means that it is not possible for the agent to be at the same location at
two subsequent time steps.

This solution shifts the burden to the user, however, and we want the system
to perform well even when the user cannot, or does not want to, express such
constraints as part of the goal. Therefore, we introduce an algorithm for plan
filtering which discards plans for being certainly suboptimal.

We begin by defining which plans are acceptable, and which ones must be
discarded. For the following definition, we consider plans as sequences of actions,
and ignore the intermediate states.

Definition (Redundant plan). A plan p = a1 . . . al is redundant, if there exists
a sequence of actions pr = am . . . an with 1 ≤ m ≤ n ≤ l such that p can
be divided into three concatenated sequences p = a1 . . . am−1pran+1 . . . al and
p′ = a1 . . . am−1an+1 . . . al is a valid plan.

Definition (Minimal plan). A plan that is not redundant is said to be minimal.

Ideally, we would like to reject every redundant plan. For instance, it is easy
to see that plans that contain a cycle are redundant. Since Clingo generates

16

plans in order of increasing length, once they are stored in memory checking
if a sequence of actions is a plan does not require any new invocation of the
reasoner. Reasoning, and in particular planning, is the most computationally
expensive process in our approach. Hence, as long as our filtering of redundant
plans is not the computation bottleneck, the scalability of this method is only
limited by the planner.

As an example of a filtering problem, consider the plan aaabdca where each
letter is an action. If a filtering algorithm is processing a plan of length 7, it has
already either accepted or rejected all plans of length up to 6. Let aaaa, and
aabaca be two accepted (minimal) plans, and let aabcaa be a discarded plan.
In order to check whether aaabdca is redundant, by applying the definition,
an exhaustive algorithm would have to remove every subsequence of actions
systematically from the plan, and test whether what remains is also a plan.
Since the shortest plan has length 4, the algorithm can stop after having tested
all subsequences that result from removing at most 3 actions. In this example,
there exists the sequence bdc such that what remains after its deletion, aaaa, is
a plan, therefore aaabdca is redundant. In order to achieve this conclusion, the
exhaustive algorithm has to test 17 subsequences: 7 obtained by removing one
action, 6 by removing 2 actions, and terminate on the 4-th by removing three
actions.

We store the plans in lexicographical order, so that for P plans of length
between l and L verifying whether a sequence is a plan is O(L logP). We only
need to remove at most L − l actions, since otherwise the resulting sequence
would have fewer actions than the shortest plans. Checking all subsequences of
every plan requires O((L − l)2) search operations per plan, with a worst-case
asymptotic complexity of O(P (L − l)2L logP). It is clear from this expression
that if L = l no filtering takes place, as expected, since all plans are shortest
plans.

While tractable, the exhaustive algorithm has proved to be too expensive in
our robotic domain. In order to make DARLING more practical, we devised
an algorithm for plan filtering which has the same worst-case asymptotic per-
formance as the exhaustive search, but is about twice as fast on average. The
algorithm (shown in Algorithm 1) performs two tests on the plans, exploiting
insights on different types of possible redundant plans.

All plans are stored in a sorted set, ordered lexicographically. The plans
are considered in blocks of increasing length, starting from l + 1. The first
test performed (line 7) is on whether they contain cycles. Containing cycles is
the most common reason for which plans are discarded, therefore this check of
complexity O(L logL) discards most of the redundant plans.

The second test is based on the presence of a suspicious action, that is,
the first action that does not belong to any minimal plan. The algorithm that
returns the suspicious action is shown in Algorithm 2. Such an action is iden-
tified with a look-up in the sorted set of minimal plans (line 1) for the position
where the current plan would be inserted. Either the plan immediately before
or immediately after that position is the plan with the longest prefix of actions
in common with the current plan. Both prefixes are computed (line 3 and 4),

17

Algorithm 1: FastPlanFiltering

Data: all plans, list of plans, sorted by plan length
Result: minimal plans, list of accepted plans

1 redundant plans← ∅;
// list of pointers to discarded plans in all plans

2 l← length of the shortest plan;
3 L← length of the longest plan;
4 for i← l + 1 to L do
5 current plans← plans in all plans of length i;
6 for p ∈ current plans do

// if the plan contains a loop it is immediately

discarded

7 if hasLoop(p) then
8 redundant plans← redundant plans ∪ p;
9 else

// the first action that does not belong to any

minimal plan

10 a← firstSuspiciousAction(p,minimal plans);
11 bad← false;
12 j ← 1;
13 while j ≤ i− l ∧ ¬bad do
14 bad←

checkSectionWithLength(p,a,j,minimal plans,redundant plans);

15 if bad then
16 redundant plans← redundant plans ∪ p;

17 for p ∈ current plans ∧ p /∈ redundant plans do
18 minimal plans← minimal plans ∪ p;

19 return minimal plans

18

Algorithm 2: FirstSuspiciousAction

Data: p, plan currently analyzed
minimal plans, list of accepted plans
Result: suspect, suspicious action

1 lb ← lowerBound(p,minimal plans) ;
// pointer to first element in minimal plans which is not

considered to go before p
2 lbb ← plan before lb in minimal plans;
3 l1← matchingPrefix(p,lb) ;
// length of the matching prefix

4 l2← matchingPrefix(p,lbb) ;
5 if l1 > l2 then
6 chosen = l1 + 1 ;

7 else
8 chosen = l2 + 1 ;

9 return pointer to action in p at position chosen

and the first action that does not belong to the longest prefix is returned as the
suspicious action.

We clarify this algorithm with an example. Let aaabdca be the plan the
algorithm is testing, and let the insertion point of this plan in the ordered list
of minimal plans be as follows:

· · ·
aaaa

← aaabdca

aabaca

· · ·

The lower bound of aaabdca in this set is aabaca. Between the two plans
immediately preceding and following the insertion point, the one that shares
the longest prefix with the plan we are testing is aaaa. The matching prefix has
length 3, and the action at position 4, that is b, is the suspicious action of this
plan.

At line 14, Algorithm 1 tests if any subplans of length at least l that do
not contain the suspicious action are valid plans. This algorithm is shown
in Algorithm 3. CheckSectionWithLength is invoked to remove sequences of
actions of increasing length, starting from 1 up to i− l where i is the size of the
current plan, and that contain the suspicious action. It creates a sliding window
from initial pos (line 2) to final pos (line 5) of length actions around the
suspicious action, and tests the plan without that window (lines 8 and 10). In
our example, it removes the sequences: b, ab, bd, aab, abd, and bdc. At bdc it
stops, since the remaining plan is aaaa which is a valid plan (it is in the list of
minimal plans), therefore our test plan is redundant and must be discarded.

19

Algorithm 3: CheckSectionWithLength

Data: current plan, the plan being tested
suspicious, the index of the suspicious action
length, the length of the string of actions to remove
good plans, the minimal plans identified so far
bad plans, the redundant plans identified so far
Result: true if current plan is certainly redundant

1 dif pos ← max(−(length− 1),−suspicious);
2 initial pos ← suspicious + diff pos;

; // does not go past the first action

3 s ← length of current plan;
4 while initial pos ≤ suspicious ∧ initial pos+ length ≤ s do
5 final pos ← initial pos + length;
6 test plan ← current plan [0, initial pos);

// plan concatenation

7 test plan ← test plan + current plan [final pos, s);
8 if good plans contains test plan then
9 return true;

10 if bad plans contains test plan then
11 return true;

12 initial pos ← initial pos + 1;

13 return false;

20

Theorem 1. Algorithm 1 is correct, in that it discards only redundant plans.

