Targeted Opponent Modeling of Memory-Bounded Agents

Doran Chakraborty
dochakra@microsoft.com
Microsoft
Santa Clara, CA 94089

ABSTRACT

In a repeated game, a memory-bounded agent selects its
next action by basing its policy on a fixed window of past
L plays. Traditionally, approaches that attempt to model
memory-bounded agents, do so by modeling them based on
the past L joint actions. Since the number of possible L sized
joint actions grows exponentially with L, these approaches
are restricted to modeling agents with a small L. This paper
explores an alternative, more efficient mechanism for mod-
eling memory-bounded agents based on high-level features
derived from the past L plays. Called Targeted Opponent
Modeler against Memory-Bounded Agents, or TOMMBA, our
approach successfully models memory-bounded agents, in a
sample efficient manner, given a priori knowledge of a fea-
ture set that includes the correct features. TOMMBA is fully
implemented, with successful empirical results in a couple of
challenging surveillance based tasks. !

Categories and Subject Descriptors
1.2 [Artificial Intelligence]: Learning

General Terms
Algorithms, Theory

Keywords

Modeling, Learning, Memory-bounded agents

1. INTRODUCTION

We are often faced with the task of developing learning
algorithms for an autonomous agent that is interacting re-
peatedly with one or more agents. These other agent(s) may
have unknown behavior, and may themselves be adapting.
Ideally, one would like to develop algorithms that are guar-
anteed to perform optimally (yield maximal long-term util-
ity) against any possible set of agents. However the prospect
of doing so is limited by a variant of the No Free Lunch theo-
rem [11]: any algorithm that tries to maximally exploit some
class of agents can itself be exploited by some other class.

However, if one is willing to restrict the class of possible
agent behaviors to some finite set of behaviors, it is possible
to develop learning algorithms that are guaranteed to per-
form well against agents drawn from this set. This paper
concerns with modeling one such class of agent behaviors,

!This research was performed when the first author was still
a graduate student at The University of Texas, Austin.

Noa Agmon
noasag@gmail.com
Bar-llan University
Ramat Gan, 52900 Israel

Peter Stone
pstone@cs.utexas.edu

University of Texas at

Austin
TX 78712

namely memory-bounded agents: agents which adapt to the
learning agent’s behavior, by basing their strategy on a fixed
memory size, or history of past plays.

Of late, the problem of modeling memory-bounded agents
has received significant attention in AI [9, 3, 5, 2]. How-
ever, to the best of our knowledge, most of these efforts
model memory-bounded agents using joint actions from the
bounded history as features for the learning algorithm. As
the number of such possible joint action histories grows ex-
ponentially with the memory size, most of these algorithms
do not scale to modeling agents with long memories. Our
main objective is to address this shortcoming.

To this end, this paper introduces a novel, theoretically
grounded algorithm called Targeted Opponent M odeler for
Memory-Bounded Agents (TOMMBA). TOMMBA assumes
prior knowledge of a set of possible more abstract features,
called the target set of features, some of which are assumed
to characterize the unknown strategy of the memory-bounded
agent. Note, if this feature set only includes the respective
joint actions from the other agent’s memory size as features,
ToMMBA behaves similarly to past approaches. However if
it includes features which are more informative, TOMMBA is
significantly more sample efficient.

The central challenges for TOMMBA are 1) how to effi-
ciently determine the shortest most descriptive model of the
memory-bounded agent based on features from this target
set; and 2) how to plan for an action selection strategy that
achieves it in the most sample efficient manner. We call the
associated learning problem the targeted modeling problem.
The problem is motivated from a related learning problem
studied in the Game Theory community, where the goal is to
achieve targeted optimality by identifying the correct agent
behavior from a set of predefined agent behaviors which in-
clude the true agent behavior [9, 5]. ToMMBA successfully
addresses both of the above problems by leveraging insights
from the RMAX algorithm [4].

The remainder of the paper is organized as follows. Sec-
tion 2 presents the relevant background necessary to under-
stand TOMMBA, Section 3 specifies TOMMBA and all its theo-
retical properties, Sections 4 and 5 presents empirical results
from a couple of challenging surveillance based tasks high-
lighting ToMMBA’s effectiveness, and Section 6 concludes.

2. PRELIMINARIES

This section reviews the concepts necessary for fully un-
derstanding the technical details of TOMMBA. Our setting
of interest is 2 player repeated matrix games: the simplest,
and most well studied of all game theoretic frameworks. A

two player matriz game is defined as follows. Assume with-
out loss of generality that the set of actions available to both
the agents are the same, and denoted by A. Then the pay-
off received by agent i during each step of interaction is
determined by a utility function over the agents’ joint ac-
tion, ui : A2 — R. A repeated game is a setting in which
the two agents play the matrix game repeatedly. The return
accrued by each agent in a repeated game is the discounted
sum of rewards given by > 72 ~'ry, where « is the discount
factor [10], and 7, is the payoff obtained at time ¢. In our
case, one of the agents follows TOMMBA, while the other is
a memory-bounded agent.

A memory-bounded agent characterized by its memory
size L chooses its next action as a function of the most
recent L joint actions. Denote the memory-bounded agent
by o, and its strategy by m,. As the number of possible L
joint actions grows exponentially in L, it can be inconvenient
to model 7, based on the most recent L joint actions. This
leads us to the idea of modeling 7, by using prior knowledge
of more informative features that are derived from the past
L plays. We formally define a feature for m, as a discrete
valued statistic computed from the past L steps of play on
which T, depends. Following is an illustrative example.

