
Deep Imitation Learning for Parameterized Action Spaces

Matthew Hausknecht
Department of Computer

Science
University of Texas at Austin

mhauskn@cs.utexas.edu

Yilun Chen
Department of Automation

Tsinghua University
cyl12@tsinghua.edu.cn

Peter Stone
Department of Computer

Science
University of Texas at Austin
pstone@cs.utexas.edu

ABSTRACT
Recent results have demonstrated the ability of deep neu-
ral networks to serve as effective controllers (or function
approximators of the value function) for complex sequen-
tial decision-making tasks, including those with raw visual
inputs. However, to the best of our knowledge, such demon-
strations have been limited to tasks either fully discrete or
fully continuous actions. This paper introduces an imitation
learning method to train a deep neural network to mimic a
stochastic policy in a parameterized action space. The net-
work uses a novel dual classification/regression loss mech-
anism to decide which discrete action to select as well as
the continuous parameters to accompany that action. This
method is fully implemented and tested in a subtask of sim-
ulated RoboCup soccer. To the best of our knowledge, the
resulting networks represent the first demonstration of suc-
cessful imitation learning in a task with parameterized con-
tinuous actions.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
Connectionism and neural nets

Keywords
Half Field Offense, RoboCup, Imitation Learning

1. INTRODUCTION
Sequential decision making in continuous action spaces

has historically proven to be a challenge. One existing way
to circumvent the problem of learning in high dimensional
spaces is to mimic the actions of a teacher. Known as learn-
ing from demonstration, imitation learning, or apprentice-
ship learning, this family of methods is typically used on
challenging robotic domains in which learning tabula rasa is
not feasible [4, 5].

Meanwhile, recent results have demonstrated the ability
of deep neural networks to serve as effective controllers (or
function approximators of the value function) for complex
sequential decision-making tasks [18, 15], including those
with raw visual inputs. However, to the best of our knowl-
edge, such demonstrations have been limited to tasks with
either fully discrete or fully continuous actions.

This paper synthesizes these two lines of research by intro-
ducing an imitation learning method to train a deep neural

network to mimic a stochastic policy in a domain with high-
dimensional input and a parameterized continuous action
space. The network uses a novel dual classification/regression
loss mechanism to decide which discrete action to select as
well as the continuous parameters to accompany that action.

This deep imitation learning method is fully implemented
and tested in a subtask of RoboCup simulated soccer, which
features a parameterized action space in which the agent
must first select the type of action to perform from a dis-
crete list of high level actions and then specify the contin-
uous parameters to accompany that action. To the best of
our knowledge, no past research has successfully leveraged
teacher policies using imitation learning in a domain with
such high dimensional inputs and continuous actions.

Successful imitation learning requires a good choice of pol-
icy representation for the learner. We choose deep neural
networks to represent learned policies because of their power
as general function approximators, their ability to general-
ize beyond the states and actions observed during training,
and the ability to easily increase the complexity of the net-
work by adding nodes or layers. Indeed, after learning in
our testbed domain, the networks prove capable of select-
ing effective sequences of actions required to locate the ball,
dribble, and score.

The main contributions of this paper are: 1) it demon-
strates for the first time the possibility of learning a task
with parameterized continuous actions through imitation
learning of a stochastic policy; 2) it contributes a mimic net-
work topology and training methodology that enables learn-
ing of such a task; 3) and it reports on a detailed case study
showing the success of this network on a complex task and
analyzing the critical factors that enable this success.

The remainder of this paper is organized as follows: the
next two sections present related work and introduce the
Half Field Offense domain. Next the architecture of the deep
neural network and training procedure used for mimicking
is discussed. Experiments and results are then presented,
followed by discussion and conclusions.

2. RELATED WORK
There are three areas of closely related work: parameter-

ized action space learning, imitation learning, and RoboCup
soccer learning.