Proof. Algorithm 1 discards plans under two conditions: (1) they contain a
loop, and (2) it could identify a sequence of actions such that what remains
after removing it is a plan. The second condition is verified by checking that the
subplan constructed at line 7 of Algorithm 3 belongs to either the set of good
plans (line 8) or bad plans (line 10). This condition is correct by definition
of redundant plan. If a plan contains a loop, it is of the type: 〈s0, a0〉, . . . ,
〈si, ai〉, . . . , 〈sj , aj〉, . . . , 〈sl−1, al−1〉, where si = sj . It is possible to identify
the sequence of actions ai, . . . , aj−1 such that if removed the remaining plan
〈s0, a0〉, . . . , 〈sj , aj〉, . . . , 〈sl−1, al−1〉 is a valid plan, which makes the original
plan redundant.

We cannot prove that Algorithm 1 is also complete, that is, that it discards
all redundant plans. Its performance in terms of both redundant plans retained
and computation time will be experimentally compared with the exhaustive
algorithm in Section 5.

Plan Merging

All minimal plans that pass the previous filtering tests are merged into a
partial policy. Recall that a policy in an MDP is a function that returns the
action to execute for each state (cf. Section 2.1). A partial policy, in this context,
is a function π : S → 2A that maps a state into a set of possible actions. We
define this function formally as follows: let Π(L) be the set of minimal plans of
cost (in our case length) up to L for a given planning problem, then

πL(s) = {a|∃p ∈ Π(L) s.t. 〈o(s), a〉 ∈ p}, ∀s ∈ S (5)

is the partial policy that returns, for each state in the MDP, the set of actions
that belong to at least one minimal plan in the corresponding state of the model.
The function o : S → Sm is the mapping from the states of the MDP to the
states of the model introduced at the beginning of this section. This partial
policy is used in the reinforcement learning phase to define an MDP on which
the agent learns the optimal policy. The partial policy is defined over the state
space of the original MDP, to allow the learning algorithm to adapt to the real
environment, and not to the model.

We visualize the partial policy computed with µ = 1.5 in Figure 2. Out of
the 400 cells part of the original MDP, only 53 are reachable in the reduced one.
The number of executable actions in the original domain is 1526, while only 106
are available to the agent in the reduced domain.

4.3. Execution and Learning

The partial policy computed in the previous phase is used during the ex-
ecution to constrain the agent’s behavior. At each state in the original MDP
D, the agent chooses an action from among the ones returned by the partial
policy for that state. Making an informed choice at this stage is the last step of
DARLING, and is based on reinforcement learning.

21

Figure 2: The actions returned by the partial policy

The partial policy may be used to define an MDP over a reduced transition
function, which allows only a strict subset of the transitions. In particular, the
new transition function does not permit the agent to choose any action that
does not belong to at least one minimal plan. We define this reduced MDP
Dr = 〈S,Ar, fr, r〉, based on the original D = 〈S,A, f, r〉 where the actions
available are restricted to those returned by the partial policy:

Ar(s) = πL(s).

The transition function is defined from the one of D:

fr(s, a, s
′) = f(s, a, s′), ∀s, s′ ∈ S, a ∈ Ar(s)

but it is undefined for actions a /∈ Ar(s).
While the partial policy (and therefore the model Dm) determines the possi-

bility to choose a given action in a particular state, the probability distribution
over the next state is unmodified for the actions that are available. Thus, an
action can make the current state transition into a state that is not what Dm

predicts: if the agent takes action a in state s, it can land in a state s′ such
that s′ /∈ o−1(fm(o(s), a)). In that case, there will be no action available in s′,
and the system replans, computing a new partial policy from s′. Let the old
partial policy be π′L, and the new partial policy be π′′L. The agent merges the
two policies computing

πL(s) = {a|a ∈ π′L(s) ∨ a ∈ π′′L(s)}, ∀s ∈ S

22

consequently augmenting the MDP Dr with the transitions that belong to the
new plans.

The agent can learn a policy for the reduced MDP Dr, expanding it when
necessary if the system transitions into a state where no action is available.
The learning layer is completely independent of the generation of the partial
policy, and works on the MDP it induces. Note that the learning algorithm
does not learn a policy for Dm, our model. The transitions and the state space
are provided by D, the real environment. Even if f and r are unknown, they
can be sampled during the execution, as is common in RL. Learning through
sampling in Dr provides the capability to overcome inaccuracies of the model,
which allows this method to be more robust than planning alone.

Since Dr is a smaller MDP than D, it is possible that the optimal policy in
D requires actions that have been removed from Dr. In that case, the behavior
learned by the agent will be suboptimal in the full domain, while it is guaranteed
to be optimal in Dr. In our real-world experiments, we cannot know whether
this was the case since we could not find a solution for the full domain. An
example of a domain in which the solution in Dr was suboptimal is given by
Leonetti et al. [16] in a simulated environment. In practical cases where finding
an optimal policy for D is infeasible, DARLING provides a way to compute a
policy still as the result of an optimization process, over a specifically defined
MDP. In practice, defining an optimization problem is often more important to
have a direction for improvement, rather than to actually obtain the optimal
solution.

It is possible to learn a policy in Dr with both model-free and model-based
RL algorithms. In model-based RL the agent learns the model, and it may
achieve a more effective generalization than a function approximator on the
value function alone, which is used in model-free RL. Model-based RL also
introduces an additional learning bias, on the model itself, besides the value
function. Inaccuracies of models are what originally motivated this work. For
this reason, we only used a model-free algorithm in our evaluation, but a model-
based one could also be applied both to learning with no previous knowledge,
and to learning a policy for Dr.

4.4. Robustness to Inaccurate Models

In this section, we analyze how the model Dm affects the ability of the
agent to learn an optimal policy. As we mentioned at the beginning of Section
4.1, DARLING does not depend on any particular representation formalism,
planner, or metric. What it does require is that the chosen formalism and
planner allow the agent to compute all plans of cost at most t from the optimal
policy, where t is a threshold function based on a metric that the planner can
minimize. In our implementation, we used Answer Set Programming as the
representation formalism, Clingo as the planner, and plan length as the metric.

We first generalize the definition of a partial policy in Equation 5 for any
model Dm = 〈Sm,A, fm, rm〉 of an MDP D = 〈S,A, f, r〉 as follows:

πt(s) = {a | a ∈ A, q∗m(s, a) ≥ v∗m(s)− t(s)}, ∀s ∈ Sm.

23

For the set πt(s) to be non-empty, t(s) ≥ 0 must hold for every s ∈ Sm. In order
to scale with the reward, the function t should depend on q∗m (or equivalently
on v∗m). For instance, in our implementation where the agent accepts every plan
µ times the length of the optimal plan, t can be written as

t(s) = (1− µ) v∗m(s), s ∈ Sm,

which is positive for µ ≥ 1 since v∗m(s) ≤ 0 (it is the opposite of plan a length)
for all s ∈ Sm, a ∈ A. It follows that:

q∗m(o(s), a) ≥ v∗m(o(s))− t(o(s))⇔ a ∈ Ar(s), ∀s ∈ S, a ∈ A. (6)

That is, an action a is available to the agent in a state s if and only if its value
in the model for the abstract state o(s) is close to the optimal value by more
than the threshold. Thus, the question of whether or not the agent will learn
to execute a particular optimal action can be rephrased entirely in terms of the
value of that action in the model, with respect to the threshold function.

The fact that the inclusion of an action a in the set Ar(s), for a given state
s, depends solely on the value q∗m(o(s), a), and the threshold function t, has two
consequences. First, the actual cost of actions does not play any role. Therefore,
the model can be arbitrarily inaccurate in how it estimates action costs. Indeed,
what the planner uses as a metric may be completely unrelated to the cost in the
actual environment. Second, the transition function of the model fm only enters
the equation through the value q∗m (cf. Equation 2). Thus, the modeled action
transition probabilities do not need to be accurate, as long as they guarantee
the value to be above the threshold.