Consider an agent o that plays rock-paper-scissors by play-
ing each action randomly unless the other agent ¢ has chosen
the same action on the last 5 consecutive plays, in which
case, it plays the best response to that action. In this case
To can be represented as a function of the past 5 actions
played. But it can also be represented more efficiently with
just two features, namely the last action played by i, and
how many consecutive times (up to 5) that action has been
played.

We assume that we have prior knowledge of the set of
possible features that m, might depend on. Denote this set
of features as F. We can always model 7, using the entire
F. However doing so may involve learning over a much
larger feature space than is actually necessary. Our goal is
to model 7, with the shortest most descriptive model, and
in the process be sample efficient by avoiding unnecessary
exploration. We call the associated learning problem the
targeted modeling problem, and F the target feature set.

We begin by proposing a solution to a simplified version
of the targeted modeling problem that relies on the sequen-
tial structure assumption: the sequential structure targeted
modeling problem. Here the features in F are arranged in
a sequence such that all of the K relevant features that de-
termine 7, precede the irrelevant ones in the sequence, with
K being unknown. We call our variation of TOMMBA for
this problem TOMMBA(S), with the S standing for the se-
quential structure assumption. Later we build on it to solve
the general problem where F does not satisfy the sequential
structure assumption, and present TOMMBA.

We now proceed to present the algorithmic details behind
ToMMBA(S) and TOMMBA.

3. TARGETED MODELING OF MEMORY-
BOUNDED AGENTS

We begin by introducing the crucial concept of a model for
mo: akey data structure for both TOMMBA(S) and TOMMBA.
Since TOMMBA(S) is unaware of the exact K that charac-
terizes o, it maintains a model of 7, for each set of features
that can be incrementally generated by choosing the first

k features from F, k € [1 : n], where n is the number of
features in F. Thus it maintains n models in total. Let the
model that is based on the first k features be 7. Formally,
Tk {f1y.o, i} — AA.

Internally each 7, maintains a value My (by) which is the
maximum likelihood distribution of o’s play, for every pos-
sible value by of the first k features from F. Whenever the
first k features assume a value by in online play, we say a
visit to bk has occurred. 7x(by) is then defined as,

i (by) = {]V[k(bk) f)nc.e ?isit(bk) =m, (1)
1 if visit(bx) < m;

where visit(bk) is the number of times by has been vis-
ited, and m is a system level parameter. In other words, once
a by is visited m times, we consider the estimate My (by)
reliable, and freeze it. If a reliable estimate of My (bxk) is un-
available, then 7rx (byk) is set to L (meaning “I do not know”).

The concept of model for ToMMBA is akin to that of
TOMMBA(S), except that TOMMBA maintains a model for
all possible combinations of features from F.

Having introduced the concept of a model, we next present
the algorithmic outline for the two variations of TOMMBA (Al-
gorithm 1). The inputs to Algorithm 1 are the feature set F,
and the planning horizon T'. Algorithm 1 operates by plan-
ning for T time steps at a time. At the beginning of every
such planning phase, it computes a best estimate model for
To, denoted by 7pest, based on its past interactions with o. It
then uses 7pes: to compute a T-step action selection strategy
which it follows for the next T" steps. The two places in Algo-
rithm 1 where TOMMBA(S) and TommBA differ are (i) how
they compute 7ipest, and (ii) how they compute the T-step
action selection strategy. We first show how TOMMBA(S)
addresses these two sub-problems.

3.1 TOMMBA(S)

The objective of the model selection step for TOMMBA(S)
is to output the best predictive model for 7, from all of the n
models maintained. We call a model to be of size k if it uses
the first k features from F. Since we need a best model, we
need a way of comparing predictions of models of different
sizes. To that end we use a metric Ag: the difference in
prediction between consecutive models 7x and 7g41.

Let bx be a vector of the values of the first k features
from F. Let Aug(bxk) be the set of all k£ + 1 length vectors
which have by as the value of their first k features, and a
possible value of the k + 1’th feature as its £ + 1’th value.
Then formally,

Ay =

= max
by, by 1€Aug(by))

[[Mk(bx) — Myt (brta)|lo (2)

such that visit(bkx+1) = m. Note that visit(bky1) = m
implies visit(bx) = m since byxi1 subsumes bg. If there
exists no such by1, then by default A, = —1.

Initially 71 is assigned to 7pest. Recall that the first K
features from F completely determine 7,, K being unknown.
Then, all models of size > K can learn 7, accurately (as they
include all of the relevant features), with the bigger models
requiring more samples to do so. On the other hand, models
of size < K cannot fully represent m,. Leveraging from
that observation, TOMMBA(S) chooses 7pes: by comparing
models of increasing size, to determine the shortest most
descriptive model such that the next larger model ceases to
be more predictive of 7,.