Masson and Konidaris [17] present a parameterized-action
MDP formulation and approaches for model-free reinforce-
ment learning in such environments. Applied to a simpli-
fied abstraction of simulated RoboCup soccer, the resulting
agents operate over a parameterized action space and can

<iAnnotate iPad User>
FreeText
In proceedings of the AAMAS 2016 workshop on Adaptive Learning Agents
May 2016




score on a fixed-policy goalie. There are three main differ-
ences from our work: first, Masson and Konidaris start each
episode by co-locating the agent and ball. In our paper, tri-
als start by randomly positioning both the agent and the
ball. Thus our agent’s policy must be able to locate and ap-
proach the ball, as in a real game of soccer. Second, Masson
and Konidaris use a higher-level action space consisting only
of parameterized kick, shoot-left-of-goalie, and shoot-right-
of-goalie actions. Their agent automatically moves towards
the ball and only needs to learn where to kick. In contrast,
our agent must learn to follow the ball while dribbling and
must decide how and where to shoot on goal without the
benefit of actions to shoot left or right of the goalie. Finally,
we use a higher-dimensional state space consisting of 58 con-
tinuous features as opposed to the 14 used by Masson and
Konidaris.

Also in parameterized action space, Hausknecht and Stone
[12] applied actor-critic deep reinforcement learning to the
problem of learning, from scratch, complete policies for goal
scoring. Their work represents a related but different ap-
proach towards learning, one which does not rely on a tra-
jectories from a teacher.

Approaches to learning in parameterized action spaces
other than robot soccer include: Guestrin et al. [9] factor the
parameterized action space using a dynamic Bayesian net-
work before attempting to compute an approximate value
function. Sanner and Vianna [23, 25] use symbolic dynamic
programming to solve the continuous portions of the param-
eterized MDPs. In contrast our work harnesses the function
approximation power of deep neural networks, which have
proven effective for learning control policies in reinforcement
learning domains [18]. As our experiments demonstrate,
without the depth of modern neural networks and rectified
linear activation functions (ReLU), imitation learning would
not be possible on this domain.

Imitation learning has been applied effectively in a wide
variety of domains [7, 1, 24, 4, 20, 6, 22]. None of the
examined domains have parameterized action spaces or use
deep neural networks to represent the learned policy.

Recently, Guo et al. used deep neural networks to mimic
sequential decision making policies in Atari games [10]. In
this case, the policy to mimic comes from a Monte-Carlo
Tree Search planner and features a discrete action space
which allows the deep network to learn using the standard
cross-entropy loss (the typical loss function for 1-of-n clas-
sification tasks). Likewise, Lillicrap demonstrates deep neu-
ral networks learning in continuous action spaces [15]. In
contrast, the HFO task examined in this paper requires an
entirely different approach due to its parameterized action
space.

Parisotto et al. [19] describe a method for training a
Actor-Mimic network: a network that imitates a Deep Q
Network using policy regression to emulate the teacher’s pol-
icy and feature regression to mimick the teacher’s features.
A single Actor-Mimic network is able to learn from several
DQN teacher networks and achieve high scores across a set
of different Atari games. Additionally, using Actor-Mimic
multitask pretraining is shown to increase learning speed
on a target task. Our approach differs by learning in pa-
rameterized space from teachers whose policies are not deep
networks.

RoboCup 2D soccer has a rich history of learning. In one
of the earliest examples, Andre used Genetic Programming

to evolve policies for RoboCup 2D Soccer [3]. By using a se-
quence of reward functions, they first encourage the players
to approach the ball, kick the ball, score a goal, and finally
to win the game. Similarly, our work features players whose
policies are entirely trained and have no hand-coded compo-
nents. Our work differs by using a gradient-based learning
method and learning from demonstration rather than a re-
ward signal.

Competitive RoboCup agents are primarily hand-coded
but may feature components that are learned or optimized
for better performance. Examples of this include the Brain-
stormers who used neural reinforcement learning to optimize
individual skills such as intercepting and kicking the ball
[21]. However, these skills were optimized in the context
of a larger, already working policy. Similarly, MacAlpine
employed the layered-learning framework to incrementally
learn a series of interdependent behaviors [16]. Such learn-
ing techniques have been shown to be applicable to physical
robots in addition to simulated ones [14, 11, 8]. Instead
of optimizing small portions of a larger policy, we take the
approach of learning the full policy from a teacher.

