

<u>gm</u>

1

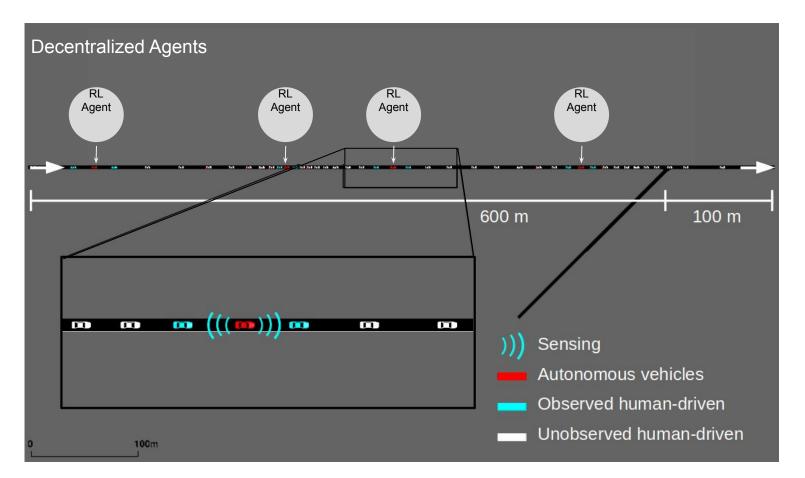
Yulin Zhang, William Macke, Jiaxun Cui, Daniel Urieli, Peter Stone

Learning Agent Research Group The University of Texas at Austin General Motors R&D Labs Sony Al

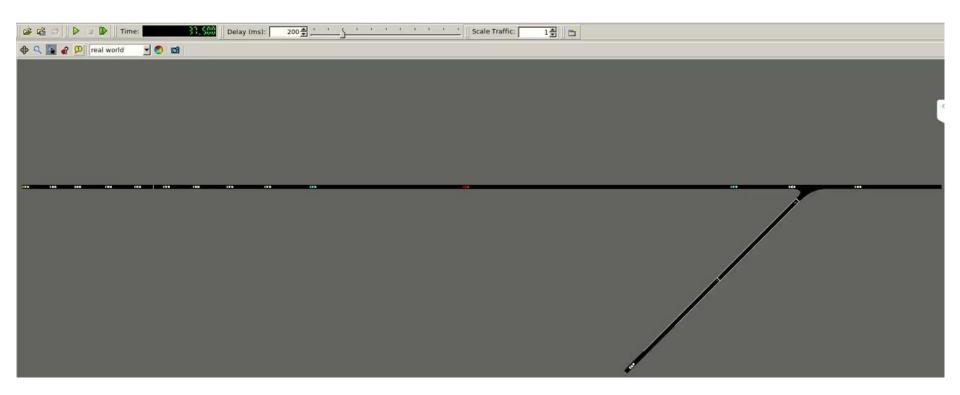
Traffic congestion caused by the stop-and-go waves

Eile Edit Settings Locate	200 ±	Scale Traffic:	12		-) 0 ;
💠 🔍 🌇 💣 💯 real world					
	 	178 178			
				/	