Algorithm 1: ToMMBA(S) AND TOMMBA
input: 7, T
repeat
Determine 7rpes: (best predictive model of 7,);
Compute T-step action selection strategy using 7pes:;
T 1
repeat
Execute the action selection strategy;
T—T+1;
until 7 > T
Update all models based on past 1" joint actions;
until forever

Assume at some planning phase, fpes¢ = 7. In the next
planning phase, TOMMBA(S) compares 7, with #x41. For
that it computes Ax using Equation 2. If Ay = —1, then it
has no way of knowing which is more predictive as it has not
seen enough samples. It then sticks with 7. If Ax # —1,
it computes a value € that is the tightest estimate always
satisfying the following condition:

Pr[Ar > €] < d aslong as k > K (3)

where 0 is a very small probability value and a system level
parameter. By tightest estimate, we mean an estimate as
close to A as possible. We defer the details of how € is
computed until Section 3.3.

What Equation 3 says is if 741 is as predictive as 7y
(which is always true for k > K), then the error probability
of Ay exceeding the computed €, is at most §. Thus if Ag
exceeds €, it updates Tpes: tO Tr4+1; otherwise it retains 7
as 7pest- LThus once converged to the correct model 7k, the
error probability with which TOMMBA(S) ever switches to a
bigger model is upper-bounded by 0.

The T-step action selection strategy for TOMMBA(S) is
based on the popular model based RL algorithm RMAX [4].
In short, RMAX periodically computes a T-step action selec-
tion strategy (or, simply policy) that ensures quick explo-
ration of those states that have not been visited many times
(in our case m times), while ensuring a near optimal return
if an accurate model has already been learned. To encour-
age exploration of states that have not been visited m times
(where the model returns 1), RMAX assigns an optimistic
exploratory bonus of Rl’ﬁ‘”” to visiting that state, Rmaz be-
ing the maximum rewara achievable. For other states, it
performs the conventional DP backup.

Now, assume at some planning phase, Tpest = 7k, which
means that data from past plays suggest that 7 is as pre-
dictive as 741, with a high likelihood. To be more certain
about this hypothesis, TOMMBA(S) strives to explore the en-
tire feature space pertaining to the feature set {f1,..., fr+1},
m times. In order to do so, it follows RMAX assuming the
state space is determined by the feature space { f1,..., fe+1},
while the transition and the reward functions by 7x4+1. Two
things can happen from there onwards. Either, (1) be-
cause of this exhaustive exploration of the feature space
{f1,--+, fr+1}, it infers that 7x41 is indeed more predictive
than 7k, and switches to k41 as fpest. Or, (2) the above
does not happen, and RMAX converges to exploiting based
on 7g4+1. The hope is that by following this incremental style
of exploration, it will incrementally switch through different
models, until it converges to Tx. From that point onwards

it never switches to a bigger model, with a high likelihood
of 1 —§ (as noted above).

However, there remains a chance that TOMMBA(S) may
get stuck at a local optimum by converging to a smaller
sized model because of insufficient exploration. This gener-
ally happens when the exploration is restricted to only a part
of the state space, where only some amongst the relevant fea-
tures are truly active. We consider this to be an acceptable
tradeoff, especially in time critical missions, where the goal
is to quickly compute a reasonable model of the other agent,
and act based on it.

3.2 TOMMBA

The most important difference between the targeted mod-
eling problem, and its sequential counterpart is that the
former does not have access to a feature set F with the
relevant features preceding the irrelevant ones. So unlike
ToOMMBA(S), TOMMBA does not have access to an ordered
model space which it can incrementally search for the correct
model.

TOMMBA maintains a model for every combination of fea-
tures from F, and it sorts them in a sequence such that the
ones which are based on features computed from smaller
memory sizes precede the ones based on features computed
from bigger memory sizes. It then incrementally searches
this model space to find the first model from this sequence
that determines m,. The induced search bias prefers models
which are quicker to learn. Algorithm 2 presents the com-
parator function that is used to compare two models # and
7 while performing the sort. The function MemSize(#, x)
first arranges the features that comprise 7 in increasing or-
der of memory sizes, and then returns the memory size of
the z’th feature from this ordering.

The model selection for TOMMBA happens in a similar
fashion to that of TOMMBA(S) except for a few subtle dif-
ferences. Initially 7rpes: is assigned to the model appear-
ing first in the sorted sequence. Assume at some planning
phase, Tpest = 7. Then in the next planning phase, ToOMMBA
compares 7 with all possible models that include all features
from 7 plus one additional feature, to check whether there
is any incremental model that is more predictive than 7. If
it finds one, it rejects 7 and switches to the next model in
its model sequence. The comparison between every pair of
such models is performed in the same manner as presented
in Equation 3. That is if 7 is as predictive as all of these
incremental models (which is always true when & comprises
all of the K relevant features), stick to 7, else switch to the
next model in the model sequence.