In summary, our work is the first to apply imitation learn-
ing to a parameterized-action space and demonstrate the
complex policies can be learned by deep neural networks.

3. HALF FIELD OFFENSE DOMAIN
Simulated Half Field Offense (HFO) is a soccer task in

which two teams of simulated autonomous agents compete
to score goals. Each agent receives its own state sensations
and must independently select its own actions. HFO is nat-
urally characterized as an episodic multiagent POMDP be-
cause of the sequential partial observations and actions on
the part of the agents and the well-defined episodes which
culminate in either a goal being scored or the ball leaving the
play area. The following subsections introduce the low-level
state and action space used by agents in this domain.

Figure 1: 3v3 Half Field Offense: Yellow offense agents
search for an opening in the defensive formation. Red
defenders and purple keeper strive to intercept the ball
or force it out of bounds. HFO is better understood by
video than picture: 1v1 https://vid.me/sNev, 2v2 https:

//vid.me/JQTw, 3v3 https://vid.me/1b5D

State Space: The agent uses a low-level, egocentric view-
point encoded using 58 continuously-valued features. These
features are derived through Helio-Agent2D’s [2] world model
and provide angles and distances to various on-field objects
of importance such as the ball, the goal, and the other play-
ers. Figure 2 depicts the perceptions of the agent. The most
relevant features include: Agent’s position, velocity, and ori-
entation, and stamina; Indicator if the agent is able to kick;
Angles and distances to the following objects: Ball, Goal,
Field-Corners, Penalty-Box-Corners, Teammates, and Op-



ponents. A full list of state features may be found at https:
//github.com/LARG/HFO/blob/master/doc/manual.pdf.

Figure 2: RoboCup-2D State Representation uses a
low-level, egocentric viewpoint providing features such as
distances and angles to objects of interest like the ball, goal
posts, corners of the field, and opponents.

Action Space: HFO features a low-level, parameterized
action space. There are four mutually-exclusive discrete ac-
tions: Dash, Turn, Tackle, and Kick. At each timestep the
agent must select one of these four to execute. Each action
has 1-2 continuously-valued parameters which must also be
specified. An agent must select both the discrete action it
wishes to execute as well as the continuously valued param-
eters required by that action. The full set of parameterized
actions is:

-Dash(power, direction): Moves in the indicated direction
with a scalar power in [0, 100]. Movement is faster forward
than sideways or backwards.

-Turn(direction): Turns to indicated direction.
-Tackle(direction): Contests the ball by moving in the

indicated direction. This action is only useful when playing
against an opponent.

-Kick(power, direction): Kicks the ball in the indicated
direction with a scalar power in [0, 100].

Instead of tackling the full team-based HFO problem, we
focus on a single agent that is first tasked with scoring on an
empty goal and later with scoring on a goalie. To begin each
episode, the agent and ball are positioned randomly on the
offensive half of the field. The agent must first locate and
approach the ball, then dribble towards the goal, and kick
on target to score. Since there is no dribble action, the agent
learns its own sequence of dashes and short kicks to move
the ball in a desired direction without losing possession.

Having introduced the HFO domain, we now focus on
the networks and training methods which make imitation
learning possible.

4. MIMIC NETWORK
The success of imitation learning critically depends on the

choice of policy representation for the learner. Too simple
a representation limits the complexity of policies that may
be learned; too complex a representation runs the risk of

overfitting a limited supply of training data. We choose to
use a single deep neural network to represent the policy for
selecting both discrete actions and continuous parameters.
This network is referred to as the mimic. The mimic takes
as input a vector of continuous state features and returns a
parameterized action which can be executed in the game.

More specifically, the mimic network uses two output lay-
ers – one outputs probabilities over discrete actions, and the
other outputs continuous values over parameters. These two
output layers may be interpreted by first selecting the dis-
crete action with highest probability, and then reading the
continuous parameters associated with that action. Beyond
that, many choices exist in how to structure the intermediate
layers between the inputs and outputs. After experimenting
with several different architectures (see Table 1), we describe
two successful networks: a unified and a separated network.