It is interesting to verify that, should a stochastic model Dm be available,
it is always possible to make a deterministic model in which the same optimal
policies can be learned. Therefore, there is no need, if there is a computational
gain in planning over a deterministic model, to use a stochastic one.

Theorem 2. Given a stochastic model Dm it is possible to obtain a determin-
istic model D̂m for which there exists a threshold function t̂ such that

q∗m(s, a) ≥ v∗m(s)− t(s)⇒ q̂∗m(s, a) ≥ v̂∗m(s)− t̂(s), s ∈ Sm, a ∈ A.

That is, the determinization does not cause the agent to lose the ability to
choose that action. Not all determinizations have this guarantee, for instance
selecting the most likely outcome for each action does not. For a determinization
to have this property, it must be optimistic, which we define as follows.

Definition (Optimistic model). Given a model Dm = 〈Sm,A, fm, rm〉, a model

D̂m = 〈Sm,A, f̂m, rm〉 is optimistic with respect to Dm if and only if, given a
policy π:

q̂m,π(s, a) ≥ qm,π(s, a), ∀s ∈ Sm, a ∈ A.

That is, an optimistic model is one that overestimates the value of actions.
We can now prove that Theorem 2 holds if D̂m is an optimistic model with

respect to Dm, and show how to construct one.

24

Proof. Let gm(s, a, s′) = rs′ + γv∗m(s′), where rs′ is the expected value of Rs′ ∼
r(s, a, s′, ·), be the component of the value of a state-action pair due to state s′.
Equation 2 can be rewritten as:

q∗m(s, a) =
∑
s′∈S′

fm(s, a, s′)gm(s, a, s′), s ∈ S, a ∈ A.

Given a state s ∈ Sm and an action a ∈ A, let S ′m = {ŝ ∈ Sm | fm(s, a, ŝ) > 0}
be the set of states in which the system may transition after the execution of a
in s. Given a stochastic transition function fm, an optimistic determinization
f̂m can be computed by choosing an outcome s′s,a ∈ S ′m for each s ∈ Sm and
a ∈ A which provides a return higher than what it would be under fm, that is
which satisfies:

gm(s, a, s′s,a) ≥ q∗m(s, a), s ∈ Sm, a ∈ A.

Such a state s′s,a always exists: since the function q is an average of the functions
g weighted by the transition probability, at least one of them has to be greater
than or equal to their average. The most optimistic model is the one in which

s∗s,a = argmaxs′ gm(s, a, s′) ∀s ∈ Sm, a ∈ A

is chosen. The deterministic model can then be constructed by setting f̂m(s, a, s′s,a) =
1 for the chosen s′s,a for each state-action pair. For such a model,

q̂∗m(s, a) = g(s, a, s′s,a) ≥ q∗m(s, a), s ∈ Sm, a ∈ A. (7)

Let t̂(s) = v̂∗m(s)− v∗m(s) + t(s) be the threshold function for D̂m. It is positive
definite since v̂∗m(s) ≥ v∗m(s) (which follows directly from Equation 7).

It follows that:

q̂∗m(s, a) ≥ q∗m(s, a) (8)

≥ v∗m(s)− t(s) (9)

= t(s)− t̂(s) + v̂∗m(s)− t(s) (10)

= v̂∗m(s)− t̂(s) s ∈ Sm, a ∈ A. (11)

where, line 8 is Equation 7, line 9 is true by hypothesis, and line 10 has been
obtained by substituting v∗(s) using the definition of t̂(s).

Therefore, no action that would be selected under Dm will be discarded
under D̂m. If a deterministic planner is preferred over a probabilistic one due to
time constraints, as in our experiments, an optimistic determinization provides
the highest chances of being able to learn the optimal policy. Those chances,
in that case, reside solely in the choice of t, the only parameter of the method.
Optimism in the face of uncertainty is a principle which has affected exploration
methods for a long time [4], and it is not surprising that it can be applied to
our framework as well.

25

Compared to Ryan’s architecture [26] (cf. Section 3), the main difference
is in the relaxation of the constraint for which actions are included. In Ryan’s
work, resilience to inaccuracies of the model is not taken into account, and the
planner is used to generate optimal plans only. Therefore, for an action to be
considered, Equation 6 has to be satisfied with t(s) = 0 for each state, which also
means it is satisfied with equality. This stricter constraint imposes on the model
the additional requirement that the optimal actions in the environment have to
be also the optimal actions in the model, or they will be discarded. That is, the
model has to preserve at least the partial ordering between the optimal actions
and the other actions in every state. This does not have to be the case for
DARLING, where the optimal action can have a value lower than other actions,
as long as the difference is less than t. While the relaxation of the equality
constraint is a simple technical difference, the implications on the usability of
the method are considerable. Having to create a model in which the optimality
of actions is maintained leaves little leeway for inaccuracies. For instance, in our
grid-world domain, it is not possible to use plan length as a metric and have the
shortest plan be optimal. A more complex model which includes action costs
would be necessary, along with a more computational expensive metric planner.

Another advantage of the introduction of t, and the consequent inequality,
in Equation 6 is that it makes it easier to create a model that allows the agent to
track a non-stationary environment. If we consider not only the optimal actions
at the moment, but also every action that can be optimal over time, the agent
can track the current optimal action among the ones available, as demonstrated
in the experiments of Section 5.2.1 and 5.2.2. Doing so by selecting optimal
actions would require the model to have all the actions that can in practice be
optimal, be optimal in the model at all times. Such a model would be much
more difficult to design, while, given a model, this property can be achieved by
choosing an appropriate t.

Clearly the choice of t is critical. Without knowing the value function of D,
or how the environment can change over time, it is not possible to guarantee that
an optimal policy can be learned. It is guaranteed, however, that the optimal
policy of Dr can be learned. In practice, the choice of t can be dictated by a
trade-off between planning time and sample complexity for the RL algorithm.

5. Experimental validation

We validate our method experimentally, first discussing the performance of
the plan filtering algorithm, and then of the whole method in different domains.
A software library for planning in ASP, monitoring execution and learning,
which also implements DARLING, is available online1.

1https://github.com/mleonetti/actasp

26

5.1. Plan Filtering

In Section 4.2 we introduced an algorithm for plan filtering which has the
same worst-case asymptotic complexity as exhaustive search, and we claimed
that it performs better in the average case. We substantiate this claim with an
experiment on a grid world of the same type as the one introduced in Section
4, but of size 50 by 50.

The initial state is the same as Figure 1, with the agent starting at 〈10, 0〉.
We added an action changeColor(C), which changes the color of the cell in
which the agent is to C. We also added four colors, doubling the branching
factor of the original grid. These actions do not contribute to reaching the
goal, and therefore provide a way of constructing redundant plans other than
by introducing cycles.

We ran 1000 trials in which the agent picked a goal location randomly,
computed the shortest plans of length l, and generated as many plans as possible
of length up to 1.5l, within a 5-minute deadline. This domain allows for plans
of a length that challenge state-of-the-art planning algorithms, and computing
all suboptimal plans is infeasible for some instances. Therefore, we limited
the plan generation time and compared both algorithms on the set of plans
computed within that limit. The agent filtered those plans 10 times, calculating
the average execution time. Figure 3 shows the results of plan filtering plotted
over the size of the input plan set. The length of the shortest plans varied from

Figure 3: Comparison of computation time for plan filtering, with Fast Filtering versus ex-
haustive search.