As an illustrative example consider the following case. As-
sume F= {fio0, f20, f30, fa0}, where the subscripts denote
the respective memory sizes for the corresponding features.
Assume Trpest = 710,30 in some planning phase, where 19,30
is a model from features fip and fsp. Then in the next
planning phase, TOMMBA compares 710,30 With 710,20,30 and
m10,30,40- 1f the comparison from Equation 3 fails for any of
above two comparisons (say for #10,30,40), it switches to the
model 720,30 as the next candidate model for 7rpes: (Since
20,30 is the next model in the sorted sequence of models af-
ter #10,30). Note, it does not directly switch to 710,30,40 be-
cause all we can infer is that 710,30,40 is more predictive than
10,30. But 710,30,40 can still be sub-optimal, and there may
be other more concise models following 710,30 and preced-
ing 10,30,40 in the sorted model sequence, which are better

Algorithm 2: MoODEL COMPARATOR FOR TOMMBA

input: 7,7
81 «— size of 7; so « size of T;
while s; > 0 and s3 > 0 do
if MemSize(w,s1) < MemSize(T, s2) then
| return 7 < 7
if MemSize(w,s1) > MemSize(7, s2) then
| return T < 7
S1 «— 81 — 1;82 «— s2 — 1;
if s; == 0 then
| return 7 < T;
else
| return 7 > T;

candidates for m,. We can only find them by incrementally
searching through the model sequence.

The T-step action selection strategy for TOMMBA is also
very similar to that of TOMMBA (S) except for one significant
difference. Assume at some planning phase, 7pest = 7. For
that phase, TOMMBA follows RMAX assuming the state space
is a combination of all individual feature spaces comprised of
all features from 7 plus an additional feature. In the above
example, this boils down to the state space being a com-
bination of feature spaces {fio, f20, fs30} and {fio, f30, f10}.
Thus, for all states which have an unvisited entry (an in-
stantiation of the feature set { fio, f20, f30} or { fi0, f30, f10},
which have not been visited m times), it provides the explo-
ration bonus of Rfﬁ‘”. For all other states, it assumes that
the transition and reward functions are determined by 7. In
spirit similar to TOMMBA(S), it then strives to explore all
states pertaining to this augmented state space, m times, for
evidence suggesting that 7 is insufficient for modeling 7,. If
it cannot find one, RMAX converges to exploit based on 7.

Like TOMMBA(S), TOMMBA too may get stuck at a local
optimum by converging to a sub-optimal model because of
insufficient exploration. As suggested earlier, we consider
this to be an acceptable tradeoff. Next, we highlight some
of its theoretical properties.

3.3 Theoretical Underpinnings

First we address how the ¢ from Equation 3 is computed.
The derivation will focus on the non-trivial case case when
Ay # —1. The derivation follows from a simple application
of Hoeffding bound [6].

In the computation of A, FIND-MODEL chooses a spe-
cific bk, a bxy1 € Aug(byk) and an action j for which the
models My and My differ maximally on that particular
time step. Let My (b, j) be the probability value assigned
to action j by Mi(bk). Without loss of generality, assume
My (bk,j) > Mi41(bkt1,7). Then Ag > € implies satisfy-
ing My(bx,j) — Mg+1(bxt1,5) > €.

Note that both the estimates My (b, j) and My4+1(bx+1,7)
are based on m samples. Then from Hoeffding bound, it fol-
lows that:

Pr{| My, (b, j) — Myt (bicy,)| < €] > 1 — 2exp(—me)

By bounding 2 exp(—me}) by m, we get,

gAY 0

There are Ni41|A| possible ways Ay can be computed.
Bounding the total error from all such computations using

€ = il

Union bound, we get Pr[Ar > ex] < §. That concludes the
derivation for €.

Next we present a key theoretical result pertaining to the
quality of model selection.

Lemma 3.1. The false negative rate of the model selec-
tion component for TOMMBA(S) and TOMMBA are 0 and nd
respectively.

PRrOOF. Consider first the case of TOMMBA(S). All we
need to compute is the probability with which TOMMBA(S)
rejects T, once it has rejected all smaller sized models.
Assume the worst case that this occurs only after all of the
possible bk’s, and bk 1’s gets visited m times. From Equa-
tion 3, TOMMBA(S) can only reject 7 x with error probability
at most 9. Suppose it does not reject 7x. Then it should not
reject i in future as well, since the estimates of Ax and
€k can never change then onwards (since all of the possible
bk’s, and bky1’s have already been visited m times, and
there can be no future updates to models 7x and #x41).
Thus the error probability of rejecting 7 is strictly upper-
bounded by §. The proof for TOMMBA follows in a similar
fashion. The error probability in this case is nd, because we
have to sum up the error from all model comparisons per-
formed on the correct model, which is upper-bounded by n
(size of F). O

That completes all of our algorithmic specifications. We
now move on to present our empirical analyses tailored to-
wards solving a couple of surveillance based tasks.

4. THE SURVEILLANCE GAME

To empirically validate our algorithms, our first domain
of interest is a challenging new domain The Surveillance
Game. The game is motivated from the multi-robot patrol
problem, a well studied problem in the theoretical robotics
community, e.g. [1, 8]. In the general version of the problem,
a team of robots is required to repeatedly visit some target
area (e.g., perimeter, 2-D environment) in order to maxi-
mize its chance of detecting certain adversaries which are
trying to penetrate through the patrol path. Although the
problem has received considerable attention in recent years,
past research tends to seek fixed patrol paths that do not
adapt to adversary behavior. We begin by introducing the
specifics of the domain.