Unified Mimic Network: Figure 3a introduces the ar-
chitecture of the unified mimic network: the input to the
neural net consists of 56 state features. Next are four hid-
den layers, each followed by a rectifier nonlinearity (ReLU)
with negative slope 0.01. The hidden layers h1 . . . h4 are
fully-connected with 1000, 512, 200, and 64 units respec-
tively. The ouput from the final hidden layer h4 is divided
into two separate fully-connected linear layers, one for the
four discrete actions and the other the six action-parameters.

State

Actions Parameters

h1
ReLU

h3
ReLU

h2
ReLU

h4
ReLU

Softmax Euclidean Loss

(a) Unified Mimic

State

Actions P0

h1
ReLU

h3
ReLU

h2
ReLU

h4
ReLU

h1
ReLU

h3
ReLU

h2
ReLU

h4
ReLU

h1
ReLU

h3
ReLU

h2
ReLU

h4
ReLU

P5

...

Softmax Euclidean Loss

(b) Separated Mimic

Figure 3: The Mimic Network features dual classifica-
tion/regression loss layers and either shares parameters (left)
or features separate towers for the discrete actions and each
of the parameters (right). Dashed loss layers are only in-
cluded during training time and not during inference.

Training Architecture: In order to train the mimic
network to output both probabilities over discrete actions
and continuous parameters, we jointly minimize dual loss
functions. The discrete actions are trained using a Multino-
mial, Cross-Entropy (Softmax) Loss LA between the mimic’s
probability of selecting each discrete action â and the teacher’s
choice of action a. Equation 1 shows the form of this loss
when applied to a minibatch of N examples. The action-
parameters are trained using a Regression Loss (Euclidean
Loss) LP computed over the action-parameters output by
the mimic p̂ and the teacher p (Equation 2). Since the
mimic’s output layer contains parameters for all discrete ac-



tions, but the teacher chooses only single discrete action, we
do not compute loss (or provide gradients) for the parame-
ters not associated with the teacher’s selected action.

In Equation 3, the mimic network, parameterized by θ, is
updated using a step of size α in the direction that mini-
mizes both losses. The parameter β trades off between the
two losses. In the experiments described, β = 0.5 meaning
that both loss functions contributed equally to the gradients
flowing through the common layers of the network. Further
exploration of methods for adaptively setting β is left for
future work.

LA = − 1

N

N∑
n=1

logP (an|ân) (1)

LP = − 1

2N

N∑
n=1

‖pn, p̂n‖22 (2)

θi+1 = θi + α
(
β∇θLA(θi) + (1− β)∇θLP (θi)

)
(3)

Separated Mimic Network: There are inherent po-
tential drawbacks to the unified mimic network (Figure 3a).
Particularly, the parameters of the shared hidden layers may
be driven in opposite directions by the dual loss functions
being optimized. One way to alleviate this concern is to
provide separate paths for the gradient of each loss func-
tion to follow. This results in the separated mimic network.
Shown in Figure 3b, this network features a separate set of
hidden layers for the discrete actions and each of the action-
parameters. The number of parameters in this network in-
creases by a factor of seven, resulting in slower training and
inference. However, the benefits of the separated mimic be-
come apparent on the complex task of scoring on a goalie.

Having defined the architecture and training procedure for
both training and inference, we now introduce the teacher
agents whose policies will guide the learning process.

5. TEACHER AGENTS
Imitation learning requires a teacher policy to mimic. For-

tunately, RoboCup 2D features a long history of competition
and code releases by various teams. These provide a wealth
of available teachers. This section introduces two teacher
policies: one deterministic and the other stochastic. Both
teacher-agents are hand-coded by human experts and are
capable of localization, decision making, and scoring. We
believe the selected teacher agents are broadly representa-
tive of the types of policies found in RoboCup and expect
that the imitation learning results presented would general-
ize to other teacher agents.