1 to 44 actions. The average computation time for our algorithm (denoted as

27

Fast Filtering) was of 2.21s, while it was of 3.93s for the exhaustive search.
Since the exhaustive search is also a complete algorithm (while we only proved
correctness for ours) the set of plans accepted by our algorithm is in general a
superset of the plans accepted by exhaustive search. In all instances the number
of accepted plans was exactly the same, however, showing that our algorithm
did not miss any minimal plan. The average speed-up of almost a factor of
2 proved indispensable in increasing the reactivity of the system, especially in
the experiments with the robot. The difference between a response time of 10
seconds and one of 20 seconds often determines whether a person would walk
away from the robot or not.

5.2. Learning and Execution

We carried out three experiments, in order to demonstrate different char-
acteristics of DARLING. We compare three agents across all experiments, for
each domain D and model Dm: an agent that makes decisions by planning on
Dm only, an agent that makes decisions by reinforcement learning on D, and
DARLING that uses Dm to compute a partial policy, and limits its exploration
to Dr. We refer to the first agent as the P agent, to the second as the RL agent,
and to the third as the PRL agent.

The first domain is the grid world introduced in Section 4, where we show
how our agent limits the exploration with respect to the RL agent that cannot
benefit from the knowledge in the initial model, and this also allows it to track
the environment as it changes, thanks to a more directed exploration.

The second experiment was carried out in a 3D simulated environment,
where a mobile robot navigates between different locations, under changing en-
vironmental conditions. Here we show how DARLING adapts to a more realistic
environment, which proves too challenging for the RL agent. The last exper-
iment was performed on a real mobile autonomous robot, executing different
service tasks in our department for two weeks. We show how the PRL agent
could complete tasks where the P agent fails and improves its performance over
time.

For all our experiments we used Sarsa(λ) [31] as the learning algorithm for
both the RL and the PRL agents, exploring with an ε-greedy strategy [31],
and estimating the value function with the recently introduced True Online
TD(λ) [28]. We always used λ = 0.9 and γ = 1, since all tasks are episodic.
The P and PRL agents do planning with answer set programming over the
same model, and for the PRL agent we always set µ = 1.5 as the parameter for
the threshold on plan length. The P agent always executes one of the shortest
plans, chosen at random. The P agent can take advantage of more than one
plan, since the ASP reasoner can return all the shortest plans. Choosing one
plan randomly grants the agent a certain robustness that is not achievable with
planning algorithms that can only return a single plan. Nonetheless, the P agent
does not adapt over time.

28

5.2.1. Grid World

The first experiment was performed on the grid world of Figure 1. The state
space is S = {〈x, y, d〉 |x, y ∈ [0, 19] ∧ d ∈ {−1, 0, 1}}, where x and y are the
coordinates of the agent in the grid, and d is the state of the knowledge (called
the belief) of the agent about the door. When d = −1 the door is known to be
closed, if d = 1 it is known to be open, and if d = 0 it is unknown.

The actions are deterministic and always succeed, except for the action that
goes through the door, which fails with the probability of the door being closed,
defined for episode e as:

pd(e) =

{
1− e

E−1 if 0 ≤ e < E

0 otherwise

where e is the episode number and E is the number of episodes during which
the environment is non-stationary.

The reward is also deterministic, therefore we can denote r(s, a, s′, g) = 1 as
r(s, a, s′) = g. For this experiment it is defined as follows:

r(s, a, s′) =

−4, if s′ ∈ S1

−2.65, if s′ ∈ S2

−1, if s′ ∈ S3.

where S1 is the set of states in Figure 1 corresponding to the squares in dark
orange, S2 corresponds to the region in light orange and S3 to the region in white.
The reward was designed with two goals in mind: demonstrating resilience to
details ignored in the model (action costs), and adaptivity to a continuously
changing environment. The paths along the wall have a lower reward, so that
the shortest path in the model is not the optimal one in practice. Furthermore,
the reward is such that the value of going north in the initial state equals the
value of going west at episode e = 1

3E. After that point, the optimal policy
switches to moving north, and we can verify how the agents adapt.

The system is always initialized in a state where the condition of the door
is unknown. The agents can know the true state of the door only when at the
location next to it. While this problem can be modeled as a Partially Observable
MDP (POMDP) [15], here we consider as the state space the belief state of such
a POMDP, which is an MDP. If unknown, the ASP model of the P and PRL
agents optimistically assumes the door to be open, otherwise these agents would
not even plan to try to go through it.

Knowledge Representation. The state space is represented differently at the
planning and at the learning level. The ASP model for planning has two fluents
pos and obst to represent the position of the agent and the presence of obstacles
respectively (cf. the Appendix). The knowledge representation for learning
is a tile-coding function approximator composed of two groups of tilings (cf.
Section 2.1), at resolutions 5 and 2 respectively on the x and y variables and
resolution 1 for both groups on the d variable. The two groups have 16 an 4

29

tilings respectively. This allows the agent to generalize at different levels, over
positions that are 5 and 2 cells apart, with a precision of 5/16 ≈ 0.31 for the first
tiling and 2/4 = 0.5 for the second one. The number of tilings have been chosen
to be powers of two, and guarantee a precision of at least 0.5. The total number
of possible states of the agent’s knowledge is 20 · 20 · 3 = 1200. Therefore, the
memory requirement of the function approximator (the total number of tiles)
should be not more than that. We reduced the actual memory requirement to
512 tiles through hashing, which proved adequate to learn the task. The total
memory used by the approximator in this experiment is, consequently, about
half what would be necessary in tabular form.

Agents. In addition to the P, PRL, and RL agents already described, in this
experiment we also introduce a number of agents which we denote as Pmem-n,
where n ∈ {1, 10, 50, 200, 500} is the memory length of the corresponding agent.
The agent Pmem-n remembers the past n door observations, and estimates the
probability of the door being closed given this data. At the beginning of each
episode, it initializes the ASP model with the most likely door state. Until
the n observations have been collected the door defaults to open, as with the
other planning agents. This agent is a very simple instantiation of an agent
which estimates transition probabilities, and adapts the ASP model towards
the most likely outcome. The grid-world experiment was designed to have a
single probabilistic transition, therefore the probability of the door being closed
is the only parameter such an agent has to estimate.

Parameter Selection. We ran 500 trials of 800 episodes each, with a non-station-
ary phase of E = 600 episodes. The parameter αt = 0.2 is the learning step size
for an agent that learns the value function exactly, and was selected to be as high
as possible while achieving a stable behavior. To obtain the step-size parameters
for the function approximator we normalized it with respect to the number of
tilings α = αt/T , with T = 20. We set ε = 0.2 for the exploration strategy for
both the PRL and RL agents, in addition to the parameters specified for every
domain. The value of ε has been selected to be as low as possible, while allowing
the agent to track the environment. These values have been chosen with a quick
manual tuning, and are by no means optimal. Nonetheless, they are shared by
all the reinforcement learning agents, allowing for a fair comparison.

Results. The performance of all agents is shown in Figure 4, with a sliding win-
dow of 5 episodes. The figure also shows the 95% confidence intervals, plotted
every 5 episodes to avoid cluttering the image.

The reward of the P agent follows the probability of the door exactly, forming
a linear interpolation between the minimum and maximum reward. The plan it
executes, that is to go straight north and replan if the door is closed, becomes
optimal after episode E/3 = 200. The Pmem-1 agent finds the door closed on
the first episode, and it updates the model accordingly, planning to go west
around the wall for the rest of the trial. This behavior may seem limited by the
short memory, but we show in Figure 5 that no amount of memory can improve

30

Figure 4: Comparison of the cumulative reward per episode of the agents while learning.

the behavior of the Pmem-n agents in this experiment while the environment is
non-stationary. In general, such an agent is subject to blocking some path in the
model and never being able to go back to it again, even if it becomes optimal.
It is interesting to note that even if the Pmem-500 agent had experienced a
better policy, when its memory is full it drops to a worse one. The reason
for this behavior is that the decisions of the Pmem-n agents is based on the
probability of the transitions and not the value of the actions, differently from
the reinforcement learning agents.