4.1 Domain Specifics

In the Surveillance Game, the perimeter is divided into P
discrete segments (see Fig. 1). There are k robots monitor-
ing the perimeter, denoted by R;,0 < ¢ < k. Each robot is
in charge of a fraction of the perimeter of size P/k, with one-
segment overlaps at the boundaries. Thus Ry is in charge of
perimeter segments 0 to [P/k], R is in charge of perimeter
segments [P/k] to 2[P/k], and so forth. There are k intrud-
ers denoted by I;,0 < i < k, each attempting to penetrate
through one of the boundary segments (henceforth known
as the penetration segments). Specifically, Iy tries to pen-
etrate through segment 0, I; through segment [P/k], and
soon. SoV0 < i< k—1, R; and R;+1 share the job of
preventing I;+1 from penetrating through penetration seg-
ment [(¢+1)P/k], while Rx_1 and Ry jointly try to prevent
Iy from penetrating through penetration segment 0. Apart
from preventing the intruders from penetrating, the robots
also have an additional task of periodically patrolling their

penctration segment_ for 10

short lap short lap

long lap long Iap

24 2 74
penetration segment penetration segment
/ for I1
7/

for 2 N RI

=~ -

Figure 1: The Surveillance Game.

part of the perimeter, with the idea that they have some
other duty to perform along the way, which is not mission
critical, but that is best done frequently (such as cleaning).

We assume the presence of a centralized controller that
has full visibility, and controls the robots. We decide the
action selection on every time step for the controller, not
the intruders. The robots can move to an adjacent segment
in 1 time step. Each penetration takes 7 > 0 time steps to
complete.

To keep the problem tractable, we assume that there are
just two actions available to each robot: whenever a robot
reaches a penetration segment, it can either take a short lap,
or a long lap. A short lap is when the robot leaves the pen-
etration segment, and comes back just in time to catch a
penetration (if one happened), i.e., it moves 7/2 segments
away and then returns so that it’s guaranteed to catch any
intruder that started to penetrate while it was gone. A long
lap is when the robot traverses its complete range of seg-
ments, e.g., Ro traversing from penetration segment 0 to
penetration segment [P/k], or vice versa. If a robot reaches
a penetration segment while a penetration is taking place,
we say that the intruder has been caught, with no penalty
incurred. On the other hand each successful penetration
leads to a penalty of —Rpen. The robots get a reward of
Rro, and £Z Ry for every short and long lap respectively,
with Rro < Rur < Rpen. 0 < € < 1is a system level decay
constant, and Z is the number of actions elapsed since that
robot last took a long lap. This reward structure incentivizes
the robots to take long laps periodically.

All of our empirical results focus on the following instance
of this domain: P = 36,k = 3,7 = 8 Rro = 5, Rur =
100, Rpen, = 500, and £ = 0.9 (Fig. 1). Henceforth, we
always allude to this domain instance.

Whether an intruder penetrates on a particular time step
depends on its own estimate of the probability with which it
might get caught, a.k.a. probability of penetration detection
(ppd) [1]. The intruders know everything about the domain
except the reward structure which is internal to the robots.
They also know that the robots can only take short, or long
laps. Assume that Ip is memory-bounded with a fixed mem-
ory size L: keeps track of the ratio of the number of times
Ry and R» took short laps in their past L actions. Denote
these values as xr,, and xr, respectively. To Iy, g, is thus
an estimate of Ro’s strategy. Assume a scenario in which Ro
and Rs are at segments 3 and 33 respectively, and are mov-
ing away from segment 0 (Fig. 1). If Iy decides to penetrate
at that time step, the probability with which it believes it is
going to get caught by either Ro or Ry is zr, + (1 —ZRr,) TR, -

Case | ppds derived from memory sizes n
I ATl {10, 20, 30} All 4
2 All {5, 15, 25} All 4

Table 1: Different cases of intrusion considered.

Thus the corresponding ppd value for Iy at that time step
based on memory size L is zr, + (1 — ZRr,)ZR,-

We consider the following type of memory-bounded in-
truders. Each intruder maintains a set of ppd values based
on different memory sizes. These multiple models reflect the
intruder’s uncertainty in choosing a memory size that best
characterizes the ppd value. They also maintain a threshold
value denoted by 0 < 1 < 1. Then each intruder decides to
intrude with probability 1 — n, if the minimum ppd value
amongst all its maintained ppd values is < 7, otherwise not.

Due to space constraints, we only present a representa-
tive sample of our experiments, varying each of the rele-
vant parameters, as summarized in Table 1. For example in
Case 1, all the intruders use ppd values from memory sizes
{10, 20, 30}, and have n = 0.4.

4.2 Results

The most natural comparison point for TOMMBA is against
current approaches from the literature that tackle memory-
bounded agents [9, 5]. However none of them scale to large
memory sizes: in the above 2 cases, these approaches would
need to explore all joint histories of size 30 to compute the
optimal policy, and thus would be prohibitively sample in-
efficient. Instead, we compare different variations of our al-
gorithms to flesh out their key properties. Also we compare
with a popular function approximation based RL technique.

Our first set of results concern Case 1 from Table 1. The
different algorithms considered for the controller are:

1. ToMMBA(S) with feature set F1 comprised of ppds de-
rived from memory sizes {10, 20, 30, 40, 50}. Note, F1 satis-
fies the sequential structure assumption for Case 1;

2. ToMMBA with feature set F2 comprised of ppds derived
from memory sizes {10, 15, 20, 25, 30,40}. Note, F2 does not
satisfy the sequential structure assumption for Case 1, but
includes all of the relevant features;

3. Q-learning with CMACS based function approximation
(denoted as CMACS-Q) [10] that uses F2 as the feature
space; We use two layers of tilings and let CMACS learn a
decent function approximation based on features from Fs;
4. KNOWN-MODEL (denoted as K-M) that assumes full prior
knowledge of the relevant features;

Since the ppd values are continuous values € [0, 1], we
discretize the feature space for them into 5 intervals of length
0.2. K-M runs RmMAX with m = 35. In all our experiments,
we seed all variations of TOMMBA with values: 6 = 0.2,
m = 35 and £ = 0.9. All of our results have been averaged
over 40 runs.