Training Autonomous Vehicles to Reduce Traffic Congestion

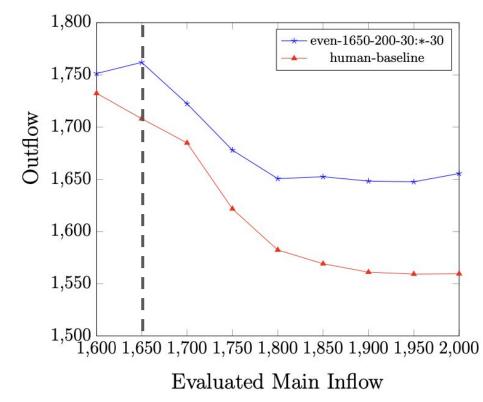


Training Autonomous Vehicles to Reduce Traffic Congestion



But we are still far from real-world deployment

Policies were trained and tested under similar conditions

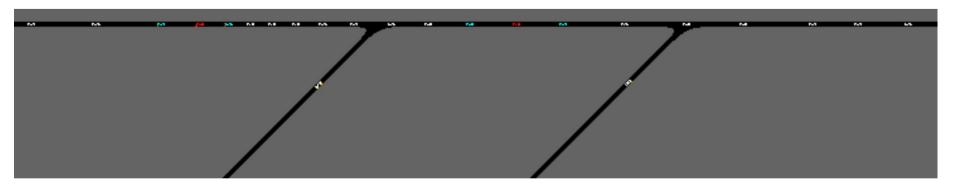


Progress to reduce traffic congestion using AVs

- Traffic reduction in both closed network (circular roads) and open network [Wu et al., 2017b; Kreidieh et al., 2018; Vinitsky et al., 2018].
- Centralized and Decentralized driving policies [Vinitsky et al., 2018; Cui et al., 2021].
- Developing robust driving policies:
 - The robustness of a hand-coded policy is examined over different AV penetration and driving aggressiveness [Parvate, 2020].
 - Generalizing to different traffic densities on a closed ring road [Wu et al., 2021].
 - Negative results on the generalization of a single-lane policy to a double-lane ring road [Cummins et al., 2021].
 - Robust policy is developed in bottleneck scenario [Vinitsky et al., 2020].

In this paper,

- We first develop a single-lane decentralized policy that is robust to:
 - AV placement in traffic
 - Traffic flow
 - Fraction of AVs in traffic (AVP)
- We demonstrate that this is also robust to different road geometry:
 - Road with two merging ramps



In this paper,

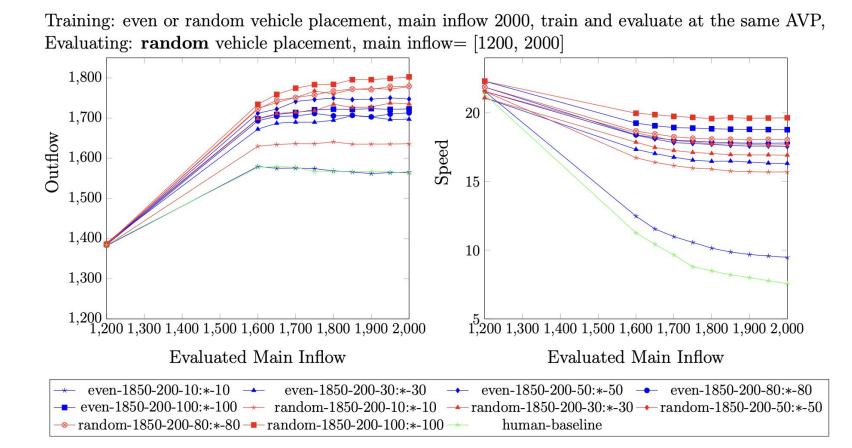
- We first develop a single-lane decentralized policy that is robust to:
 - AV placement in traffic
 - Traffic flow
 - Fraction of AVs in traffic (AVP)
- We demonstrate that this is also robust to different road geometry:
 - Road with two merging ramps
 - Double-lane road