Since the Pmem-n agents do not, in general, carry any guaranteed benefit
over P agents, but require to estimate the transition probabilities of actions, we
discarded them for the experiments on the more complex and realistic environ-
ments.

The PRL agent quickly learns the initial optimal policy, and then tracks the
environment switching to a new policy at around episode 400. The RL agent,
on the other hand, learns the initial optimal policy but is unable to discover the
new one in the time allocated for this experiment. We also granted 200 episodes
past the non-stationery phase to see if that allowed the RL agent to catch up,
but it is still not enough. Its performance increases continuously, but too slowly
with respect to the rate of change of the environment. Furthermore, the reward
accumulated in the first 20 episodes is enormously lower than the other agents’,
and in particular of the PRL agent. The PRL agent achieves an average reward

31

Figure 5: Comparison of the Pmem agent family.

over the first 5 episodes of about −100, while the RL agent of about −2250. The
RL agent has to explore the whole grid in order to find the optimal path to the
goal, and this behavior accounts for the initial low performance. We visualize
the difference in the exploration of the RL and PRL agents in Figure 6.

The RL agent covered the whole grid, while the PRL agent only explored a
portion of the grid shown in Figure 6b.

Figure 6c and 6d show the final behavior of the agents, in which the RL agent
is still executing the initial optimal policy. This initial policy returns the action
south for all the states between 〈10, 1〉 and 〈10, 8〉 in which the optimal action
becomes north after episode 200. Therefore, in order to learn the new policy
the ε-greedy strategy should go repeatedly against the optimal policy for 8 times
in a row, which is very unlikely. The action south, instead, is removed for the
PRL agent by the planner, so that when it randomly moves north once, it is
forced to proceed towards the goal (cf. Figure 2). This goal-directed exploration
allows the PRL agent to discover the new policy even if exploring with a simple
strategy such as ε-greedy.

The cumulative reward achieved by the RL agent is considerably lower than
that of the other agents, even in the first 200 episodes when its behavior is
optimal. The unrestricted exploration can take this agent rather far from the
optimal policy, both on the left and on the right-hand side of the grid. We
have seen how a sensibly restricted exploration can instead obtain a better
performance. Note that the path the PRL agent executed most often is not
optimal (even though it is very close). This discrepancy is due to the function

32

(a) RL agent’s initial exploration. (b) PRL agent’s initial exploration.

(c) RL agent’s final policy. (d) PRL agent’s final policy.

Figure 6: States traversed during the first and last 50 episodes by the RL and PRL agents.

approximator employed, which cannot model the value function near the wall
correctly. Since it generalizes over positions that are 2 and 5 squares apart, the
value of the cells on one side and on the other side of the wall are continuously
mixed. Every time an exploratory action on the left-hand side of the wall is
taken, the low reward experienced drags down the estimate on the other side
of the wall too. On the other hand, executing the optimal policy brings up the
value not only of the states on the right-hand side of the wall, but on both sides.
As an effect, when the agent explores on the left-hand side, the path along the
wall looks best, even though it has the most negative reward. We will see that
this is only a consequence of the function approximator, and does not happen
if the agent learns with a tabular representation.

The restriction of the MDP provided by our method has three desirable
outcomes, as demonstrated in this experiment: it prevents the agent from ex-
ploring the whole environment, it makes the exploration goal-directed, allowing
the agent to discover new optimal policies focusing on the paths computed by
the planner, and it reduces the gap between the value of the optimal policy and
the reward actually obtained even while exploring.

Knowledge Representations for Learning. We analyzed further the role of the
representation on learning on both the full and the reduced MDP. We ran the
same experiment with four more representations for both the RL and PRL
agents, whose parameters are shown in Table 1. The first representation is
tabular and is therefore the baseline in terms of quality of the solution learned.
The second representation is the one employed by the agents discussed above.
The other three representations have been chosen for their incrementally smaller
memory size, which allows us to assess the effect of representational power over
the performance of the agents.

33

Layers Tilings Resolution Memory
1 1 1 1 1200
2 2 16/4 5/2 512
3 1 16 5 512
4 1 8 5 256
5 1 8 10 64

Table 1: Parameters of the function approximators used for the reinforcement learning agents.

(a) The RL agents. (b) The PRL agents.

Figure 7: Reward accumulated by the learning agents with different knowledge representations

The resulting cumulative rewards are shown in Figure 7. The PRL agent
is generally not affected by the degradation in the quality of the knowledge
representation. The agent PRL-1, which learns with the tabular representation,
is naturally slower than the ones using function approximation. The quality of
the final solution, however, does not seem to be affected by approximation. The
same holds for the RL agent, although in this case there is a significant difference
in the initial convergence speed (Figure 7a), which degrades with the accuracy
of the approximator, to the point that the RL agent is not able to learn the task
with the smallest representation (number 5). The PRL agent, instead, can learn
the task with this representation as well. Hence, the reduced MDP in which
the PRL agent learns, besides the advantages about the exploration discussed
above, also eases the requirements on the accuracy of the value function, proving
simpler to learn.

Lastly, the policies learned by the RL and PRL agents with tabular value
function representation are shown in Figure 8, for comparison with what is
learned with function approximation (Figure 6). This figure confirms that the
slightly suboptimal policy learned by the PRL agent with function approxima-
tion is indeed due to its knowledge representation, since the agent that uses a
tabular value function can learn the optimal policy. All these heat maps (includ-
ing the ones above) also show the typical exploration pattern of ε-greedy, which
accounts for the difference between the performance of the learning agents and
of the P agent in Figure 4.

34

(a) The RL agent. (b) The PRL agent.

Figure 8: States traversed during the last 50 episodes by the RL and PRL agent with tabular
representation.

The need to explore the whole domain is what often limits the feasibility
of RL with no prior knowledge in practice. We will further demonstrate this
claim with the experiments on a robotic domain. The grid-world domain was
designed to illustrate the main characteristics of DARLING, and established
them with clean results. With the next sections we apply our method to real-
world scenarios.

5.2.2. Robot Simulation

With this domain we move towards more realistic scenarios: a mobile robot
navigating through a building. We used the simulator Gazebo2, and the Robot
Operating System (ROS)3. The code that controls the robot in this simulation
is the same that controls our real robot (cf. Section 5.2.3). With this simulation
we demonstrate how the robot can adapt, through reinforcement learning, to
specific changes in the environment, while being able to carry out the tasks
efficiently thanks to planning.

Figure 9 shows the simulation environment, with the robot in its initial loca-
tion, next to b1. The task is to go to the room marked with the red circle. The
robot has the actions approachDoor(D), openDoor(D), and goThroughDoor(D)

for each door in the map. The action approachDoor can be executed only from
the locations where the door is directly accessible, that is without having to go
through another door. For instance, in the room where the robot starts it can
only access the doors marked with b1, b2, and b3. The action goThroughDoor

can only be executed when in front of the door, and if the door is open. The
action openDoor can be executed only when both the robot is in front of the
door, and the door is closed. The immediate reward we defined for this domain
is:

r(s, a, s′) = −t(s, a, s′)

where t(s, a, s′) is the time in seconds it took to execute action a from s to s′.
Therefore, the robot attempts to minimize the total time it takes to reach the
target location.

2http://gazebosim.org/
3http://www.ros.org/

35

Figure 9: The simulation environment.