Under normal circumstances, the 7-step action selection
policy on any planning iteration is just the stationary RMAX
policy for the underlying MDP executed for T' steps (com-
puted using Value Iteration [10]). However, since we are in
a non-Markovian setting, we cannot solve for a stationary
RMAX policy. We counteract this by making a necessary ad-
justment to our action selection component. Our planning
iteration lasts for just one time step. However on each time
step, we compute a 10-step episodic RMAX policy and ex-

T T
=2 TOMMBA '——
-t TOMMBA(S) ---x---
CMACS-Q -+~

KM &

-5000 - .

-10000 [o q

Cumulative Reward (* 103)

¥

X

X

X

kY

X
X
X

*

15000 L

o 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Total actions

Figure 2: Cumulative rewards in Case 1.

ecute the action prescribed by it for the current time step.
This involves creating a lookahead tree of size 10 and choos-
ing the best action for the current time step based on it.

Our objective is to check how well the different variations
of TomMBA and TOMMBA(S) compete with K-M. Note that
the final policy computed by K-M is the best policy that we
can expect to compute given the different parameter values
we use for our algorithms. Hence with a slight abuse of
terminology, we refer to the final policy computed by K-M
as the optimal policy - the one we strive to achieve.

As expected, all TOMMBA variants do much worse than K-
M. TOMMBA(S) dominates TOMMBA, while TOMMBA dom-
inates CMACS-Q. Fig. 2 shows the convergence to the op-
timal policy for the different algorithms in Case 1 (con-
vergence is indicated when the upward slope becomes con-
stant). TOMMBA(S) benefits from having prior knowledge of
a feature set (F1) where the features satisfy the sequential
structure assumption. Fig. 3 shows all the different mod-
els that TOMMBA(S) rejects in Case 1, before it converges
to the correct model comprised of ppd values from mem-
ory sizes {10,20,30}. This explains why it performs the
best. TOMMBA is better suited for arbitrary feature sets.
Fig. 4 shows all the different models that TOMMBA rejects
in Case 1, before it converges to the correct model. The
difference between the converged values (both model and
policy) between every pair of algorithms, for all the cases,
is statistically significant (by T-test, p-value < 0.05). As is
obvious from Fig. 2, CMACS-Q performs the worst. Even
after 50000 actions, it still behaves sub-optimally.

Also very importantly, both ToMMBA and the two ver-
sions of TOMMBA(S), once converged to the correct model,
never switch to a bigger model. This stability provides em-
pirical evidence for Lemma 3.1.

Our second set of results concern Case 2 from Table 1.
In this case, we employ TOMMBA, and TOMMBA(S) with a
feature set F= {10, 20, 30,40,50}. Note, the feature set does
not have the relevant features for the intruders strategies’.
Again, K-M assumes full prior knowledge of the relevant
features. Fig. 5 shows the convergence to the final policy
for the different algorithms. Note, neither of our algorithms
converges to the optimal policy, the one K-M converges to
(different slopes). However, each learns a decent sub-optimal
model of the intruders to ensure a competitive return. This
result shows that even if F does not contain the relevant
features, but has reasonably good ones, our algorithms can
still converge to competitive final policies.

We now move on to present results from our second do-
main of interest.

10,20,30,40 |- 4

10,20,30

10,20

Models based on memory sizes

L
) 500 101 000 2500 3000

00 1500 2
Total actions

Figure 3: Model Selection of ToMMBA(S) in Case 1.
The Ip plot shows the model selection for intruder
Iy, and so forth.

15, 20, 30

R
ek
X

e
xed
P

10,15,25,25
15,20,25
10,2025

10,1525
15,25
1025

25
10, 15,20
15,20

Models based on memory sizes

o 5000 10000 15000 20000 25000 30000
Total actions

Figure 4: Model Selection of TommBA in Case 1.

5. THE TICKET CHECKING DOMAIN

The Ticket Checking domain is inspired by a real life
problem of catching passengers who do not buy a ticket (or
evaders) while traveling on trains. For example in urban
transit systems such as the Los Angeles Metro Rail system,
passengers are legally required to buy a ticket before board-
ing a train, but there are no checkpoints prior to boarding
which physically deny evaders from boarding a train. In-
stead patrol officers are deployed in the transit system to
check for evaders. A key research question is how to intel-
ligently schedule these patrol officers so that the chances of
catching evaders is maximized. Currently the state-of-the-
art approach to solving the problem is a stationary Stack-
elberg policy which assumes that the evaders a-priori know
the strategy of the patrol officers and best respond to it [7].
In this section we deal with possibly more realistic evaders
who decide their current step action (whether to buy a ticket
or not) based on their observations from the past few days.