Deterministic Agent: The simpler of the two agents,
the deterministic agent relies on a fixed strategy to score on
an empty goal: it Turns towards the ball whenever the angle
to the ball is higher than a threshold of 10 degrees. If fac-
ing the ball, it Dashes forward with full (power 100) speed.
Upon reaching the ball, it Kicks with full power towards the
center of the goal. If the kick does not result in a goal, the
agent approaches the ball for another attempt. This teacher
represents a baseline: the simplest scoring policy to mimic.

Stochastic Agent: The stochastic teacher agent uses a
policy derived from Helios, the 2012 RoboCup 2D champion
team [2]. This policy is designed to coordinate with a full set
of teammates and play against a full set of opponents. Thus,

it is more sophisticated than the deterministic policy above.
Moreover, the precise action selected at each timestep varies
according to internally-seeded random number generators,
resulting in a stochastic policy which is significantly harder
to mimic than the deterministic policy. Figure 4 shows a
sample trajectory.

Both teacher policies exhibit near-optimal performance for
the empty-goal task with stochastic teacher scoring 96% of
the time and the deterministic teacher scoring 99% of the
time. Both take 72 steps on average to score. The difference
between these two teachers becomes clear when a goalie is
added to the task; in this case the stochastic teacher scores
71% of the time while the deterministic scores only 3.5% of
the time.

Figure 4: Left: without a goalie, the stochastic teacher
(Helios-Agent2D) is free to take a direct path towards scor-
ing. Right: when opposed by a goalie, even this policy can’t
prevent the goalie from occasionally deflecting the shot.

6. TRAINING PROCEDURE
Throughout this paper the same training procedure is

applied; Only the dataset or network architecture is var-
ied. Caffe [13] is used to train the deep mimic networks in
conjunction with the AdaDelta [26] adaptive learning rate
method. A momentum of 0.95 and base learning rate of 1
are used. Training continues for 30 epochs over a dataset
containing 15,000 episodes of play by a teacher, roughly one
million experience tuples in all. Each training iteration pro-
cesses a minibatch of 32 examples in parallel. The learning
rate is not reduced as we observe no evidence of overfitting.

7. SCORING ON AN EMPTY GOAL
The first, and simpler, of the tasks examined by this paper

is scoring on an empty goal. This task begins by placing the
agent and ball at different random locations on the offensive
half of the field. The agent must first locate and move to the
ball, then dribble it towards the goal, and shoot on target.
If the agent kicks the ball out of bounds or fails to gain
possession of ball within 100 timesteps, the trial ends in
failure. Successful trials typically require a specific sequence
of between 60 and 80 actions.

We explore the performance of the unified network mim-
icking the stochastic teacher as a function of the complexity
of the underlying deep neural network. Specifically we ex-
amine unified mimic networks using 1-4 hidden layers with
a varying number of hidden units in each layer. Results in



Loss Discrete Actions Acc Action Parameter Deviation Real Game
Network Softmax Euclidean Dash Turn Kick Dash Dash Turn Kick Kick Score Average

Structure Loss Loss Acc Acc Acc Power Angle Angle Power Angle Percent Trial Time
256 0.1753 62.87 99.13 60.59 97.23 0.4475 0.8364 16.29 8.714 5.026 28.1 147.2

256-32 0.1434 50.06 99.28 61.73 97.47 0.5586 0.6943 13.59 8.680 4.668 37.5 120.3
256-100-32 0.1452 43.50 99.26 65.54 97.56 0.5346 0.5446 10.04 8.280 4.659 81.3 90.09

500-256-100-32 0.1407 40.65 99.19 71.08 97.88 0.5028 0.6710 7.745 8.111 4.308 93.8 78.89
1000-512-200-64 0.1366 42.52 99.39 72.16 98.28 0.6150 0.6702 7.163 8.072 4.339 96.9 76.54

Table 1: Mimicking stochastic teacher on empty goal task: From left to right: Softmax Loss LA over discrete actions;
Euclidean Loss LP over action-parameters; Discrete Action Accuracy shows, for each action, how frequently the mimic selected
the same discrete action as the teacher. Action Parameter Deviation depicts the L1-norm between the mimic and teacher’s
parameters. The last columns show how frequently the mimic successfully scores goals and the average number of steps
required.