Knowledge Representation. The state space S = {〈x, y,d〉}, where, as in the
grid-world domain, x and y are the coordinates of the agents in the map, and
d is a vector with the knowledge about all the doors. State observations are
mapped by a specific software module called the logical navigator into ASP
fluents, implementing the function o. At the ASP level, the state is represented
with the following fluents, where I is the time step: at(L,I) which means that
the robot is at location L, open(D,I), which means that the door D is open,
beside(D,I), which means that the robot is beside door D, and facing(D,I),
which means the the robot is facing door D. The logical navigator looks for the
current coordinates in the map, and determines the location the robot is in, and
whether it is near a door or facing it. After each episode the robot goes back
to the initial location and resets its knowledge base, ensuring that the initial
state of its knowledge is always the same. Since the actions of the robot only
allow it to move from door to door, the initial state has to be in front of a door.
In particular, the initial state is: at(roomB,0), beside(b1,0), facing(b1,0),
open(b1,0). Starting in front of a door, the robot can also sense whether it is
open or closed.

The actions available to the robot are very high-level, and therefore the
changes they make in the environment can be sufficiently described (in partic-
ular, with the Markov property) at the same symbolic level as the model. For
this reason, on the robot, we did not use function approximation, but the agent
learns a tabular value function on the same state space as that of the planner.

Dealing with Doors. The robot does not have any physical means to open doors.
The action openDoor shows a window on the robot’s screen with a request

36

for a nearby person to kindly open the door for it. While this action works
in the real world (although quite unpredictably), there is no one to open the
doors for the robot in the simulator. After 30 seconds the action fails, and
the robot can replan. The P agent, which executes one of the shortest plans,
when replanning in front of a door, always chooses to try to open that door
again. This means that in this situation the robot is stuck in front of a closed
door indefinitely, even if there are other ways to reach the target location. This
discrepancy between the model and the reality is emblematic of the difficulty of
representing a certain domain in any given formalism. For every formalism there
is a trade-off between expressive power and computational complexity, which the
designer must evaluate. More complex formalisms, such as probabilistic ones,
may represent this domain more accurately, but at the cost of more expensive
planning.

The RL and PRL agents, on the other hand, for each attempt at opening
a door receive a reward of −30 (the time they sit in front of the door waiting
for someone to open it). Eventually the expected reward for opening the door
becomes lower than that of taking some other action, and they give up on the
door. This adaptive behavior allows both agents to avoid being stuck in this
domain, where doors cannot be opened.

Non-Stationarity. In this experiment we had the environment change over time
in a controlled way. We designed two types of changes: (1) the current optimal
path becomes worse, and (2) the value of the current path does not change,
but a better solution opens somewhere else. While the agents can react to the
first type of change, since they can perceive it, they can adapt to the second
type only through continuously exploring the environment. The agents start in
the situation depicted in Figure 9, with the doors a1, b1, and b2 open. After
200 episodes a1 closes and a2 opens, starting phase 2. After 200 more episodes
phase 3 begins, during which a2 remains open, a1 remains closed, while both a3

and b3 are opened. We chose the duration of the phases to be long enough to be
sure that the learning algorithm has converged. The parameters of the learning
algorithm are α = 0.2, and ε = 0.2. The episode times out after 5 minutes, and
the agents go back to the initial position and start over.

Results. The P agent always chooses with uniform probability one of the two
shortest plans: (1) goThroughDoor(b1), approachDoor(a1), openDoor(a1),
goThroughDoor(a1); (2) goThroughDoor(b1), approachDoor(a2), openDoor(a2),
goThroughDoor(a2). The door a1 is actually open, but the robot does not know
it in the initial state, and assumes it to be closed. In the first phase, the first
plan succeeds in about 93 seconds, while the second plan has the robot wait
for door a2 to open until the timeout. In the second and third phases the first
behavior fails, while the second one succeeds in about 64 seconds. Figure 10
shows the results of this experiment, where we plotted the task completion time
(lower is better) over the episode number. For the P agent, we only plotted
the average time to complete the better of the two plans in each phase. The
average performance of the agent would be G = 0.5t+ 0.5T where t is the time

37

to complete the optimal plan (shown in the figure) and T is the timeout. The
average performance could be made arbitrarily worse by increasing the timeout.

For the RL agent, we ran a 48-hour simulation in real time, which corre-
sponds to about 2.5 as much simulated time, during which the RL agent could
not complete phase 1. The RL agent in any of the corridors can approach more
than 20 doors, which makes a thorough exploration infeasible.

We ran 10 simulations with the PRL agent (each one taking about 14 hours
in real time), and the results are shown in Figure 10, averaged over a sliding
window of 10 episodes. At the very beginning the PRL agent is exploring the

Figure 10: Time per episode in the simulation environment.

part of the environment determined by the partial policy, until it converges to
the optimal solution of traversing first b2 and then a1. After episode 200 the
doors in the target room change status, and the time the agent takes to complete
the task increases. Shortly after, the agent converges to a better solution, and
stays there until the beginning of phase three. After episode 400 a better path
becomes available going through b3 and a3. The adaptation of the agent to this
change, however, is less sudden than to the previous one, since the change has to
be discovered through exploration, and is not apparent in the reward. The slope
towards the new optimal solution in this phase is therefore less steep, because in
the different trials the agent discovered the new solution after different amounts
of time. In all the trials, however, by the end of the last phase it had converged
to the new optimal path. We verified that the agent discovered the optimal
solution for each phase in every trial. The difference between the performance
of the agent and the expected reward of the optimal solution is only due to

38

exploration.

5.2.3. Service Robot

The last experiment was carried out on a BWIBot, one of the robots built at
UT Austin for the Building-Wide Intelligence project, shown if Figure 11. The
robot executed three tasks for about two weeks, for between 3 and 5 hours a
day: one navigation task, and two Human-Robot Interaction (HRI) tasks. The
navigation task is the real-word counterpart of the simulated experiment. The
building modeled in the simulator is, indeed, the same where the real robot
experiment also took place. In this case, however, we were not able to control
the presence of people to help the robot, and the state of all doors.

Figure 11: UT Austin BWIBots.

The real robot has additional actions, with respect to the simulated robot,
which allow it to interact with people. The action searchRoom(P,R) can only
be executed when the robot is in room R, and asks (at the same time on the
screen, and through speech) whether person P is in room R. The robot does not
do speech recognition, however, so the person has to answer by going to the
robot’s screen and clicking on a button. The robot waits for 60 seconds, after
which it assumes the person is not there. The action askperson(P1,P2) can
be executed when the robot is in the same room as person P1, and asks to P1

(again at the same time on the screen and through speech) if they know where
person P2 is. The person can answer giving the robot P2’s location, saying that
they do not know, or saying that P2 is not in the building.

The state is represented with the additional fluents inroom(P,R,I), meaning
that person P is in room R, and inbuilding(P,I), meaning that person P is in

39

(a) The P agent. (b) The PRL agent.

Figure 12: Completion time for the navigation task.

the building. The robot knows 7 people in the group, 4 of whom are faculty or
staff, and have offices, and 3 of whom are students. For each faculty or staff
member the robot knows what office is assigned to them. Faculty and staff
members are assumed to be either in their office or in the lab, while students
can only be in the lab.

The learning parameters for this experiment are α = 0.2 and ε = 0.2. If the
robot does not achieve the goal in 15 minutes, the episode terminates, the robot
goes back to the initial location, and resets its knowledge base. In addition, to
guarantee the responsiveness of the robot, planning is always interrupted after
10 seconds, which may limit the set of plans used to induce the MDP for which
the PRL agent learns a policy. The PRL agent has been evaluated for 10 days,
while the P agent for 3 days, which is sufficient to assess its behavior because
it does not adapt. The RL agent has not been tested on this domain, since it
proved impractical in the simulated experiment, and the real tasks have an even
larger state space and higher branching factor.