5.1 Domain Specifics

Our implementation of the domain is similar to the one
specified in [7]. The transit system is characterized by the
number of stations, denoted by Stations, and the number of
time units denoted by Time. The train system consists of a
single line, that is all the trains travel in the same direction
visiting the same set of stations at specific time points. For
simplicity, we assume that the time taken by a train to travel
between any two stations is always the same. So we can
model time as slotted, focusing only on time points at which
some train arrives at a particular station.

For example consider the transit system from Fig. 6. There

ST ——
Koae 2

2000 [X

-4000

-6000

-8000

Cumulative Reward (* 103)

-10000

o 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Total actions

Figure 5: Cumulative rewards in Case 2.

Time Units

I I I I I I I I
Stations Al > 3 A4
A OO (YD
BOR
b SN
oo e
X X py
c fan

Figure 6: A sample transit system.

are three 3 stations in the system, denoted by A, B and C.
Each train starts at station A, visits station B at 1 time
point and finally terminates at station C at another time
point. We identify each train by its unique train path. So
the 6 possible trains in this transit system are A1— B2—C3,
A2—-B3-C4, A3—B4—-C5, A4—B5—C6, Ab— B6—-C7
and A6 — B7 — C8.

We assume that the total number of passengers P using
the system and their distribution across the different routes
remain the same every day. Each passenger takes his pre-
ferred route regardless of the patrol strategy. Also each pas-
senger boards a train from a specific station and leaves at
a specific station in a train path. We further assume that
each passenger takes at least one time unit to exit the sta-
tion once he leaves the train. This is to allow some time for
a patrol officer to check for his ticket given there exists one
to perform that check. So the 3 possible passenger routes for
the train A1—B2—C3 are A1—-B2—C2, A1—-B2—-C3-C4
and B2 — C3 — C4. In our example from Fig. 6, there are
3 X 6 = 18 such passenger routes.

There are a fixed number N of deployable patrol officers,
each of whom can be scheduled for at most £ time units.
There are two types of atomic patrol actions: on-train in-
spection where an officer checks for tickets while traveling on
a train from one station to the other, or in-station inspection
where an officer checks for tickets of off-boarding passengers
at a particular station, each lasting for 1 time unit. Thus a
feasible strategy for any patrol officer can be any sequence
of such atomic actions of size £. For example if £ = 3, a pos-
sible strategy for a patrol officer for the transit system from
Fig. 6 can be A1 — B2 — (C3— C4, which comprises 2 on-train
inspections, namely A1 — B2 and B2 — (3, and 1 in-station
inspection C'3 — C'4. Similarly C'3 — C'4— C5— C6 is another

such possible patrol strategy which comprises 3 in-station
inspections, namely C3 — C4, C4 — C5 and C5 — C6.

However, just because an evader travels in a train with a
patrol officer does not mean that he is going to get caught.
It might be that the evader is standing at the very end of the
train and there may be not be enough time for the patrol of-
ficer to reach all the way to the end of the train to catch him.
So given a patrol strategy P and a rider route Z, the inspec-
tion probability of an evader on that route for that patrol
strategy is given by min{1, Z f}. f€1]0,1] is a system

ecPNZ

defined fixed probability with which an evader gets caught
for an atomic patrol action on his route. We justify the in-
spection probability as follows. We assume that for on-train
inspections, the riders are inspected one at a time starting
from the start of the train. The fraction of the train that
is inspected depends on the duration of the on-train inspec-
tions. Given sufficient number of such on-train inspections,
the patrol works his way through the entire train and even-
tually catches an evader at the end of the train. Similarly
for in-station inspections, a patrol officer can be assigned to
any random compartment of the train and can only inspect
a fraction f of the total volume of passengers. That explains
why the inspection probability adds up. The total inspec-
tion probability is the sum of the inspection probabilities
from all patrol strategies, each pertaining to a patrol officer.

We assume that each passenger is risk neutral. That is
each passenger makes a binary decision of buying a ticket,
or not, based on his expected cost from performing the two
actions on that particular day. For example, let the price of
a ticket be Fare and the fine for fare evasion when caught
be Fine. Also assume that the passenger’s internal estimate
of the probability of getting detected on that particular day
(explained in the next paragraph) for not buying a ticket
be p. Then a risk neutral passenger prefers not to buy a
ticket as long as the following inequality holds, p X Fine <
Fare,or,p < ?%2

Now all that remains to be explained is how each passen-
ger estimates his probability of getting detected on a partic-
ular day for not buying a ticket, or pod. We assume that
the passengers get to see the patrol officers’ strategies on
each day 2. Each passenger looks back at a fixed number
L of past samples of patrol officers’ strategies (from last L
days) to compute an estimate of the latter. For example let
the passenger route be A1 — B2 — B3 and L = 3. Assume
that in the past 3 days, there has been only one Al — B2
on-train inspection and no B2 — B3 in-station inspections.
So his estimate is that the A1 — B2 on-train inspection and
the B2 — B3 in-station inspection happens each day with a
probability of é and O respectively. Hence the corresponding
pod estimate is, p = % Xf4+0xf= %f

This concludes our specification of the domain. We next
move on to present our results for this domain.