Single-lane decentralized policy: vehicle placement

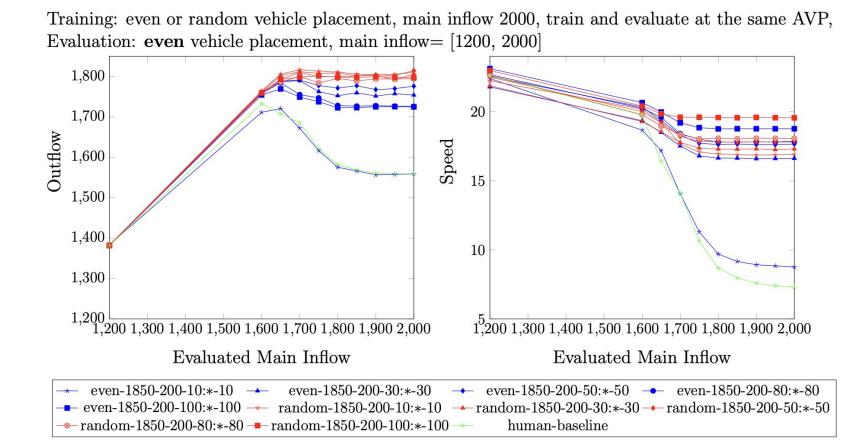
even placement

random placement

Policy evaluated under random vehicle placement



Policy evaluated under even vehicle placement

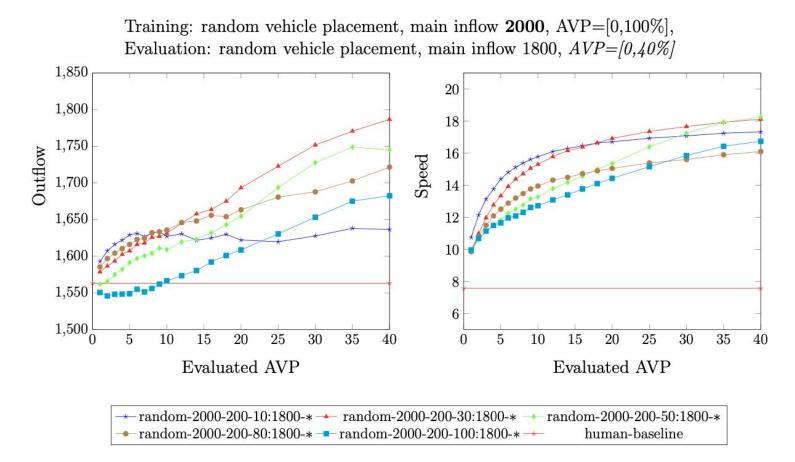


Single-lane decentralized policy: AV penetration/faction

10% AVP

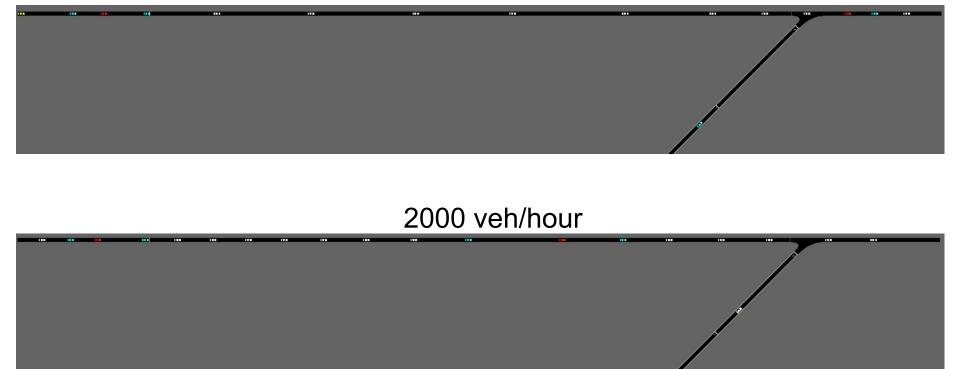
30% AVP

Policy trained under medium AVP (30%)