Figure 12 shows the completion times for the navigation task. The robot
always started from the door corresponding to b1, but in the real experiment
it began from the corridor instead of inside the room. From there, it can plan
to approach either a1 or a2. If a2 is open, going through it is the shortest
path, and takes about 1 minute, while going through a1 takes between 1.5 and
2 minutes from the initial location.

The P agent (12a) chooses one of the two available plans at random at
the beginning, and when the agent chooses a door that is closed, and nobody
passing by opens it, the robot keeps replanning to open that door until the time
out. The PRL agent (12b), on the other hand, never reached the time out.
Furthermore, for the first 36 episodes it found door a2 open often enough to go
there first, while after that it switched to the other door. Since in this task the
initial choice is only between two actions, it is easy to visualize the estimated
long-term cost from the initial state, which is on what the choice of the first
door to approach is based. Figure 13 shows the action value function of the PRL
agent, for the two initial actions approachDoor(a1) and approachDoor(a2).

40

Figure 13: Action values of the PRL agent in the initial state, during the navigation task.

The value of both actions starts at an optimistic estimate of 1 second, and
for the first about 20 episodes the robot took both actions in turn adjusting
their estimate. In an episode when an action is not taken, its value remains
constant. From episode 19 going to door a2 looks like the better option, and
the robot keeps taking that action, with the estimate approaching the total time.
At episode 27 the robot must have found the door closed, since the estimate
went suddenly up, reaching the worse action. The actions have been executed
in turns again for a few episodes, until a2 proved still to be the better option.
The estimate value of action a2 started rising again at episode 37, when the
robot began to find a2 closed. The estimate of going to a2 first reached the
estimate for going directly to a1, and the robot switched to the new better
action, adapting to the environment.

The HRI tasks have the goal of finding two different people, to whom we will
refer as personA, and personB. The robot has to either confirm the location of
a person, or confirm that the person is not in the building. The robot can do so
by either having searchroom succeed, or by being told through an askperson

action. The results of the HRI experiment when the robot was looking for
personA are shown in Figure 14. The time the robot takes to complete this
task depends on a number of factors, all very difficult to model: which rooms
the robot manages to enter more often, whether or not the people that the robot
knows about can be found and asked about personA, and how often they are
willing to answer the robot. We noticed that the students, for instance, were
eager to answer the robot at the beginning, but soon started to ignore it. Since

41

(a) The P agent. (b) The PRL agent.

Figure 14: Completion time for HRI task with personA.

the robot started in front of the lab, when it entered the lab, found a person,
and that person answered, it could quickly complete the task. Otherwise, it
had to go to different offices to search for personA, or people who might know
about him. During most of the episodes, personA was usually sitting in his
office. After about 40 episodes, the robot running the PRL agent converged
to the solution that goes directly to personA’s office, and searches in there.
This policy completes the task quite reliably in about 2 minutes. Even after
having converged to the optimal policy, the robot chooses a random action with
probability ε = 0.2, which accounts for the episodes in which the robot took a
longer time to complete the task. As we have shown on the simulated domain,
keeping the exploration active is necessary to track changes in the environment.

During the trials where the robot ran the P agent, it reached the timeout
twice, and on average it takes a little less than 10 minutes to complete the task.
The P agent always enters the lab and tries to ask the people in there, never
adapting to whether or not they are willing to answer. After that, it replans its
way towards other offices, and eventually finds personA in his office.

The results of the second HRI task, in which the robot looks for personB,
are shown in Figure 15. In this case, personB was often not in the office, or with
his door closed, so when the P agent plans to go directly to his office, it ends
up waiting in front of the door until the episode times out. The PRL agent,
on the other hand, learned an interesting behavior, to which it converged by
episode 60: it goes directly to personA’s office (since he was reliably there!),
and asks about personB. This behavior allows the PRL agent to complete the
task in the same amount of time as the previous task. In this task, however,
differently from the previous one, the P agent fails much more often, and is
unable to complete the task in the majority of the episodes.

42

(a) The P agent. (b) The PRL agent.

Figure 15: Completion time for HRI task with personB.

6. Conclusions

Automated planning and reinforcement learning are two different paradigms
for solving complex decision making problems. Both paradigms face challenges
in high-level decision making on large, unpredictable, and non-stationary do-
mains, especially in robotics. Their characteristics, however, admit an integra-
tion that can benefit from their stronger features, and overcome some of their
respective weaknesses. We proposed a method, DARLING, to combine auto-
mated planning and reinforcement learning, which extends the applicability of
both paradigms to scenarios where each one separately would not be sufficient.

We analyzed the performance of DARLING in domains in which a discretiza-
tion of the state space appeared natural, which allowed us to use ASP. In high-
dimensional continuous domains it may not be possible to find such a discretiza-
tion, and a similar argument holds for the discretization of continuous actions.
This is a limitation we recognize in the approach as presented in this article,
and significant adjustments may be necessary to DARLING, and the planning
formalism employed, to deal with such domains. The total number of plans com-
puted by the ASP solver in general increases exponentially in the length of the
shortest plan. As a consequence, in the real-world domains the number of plans
was often limited by planning time, rather than plan length. The deadline gives
the agent no control on which plans are included and which ones are discarded.
A possible interesting development is the use of a set of diverse plans [29] (also in
ASP [9]) to focus the search, and on which to expand during execution. Lastly,
we showed in Section 4.4 how the metric used for the threshold does not have
to be related with the actual cost of actions. However, if plan length, which is
the metric we used, does not permit to define a satisfactory threshold function,
the designer will have to define an ad-hoc one, and to employ a planner that
minimizes it. Sampling-based planning, which in recent years has scaled up to
the most challenging domains, could be employed in that case.

Within the range of applicability of DARLING, we showed how, on the plan-
ning side, the ability to learn lightens the reliance on the accuracy of the model,

43

and allows the agent to adapt to the environment. On the reinforcement learn-
ing side, the rationality of the automated reasoner, and the previous knowledge
in the model, allow the agent to exclude certain actions without the need to
try them. We showed in different experiments how this integration modifies the
region of the environment explored by the agent, how it allows the agent to
adapt to a non-stationary environment, and how it enabled a service robot to
carry out different tasks over an extended period of time, where planning would
often fail and reinforcement learning could not complete any of the tasks.

Acknowledgements

This work has taken place in the Learning Agents Research Group (LARG)
at UT Austin. LARG research is supported in part by NSF (CNS-1330072, CNS-
1305287), ONR (21C184-01), and AFOSR (FA9550-14-1-0087). Peter Stone
serves on the Board of Directors of Cogitai, Inc. The terms of this arrange-
ment have been reviewed and approved by the University of Texas at Austin in
accordance with its policy on objectivity in research.

Appendix: Modeling the Grid World in ASP

In this section we illustrate how to represent a model in ASP for our Grid
World domain. The state of the domain is given by the position of the agent,
and the position of the obstacles (since the door can change). We represent the
states through the fluents pos(X,Y,I), meaning that at time step I the position
of the agent is 〈X,Y 〉 and obst(X,Y,D,I) meaning that there is an obstacle at
〈X,Y 〉 in the direction D (one of the four cardinal directions). The description
of any domain in ASP is composed of a set of laws of different types: dynamic
laws, static laws, constraints, and choice rules.

Dynamic laws describe the effect of actions, in our example :

pos(X,Y+1,I+1) :- north(I), pos(X,Y,I), I=0..n-1.

encodes the effect of the action north, which increments the Y coordinate of
the position fluent. Constraints can be used to describe pre-conditions as in:

:- north(I), pos(X,Y,I), obst(X,Y,no,I), I=0..n.

which means: it is not possible that the agent executes action north, it is in
position 〈X,Y 〉, and there is an obstacle north of 〈X,Y 〉, at time step I. We
use the symbols no, s, e, and w to indicate the four cardinal directions, while n
is a variable that is required by the machinery, and will be incremented by the
solver to increase the maximum time step.