Softmax Euclidean Dash Turn Kick Dash Dash Turn Kick Kick Score Average
Arch Teacher Goalie Loss Loss Acc Acc Acc Power Angle Angle Power Angle Percentage Trial Time
UNI DET N 0.0331 11.69 99.44 91.50 99.94 0.1282 0.2374 1.645 0.7089 2.4378 97(99.8) 72.78(72.67)
UNI STO N 0.1366 42.52 99.39 72.16 98.28 0.6150 0.6702 7.163 8.072 4.339 92.4(96.4) 76.54(72.84)
UNI STO Y 0.1993 197.2 98.78 59.64 98.27 1.356 0.6923 14.21 14.30 33.39 4(71.5) 97.78(80.92)
SEP STO Y 0.098 175.26 99.37 78.01 99.23 1.237 .771 8.48 13.18 32.45 12(71.5) 84(80.92)

Table 2: Difficulty of mimicking depends on complexity of teacher policy: Performance of mimicking deterministic
(DET) and stochastic (STO) teachers. It proves harder to mimic the stochastic teacher than the deterministic one, and
hardest when the mimicking the stochastic teacher playing against a goalie. Parentheses show baseline performance of the
corresponding teacher policy. Performance improves across the board when using the separated mimic (SEP) rather than the
unified (UNI).

(a) 1 Layer Mimic (b) 2 Layer Mimic (c) 3 Layer Mimic (d) 4 Layer Mimic

(e) Teacher (f) Mimic (g) Mimic (h) Mimic

Figure 5: Visualizing learned policies: The first row depicts the trained mimic using a neural network featuring 1 to
4 hidden layers. With too few hidden layers, the policy fails to locate and approach the ball. As more hidden layers are
added, the approach becomes smoother and the shots better targeted. The second row depicts the complexity of the policy
required to score on a goalie. In (e), the teacher dribbles towards the goal and doubles back before shooting at edge of the
goal. The unified mimic cannot master this task and learned policies (f-h) result in the ball being captured, intercepted, and
kicked out of bounds.



Table 1 indicate that both depth and width influence the
representational capacity of the network and its ability to
successfully mimic the teacher, confirming the general in-
tuition that deeper, more complex networks yield improved
performance, up to a point. Additionally, the first row of
Figure 5 visualizes the improvement in learned policies as a
function of the number of hidden layers in each network.

Examining the dual loss functions in Table 1 shows that
as complexity is added to the mimic network, the accuracy
of mimicking both the discrete actions of the teacher and
the continuous parameters increases. Of the discrete ac-
tions, Dash and Kick start off with high accuracy, leav-
ing little room for improvement. The Turn action starts
with low accuracy and shows the most improvement. Sim-
ilarly, of the parameterized actions, Turn-Direction shows
the most relative improvement, followed by Kick-Power and
Kick-Direction. Thus the Dash and Kick actions are rela-
tively straightforward and the more complex networks use
the additional representation power to make better decisions
regarding when and how to Turn. Dash-Power gets progres-
sively less accurate in the more complex networks. This does
not affect overall scoring performance, which monotonically
increases as a function of network complexity.

The deterministic teacher proves much easier to mimic
than the stochastic one. Table 2 shows that overall loss for
both discrete actions and continuous parameters are approx-
imately three times smaller when mimicking the determinis-
tic teacher compared to the stochastic teacher. This trans-
lates into a mimic that can more reliably score in shorter
amounts of time. Regardless, on this task, both policies are
largely successful, with the worst of the two conserving over
95% of the scoring potential of the teacher.

8. SCORING ON A GOALIE
Far more difficult than the task of scoring on an empty

goal is the challenge of scoring on an active goalie. More
than just requiring the player to kick around the goalie, this
task requires a complex dance of positioning and baiting to
draw the keeper out and strike when the goal is open. An ex-
ample of the sophisticated strategy used to score on a goalie
is shown in Figure 5e. The nondeterministic policy used by
the keeper is from the winning Helios-Agent2D codebase [2]
and strikes an effective balance between repositioning itself
near the goal to minimize open shots and moving out to
tackle the ball. In this task, agent uses an augmented state
representation with eight additional features encoding the
goalkeeper’s angle, distance, velocity, and orientation.