5.2 Results

Our results are for a specific instance of the domain with
Stations = 3, Time = 8, P= 1000, Fine = 25, Fare = 10,
f = 03, N = 1 (meaning one patrol officer) and £ = 5.
Fig. 6 shows the transit system. The population of 1000
passengers is distributed randomly to each of the 18 possible
routes on each run of our simulation. For each route, we

2 Assuming that the word goes around each day on how the
patrolling was performed on that particular day.

have a mix of passengers who compute their pod estimates
by using L € {2,3,4}. Thus for each passenger route the
fraction of the population that evades is determined by the
values of 3 unknown features, namely the pod estimates of
that route from memory sizes 2, 3 and 4.

Our results focus on using TOMMBA(S) and TomMMBA for
determining the patrol strategy on each day. Akin to the set-
ting in [7], we assume prior knowledge of the total number of
passengers in each route for each simulation run. TOMMBA
(and also TOMMBA(S)) maintains different models for each
different passenger route. Neither of these algorithms have
any prior knowledge of the exact features. However they as-
sume that the features are drawn from a set F which com-
prises pod estimates from values of L € {1,2,3,4,5,6}. A
model for a route is a mapping from a set of pod estimates
computed from different values of L to the fraction of evaders
in the population of that route. Since the pod values are
continuous values € [0, 1], we discretize the feature space for
them into 5 intervals of length 0.2. In all of our experiments,
we seed all variations of TOMMBA with values: = 0.2 and
m = 1000. On each time step, we compute a 2-step episodic
RMAX policy and execute the action prescribed by it for the
current time step. This involves creating a lookahead tree
of size 2 and choosing the best action on the current time
step based on it.

Our first benchmark for comparison is the Known-Model
(or K-M) version which assumes prior knowledge of all of the
relevant features for each passenger route and runs RMAX
with m = 1000. Again with a slight abuse of terminology,
we refer to the final policy computed by K-M as the optimal
policy - the one we strive to achieve. Our second bench-
mark for comparison is a random strategy, called Random,
that randomly allocates a patrol strategy for our patrol of-
ficer from amongst the possible patrol strategies. Finally,
our third benchmark for comparison is the state-of-the-art
Stackelberg solution for the problem from [7], called Stack-
elberg. For our domain, we can easily compute Stackelberg
using a Linear Program.

Fig. 7 shows the cumulative reward plots of all of our al-
gorithms. As expected, both the TOMMBA variants do worse
than K-M. Also as expected the two variants of TOMMBA
dominate Stackelberg and Random. It is interesting to see
that both the TOMMBA variants do equally well. The dif-
ference in the cumulative reward obtained after 5000 simu-
lated days between the two variants of TOMMBA is statis-
tically insignificant by a T-test. However the difference in
the cumulative reward obtained after 5000 simulated days
between TOMMBA and Stackelberg is statistically significant
by a T-test (p-value < 0.05). On average both ToMMBA and
ToMMBA(S) converged to following the optimal policy con-
sistently from day 3500 (indicated by similar upward slopes
in comparison with K-M from day 3500 and onwards).

6. CONCLUSION

This paper introduces TOMMBA, a novel algorithm that
models memory-bounded agents based on informative high-
level features derived from past plays. An interesting avenue
for future work is to enhance the capability of TOMMBA
to model agent strategies based on features which are not
memory-bounded. In this regard, the key challenge would
be identifying the most general class of un-bounded agent
behaviors which is a feasible target for targeted modeling.

Random ——
TOMMBA(S) —x—
21000 - TOMMBA -

KM e o
Stackelberg —-u-- %
'
18000 | o :3«* K
-
e alrs
< g
215000 A
z o
bt R g
° P
3 e
£ 12000 Sl
o« X* m
@ A
> ol
E ok
< 000 | a2
H =1 28
s
S o
>6‘
6000 &

3000 [

0

.
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Days

Figure 7: The cumulative reward plot.

7. REFERENCES

[1] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot
adversarial patrolling: Facing a full-knowledge
opponent. JAIR, 42:887-916, 2011.

[2] Noa Agmon and Peter Stone. Leading ad hoc agents
in joint action settings with multiple teammates. In
AAMAS, June 2012.

[3] Bikramjit Banerjee and Jing Peng. Efficient learning
of multi-step best response. In AAMAS, pages 60-66,
2005.

[4] Ronen I. Brafman and Moshe Tennenholtz. R-max - a
general polynomial time algorithm for near-optimal
reinforcement learning. J. Mach. Learn. Res.,
3:213-231, 2003.

[5] Doran Chakraborty and Peter Stone. Convergence,
Targeted Optimality and Safety in Multiagent
Learning. In ICML, 2010.

[6] Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, pages 13-30, 1963.

[7] Albert Xin Jiang, Zhengyu Yin, Matthew Johnson,
Milind Tambe, Christopher Kiekintveld, Kevin
Leyton-Brown, and Tuomas Sandholm. Towards
optimal patrol strategies for fare inspection in transit
systems. AAAI Spring Symposium Series, 2012.

[8] A. Marino, L. E. Parker, G. Antonelli, F. Caccavale,
and S. Chiaverini. A fault-tolerant modular control
approach to multi-robot perimeter patrol. In ICRA,
2009.

[9] Rob Powers and Yoav Shoham. Learning against
opponents with bounded memory. In IJCAI, pages
817-822, 2005.

[10] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning. MIT Press, 1998.

[11] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. Evolutionary Computation,
IEEE Transactions on, 1(1):67-82, April 1997.