A choice rule:

1{north(I),east(I),west(I),south(I)}1 :- I=0..n-1.

allows the reasoner to generate exactly one action per time step.
The way the fluents unaffected by the executed action change is specified by

default dynamic laws such as:

44

pos(X,Y,I+1) :- pos(X,Y,I), not -pos(X,Y,I+1), I=0..n-1.

which is an inertial law for the fluent pos, that is, it states that pos(X,Y,I)

carries over to the next time step unless proven otherwise. All defaults are
expressed through negation as failure. For this law to work as expected we also
need to define how -pos can be true. When the agent is at some position, it is
not anywhere else:

#const max_x=19.

#const max_y=19.

-pos(X,Y,I) :- pos(Z,K,I), Z != X, X=0..max_x, Y=0..max_y.

-pos(X,Y,I) :- pos(Z,K,I), K != Y, X=0..max_x, Y=0..max_y.

Lastly, we define the obstacles, both for the border of the grid:

direction(no). direction(s).

direction(e). direction(w).

obst(X,0,s,I) :- X=0..max_x, I=0..n.

obst(0,Y,w,I) :- Y=0..max_y, I=0..n.

obst(X,max_y,no,I) :- X=0..max_x, I=0..n.

obst(max_x,Y,e,I) :- Y=0..max_y, I=0..n.

and inside the grid:

obst(9,Y,e,I) :- Y=1..9, I=0..n.

obst(X,9,no,I) :- X=11..18, I=0..n.

Obstacle fluents are symmetric, if there is an obstacle in 〈X,Y 〉 going north,
there is also an obstacle in 〈X,Y + 1〉 going south and so on:

obst(X,Y+1,s,I) :- obst(X,Y,no,I).

obst(X,Y-1,no,I) :- obst(X,Y,s,I).

obst(X+1,Y,w,I) :- obst(X,Y,e,I).

obst(X-1,Y,e,I) :- obst(X,Y,w,I).

As for the fluent pos, obst is inertial, that is it stays unmodified unless
explicitly changed:

obst(X,Y,Z,I+1) :- obst(X,Y,Z,I), not -obst(X,Y,Z,I+1), I=0..n-1.

By default, there is no obstacle between two states:

-obst(X,Y,Z,I) :- not obst(X,Y,Z,I), direction(Z), ...

I=0..n, X=0..max_x, Y=0..max_y.

As shown by this example, thanks to defaults and inertial laws, the domain can
be compactly represented in ASP.

45

[1] Pieter Abbeel, Morgan Quigley, and Andrew Ng. Using inaccurate models
in reinforcement learning. In Proceedings of the 23rd International Confer-
ence on Machine Learning, volume 148, pages 1–8. ACM, 2006.

[2] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchi-
cal reinforcement learning. Discrete Event Dynamic Systems, 13(1):41–77,
2003.

[3] George EP Box. Robustness in the strategy of scientific model building.
Robustness in statistics, 1:201–236, 1979.

[4] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial
time algorithm for near-optimal reinforcement learning. The Journal of
Machine Learning Research, 3(2):213–231, 2003.

[5] Michael Brenner and Bernhard Nebel. Continual planning and acting in
dynamic multiagent environments. Autonomous Agents and Multi-Agent
Systems, 19(3):297–331, 2009.

[6] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson.
Planning under time constraints in stochastic domains. Artificial Intelli-
gence, 76(1):35–74, 1995.

[7] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement
learning. Machine learning, 43(1):7–52, 2001.

[8] Kyriakos Efthymiadis and Daniel Kudenko. Using plan-based reward shap-
ing to learn strategies in starcraft: Broodwar. In Proceedings of IEEE Con-
ference on Computational Intelligence in Games (CIG), pages 1–8, 2013.

[9] Thomas Eiter, Esra Erdem, Halit Erdogan, and Michael Fink. Finding
similar/diverse solutions in answer set programming. Theory and Practice
of Logic Programming, 13:303–359, 5 2013.

[10] Alan Fern, Roni Khardon, and Prasad Tadepalli. The first learning track of
the international planning competition. Machine Learning, 84(1):81–107,
2011.

[11] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski,
Torsten Schaub, and Marius Schneider. Potassco: The potsdam answer set
solving collection. Ai Communications, 24(2):107–124, 2011.

[12] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In ICLP/SLP, volume 88, pages 1070–1080, 1988.

[13] Malik Ghallab, Dana Nau, and Paolo Traverso. The actor’s view of au-
tomated planning and acting: A position paper. Artificial Intelligence,
208:1–17, 2014.

46

[14] Marek Grzes and Daniel Kudenko. Plan-based reward shaping for reinforce-
ment learning. In Proceedings of the 4th International IEEE Conference on
Intelligent Systems (IS), volume 2, pages 10–22, 2008.

[15] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artificial
Intelligence, 101(1):99–134, 1998.

[16] Matteo Leonetti, Luca Iocchi, and Fabio Patrizi. Automatic generation and
learning of finite-state controllers. In Artificial Intelligence: Methodology,
Systems, and Applications (AIMSA), pages 135–144. Springer, 2012.

[17] Vladimir Lifschitz. Answer set planning. In Logic Programming and Non-
monotonic Reasoning, pages 373–374. Springer, 1999.

[18] Vladimir Lifschitz. What is answer set programming? In Proceedings of
the 23rd National Conference on Artificial Intelligence, pages 1594–1597.
AAAI Press, 2008.

[19] Timothy Mann and Yoonsuck Choe. Scaling up reinforcement learning
through targeted exploration. In AAAI Conference on Artificial Intelli-
gence, pages 435–440, 2011.

[20] Allen Newell and Herbert A Simon. GPS, a program that simulates human
thought. Defense Technical Information Center, 1961.

[21] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under
reward transformations: Theory and application to reward shaping. In
ICML, volume 99, pages 278–287, 1999.

[22] Nils J. Nilsson. Teleo-reactive programs for agent control. Journal of Ar-
tificial Intelligence Research, 1:139–158, 1994.

[23] R. Parr and S. Russell. Reinforcement learning with hierarchies of ma-
chines. Advances in neural information processing systems, pages 1043–
1049, 1998.

[24] O. Pettersson. Execution monitoring in robotics: A survey. Robotics and
Autonomous Systems, 53(2):73–88, 2005.

[25] Jervis Pinto and Alan Fern. Learning partial policies to speedup mdp tree
search. In Proceedings of the 30th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 672–681, 2014.

[26] Malcolm RK Ryan. Using abstract models of behaviours to automatically
generate reinforcement learning hierarchies. In Proceedings of the Interna-
tional Conference of Machine Learning (ICML), volume 2, pages 522–529,
2002.

47

[27] Malcolm RK Ryan and Mark D Pendrith. Rl-tops: An architecture for
modularity and re-use in reinforcement learning. In Proceedings of the In-
ternational Conference of Machine Learning (ICML), pages 481–487, 1998.

[28] Harm V. Seijen and Rich Sutton. True online td(lambda). In Proceedings
of the 31st International Conference on Machine Learning (ICML), pages
692–700, 2014.

[29] Biplav Srivastava, Tuan Anh Nguyen, Alfonso Gerevini, Subbarao Kamb-
hampati, Minh Binh Do, and Ivan Serina. Domain independent approaches
for finding diverse plans. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI), pages 2016–2022, 2007.

[30] Richard S. Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Proceedings of
the Seventh International Conference on Machine Learning, pages 216–224,
1990.

[31] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[32] Martijn van Otterlo. A survey of reinforcement learning in relational
domains. Technical Report TR-CTIT-05-31, Enschede, the Netherlands,
2005.

48