Table 3 shows the performance of teachers and mimics on
this task. The stochastic teacher (Helios-Agent2D) proves
quite capable, with a scoring percentage of 70%. The de-
terministic teacher, whose policy is unaware of the goalie,
ends up getting the ball captured by the goalie 96.5% of the
time. Mimicking the stochastic policy using the Unified Net-
work proves highly difficult, and in terms of scoring goals,
the resulting mimic fares no better than the deterministic
teacher (Figures 5f-5h visualize attempts to score by this
policy). However, the separated network proves more capa-
ble with higher accuracy and lower deviation in nearly all
categories (Table 2) as well as three times the amount of
goals scored. We hypothesize that the lack of shared layers
between action-parameters in the separated network allowed
each parameter to achieve a higher degree of specialization
than possible in the unified network.

Policy Goal CAP OOB OOT
Stochastic Teacher 143 34 20 3
Deterministic Teacher 7 193 0 0
Unified Mimic 8 138 49 5
Separated Mimic 24 123 44 9

Table 3: Scoring on a goalie: The 200 trials of each pol-
icy end with the goalie capturing the ball (CAP), the ball
going out of bounds (OOB), or running out of time (OOT).
Learning from the stochastic teacher, the separated mimic
network performs better on this complex task than the uni-
fied, and both outperform the deterministic teacher.

9. DISCUSSION AND CONCLUSIONS
The promise of imitation learning lies only partially in

the learned policy. More interesting is the ability to convert
between different policy representations. Starting from a
human engineered teacher policy represented by thousands
of lines of source code, imitation learning allows us to de-
rive a mimic policy in the form of neural network that cap-
tures a subset of the behaviors of the teacher. This neu-
ral network representation allows the efficient computation
of policy-gradients with respect to network parameters. In
contrast, estimating these gradients in the original teacher
policy would be time-consuming if not impossible and would
first require human expertise to determine and expose the
tuneable parameters of the code base.

We believe that the mimicked policies described in this pa-
per will form a solid foundation for future work on policy im-
provement, perhaps using the policy gradients provided by a
critic network. To this end, source code and full information
about the feature and action spaces for the Half Field Of-
fense domain is available at https://github.com/LARG/HFO
and for mimic-learning at https://github.com/mhauskn/

dqn-hfo/tree/mimic.
In summary, this paper demonstrates, for the first time,

successful imitation learning of goal scoring policies in a
parameterized action space. Neural networks trained with
a dual classification/regression loss prove capable of high-
fidelity imitation learning from goal-scoring stochastic and
deterministic teacher policies. This work represents a step
in the direction of learning rather than programming com-
plex policies and confirms that deep neural networks show
much promise as function approximators for these policies.
Our ongoing research seeks to incorporate learning to fur-
ther improve the mimic policies.

Acknowledgments
This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The
University of Texas at Austin. LARG research is supported
in part by grants from the National Science Foundation
(CNS-1330072, CNS-1305287), ONR (21C184-01), AFRL
(FA8750-14-1-0070), AFOSR (FA9550-14-1-0087), and Yu-
jin Robot. Additional support from the Texas Advanced
Computing Center, and Nvidia Corporation.

REFERENCES
[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship

learning via inverse reinforcement learning. In
Proceedings of the Twenty-first International



Conference on Machine Learning, ICML ’04, pages 1–,
New York, NY, USA, 2004. ACM.

[2] Hidehisa Akiyama. Agent2d base code, 2010.

[3] David Andre and Astro Teller. Evolving Team Darwin
United. Lecture Notes in Computer Science,
1604:346–353, 1999.

[4] Brenna Argall, Sonia Chernova, Manuela M. Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[5] Christopher G. Atkeson and Stefan Schaal. Robot
learning from demonstration. In Proc. 14th
International Conference on Machine Learning, pages
12–20. Morgan Kaufmann, 1997.