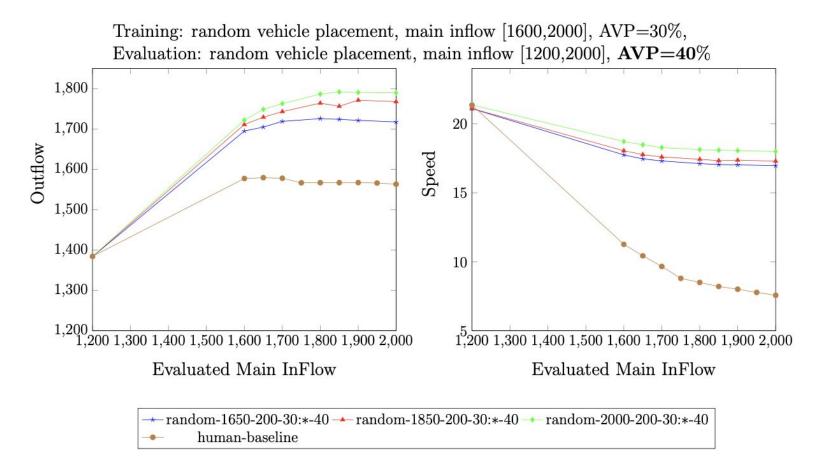


Single-lane decentralized policy: Inflow

1200 veh/hour

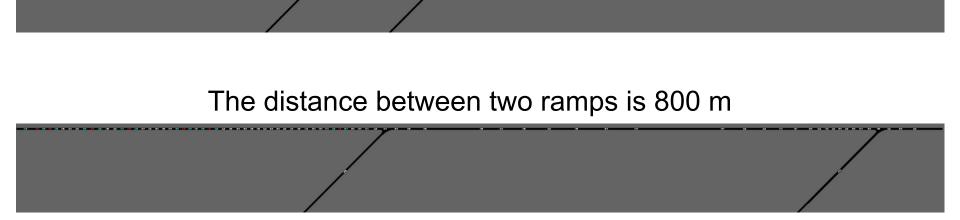


Policy trained under high inflow (2000 veh/hour)



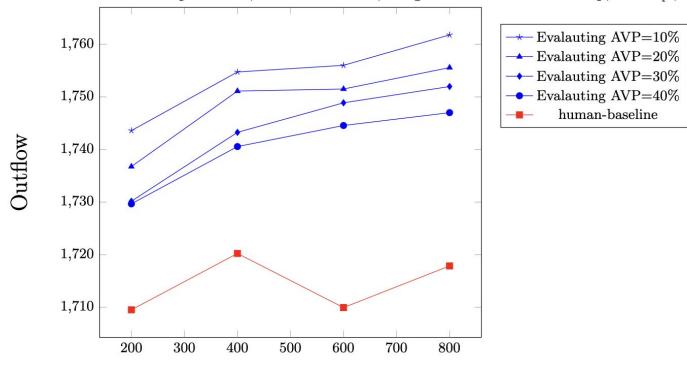
Single-lane decentralized policy: deployed with two ramps

The distance between two ramps is 200 m



Single-lane decentralized policy: deployed with two ramps

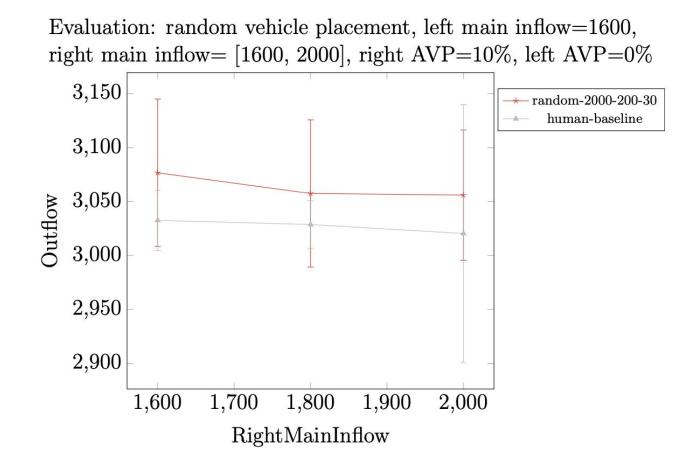
Training: random vehicle placement, main inflow 1800, merge inflow 200, AVP=30%, Evaluation: random vehicle placement, main inflow 1800, merge inflow 200 for each ramp, AVP=[0,40%]



Evaluated distance between two ramps

Single-lane decentralized policy: deployed in the right lane

Single-lane decentralized policy: deployed in the right lane



Conclusion and future work

- We have developed a single policy that is robust to:
 - Traffic flow
 - Fraction of AVs in traffic (AVP)
 - AV placement in traffic
 - Road geometry
 - Double ramps
 - Double lanes
- Limitations and Future work:
 - Existence of a left-lane policy in multi-lane scenarios.
 - All simulated human-driven vehicles share the same aggressiveness.
 - Generalize toward a wider variety of road geometries.
 - Still sim-2-real gap: noisy sensing, actuation delay

Learning a Robust Multiagent **Driving Policy for Traffic Congestion Reduction**

Yulin Zhang, William Macke, Jiaxun Cui, Daniel Urieli, Peter Stone

Learning Agent Research Group The University of Texas at Austin General Motors R&D Labs Sony Al