[6] J Andrew Bagnell and Stéphane Ross. Efficient
Reductions for Imitation Learning. In Proceedings of
the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2010, volume 9,
pages 661–668, 2010.

[7] A. Billard, Y. Epars, S. Calinon, G. Cheng, and
S. Schaal. Discovering optimal imitation strategies.
Robotics and Autonomous Systems, 47(2-3):69–77,
2004.

[8] Bruno Castro da Silva, Gianluca Baldassarre, George
Konidaris, and Andrew G. Barto. Learning
parameterized motor skills on a humanoid robot. In
ICRA, pages 5239–5244. IEEE, 2014.

[9] Carlos Guestrin, Milos Hauskrecht, and Branislav
Kveton. Solving factored mdps with continuous and
discrete variables. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence,
UAI ’04, pages 235–242, Arlington, Virginia, United
States, 2004. AUAI Press.

[10] Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L
Lewis, and Xiaoshi Wang. Deep learning for real-time
atari game play using offline monte-carlo tree search
planning. In Z. Ghahramani, M. Welling, C. Cortes,
N.D. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems
27, pages 3338–3346. Curran Associates, Inc., 2014.

[11] Matthew Hausknecht and Peter Stone. Learning
powerful kicks on the aibo ers-7: The quest for a
striker. In Proceedings of the RoboCup International
Symposium 2010. Springer Verlag, 2010.

[12] Matthew J. Hausknecht and Peter Stone. Deep
reinforcement learning in parameterized action space.
CoRR, abs/1511.04143, 2015.

[13] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[14] Nate Kohl and Peter Stone. Machine learning for fast
quadrupedal locomotion. In The Nineteenth National
Conference on Artificial Intelligence, pages 611–616,
July 2004.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning.
ArXiv e-prints, September 2015.

[16] Patrick MacAlpine, Mike Depinet, and Peter Stone.
UT Austin Villa 2014: RoboCup 3D simulation league

champion via overlapping layered learning. In
Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI), January 2015.

[17] Warwick Masson and George Konidaris.
Reinforcement learning with parameterized actions.
CoRR, abs/1509.01644, 2015.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533,
February 2015.

[19] Emilio Parisotto, Lei Jimmy Ba, and Ruslan
Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. CoRR,
abs/1511.06342, 2015.

[20] Nathan Ratliff, David Bradley , J. Andrew (Drew)
Bagnell, and Joel Chestnutt. Boosting structured
prediction for imitation learning. In B. Scholkopf, J.C.
Platt, and T. Hofmann, editors, Advances in Neural
Information Processing Systems 19, Cambridge, MA,
2007. MIT Press.

[21] Martin A. Riedmiller and Thomas Gabel. On
experiences in a complex and competitive gaming
domain: Reinforcement learning meets robocup. In
CIG, pages 17–23. IEEE, 2007.

[22] StÃl’phane Ross, Geoffrey J. Gordon, and Drew
Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In
Geoffrey J. Gordon and David B. Dunson, editors,
Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics
(AISTATS-11), volume 15, pages 627–635. Journal of
Machine Learning Research - Workshop and
Conference Proceedings, 2011.

[23] Scott Sanner, Karina Valdivia Delgado, and
Leliane Nunes de Barros. Symbolic dynamic
programming for discrete and continuous state MDPs.
CoRR, abs/1202.3762, 2012.

[24] David Silver, James A. Bagnell, and Anthony Stentz.
High performance outdoor navigation from overhead
data using imitation learning. In Oliver Brock, Jeff
Trinkle, and Fabio Ramos, editors, Robotics: Science
and Systems. The MIT Press, 2008.

[25] Luis Gustavo Vianna, Scott Sanner, and
Leliane Nunes de Barros. Bounded approximate
symbolic dynamic programming for hybrid MDPs.
CoRR, abs/1309.6871, 2013.

[26] Matthew D. Zeiler. ADADELTA: An adaptive
learning rate method. CoRR, abs/1212.5701, 2012.


