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Abstract. Auctions are an area of great academic and commercial interest, from
tiny auctions for toys on eBay to multi-billion-dollar auctions held by govern-
ments for resources or contracts. Although there has been significant research on
auction theory, especially from the perspective of auction mechanisms, studies of
autonomous bidding agents and their interactions are relatively few and recent.
This paper examines several autonomous agent bidding strategies in the context
of FAucS, a faithful simulation of a complex FCC spectrum auction. We intro-
ducepunishing randomized strategic demand reduction(PRSDR), a novel bid-
ding strategy by which bidders can partition available goods in a mutually ben-
eficial way without explicit inter-agent communication. When all use PRSDR,
bidders obtain significantly better results than when using a reasonable baseline
approach. The strategy automatically detects and punishes non-cooperating bid-
ders to achieve robustness in the face of agent defection, and performs well under
alternative conditions. The PRSDR strategy is fully implemented and we present
detailed empirical results.

1 Introduction

Some of the largest auctions held involve hundreds of goods in hundreds of categories,
scores of bidders, complicated rules, and everything being auctioned simultaneously
over a hundred or more rounds. In these auctions, it is very difficult for humans to grasp
all of the nuances regarding the effects of their strategic decisions. Computer aid could
ease the burden of efficiently competing in these auctions, especially if the user need
only input his or her values for the goods in the auction into a parameterized strategy.

Simple autonomous agents have started to appear as bidders in some auctions. How-
ever, they tend to be straightforward incremental bidders that raise the price of a single
good up to a user’s stated maximum (e.g. on eBay). Bidding agents that support depen-
dent values among multiple interacting goods have been deployed in some experimental
scenarios [5, 10, 8]. Here, we present agent bidding strategies in a large-scale and real-
istic auction scenario, namely the FCC Spectrum Auction Simulator, orFAucS[1].

Here, we build on our previous work inFAucS, in which we createdKnapsackagents
that optimized the set of goods they bid on given a budget constraint, but not taking



into account the needs and strategies of other agents [1]. In this previous work we
also created alternative agent strategies that outperformed the Knapsack agents, but that
relied on the unrealistic assumption that agents knew each other’s valuations of the
goods with complete certainty.

In this paper, we presentpunishing randomized strategic demand reduction(PRSDR),
a strategy by which cooperative agents can significantly outperform the Knapsack agents
despite having highly uncertain knowledge regarding each others’ goals and without
any explicit inter-agent communication. The strategy is self-enforcing in that agents
cannot benefit by defecting back to the Knapsack strategy.

PRSDR serves as an example of a general strategy for bidding in simultaneous
multiple-round (SMR) auctions in which:

– there is room to bid below the expected sell prices; and in which
– there are few value interdependencies among goods.

The basic idea of PRSDR is that bidders bid for randomized subsets of their true desired
goods while retaining the ability to effectively punish bidders who defect from this
mutually beneficial strategy. The punishment takes the form of driving prices up in the
markets of interest to a defecting bidder.

The remainder of the paper is organized as follows. An overview ofFAucSand the
general setup appears in Sections 2 and 3. Details of the PRSDR algorithm follow in
Sections 4 and 5. Empirical results demonstrating its utility and robustness are pre-
sented in Section 6 along with a suggestion on how to improve the efficiency of FCC
Spectrum auctions by a change of rules designed to inhibit communication-free cooper-
ation. Section 7 relates our results to the game-theoretical construct of iterated bimatrix
games and Section 8 concludes.

2 FCC Spectrum Auction Simulator

Our prototype implementation of PRSDR is tailored to theFAucSdomain [1], a detailed
and realistic simulator of the FCC Spectrum auctions. The goods available in the FCC
spectrum auctions are a set oflicenses, or blocks of spectrum; each in amarket, or
region of the United States. In this paper we focus on FCC Auction 35, in which licenses
were 10 or 15 megahertz in size, and each of the 195 markets had between 1 and 4
licenses available. A total of 422 licenses and more than 80 bidders were involved.

To a first approximation, the rules of the auction are straightforward (official rules
are presented in FCC document DA 00–20381). All of the FCC spectrum auctions, in-
cluding Auction 35, use an SMR system in which all goods are available at the same
time, and bidding occurs in discrete rounds2. After each round, each bidder’s bids are
announced publicly. Theprovisionally winning bidsand correspondingprovisional win-
nersare also announced: these are the highest bid received up to that point on each

1 Available at http://wireless.fcc.gov/auctions/35/releases.html
2 There are plans to move to a combinatorial auction setting in the future, but so far they have

not been realized due in part to the complexity of the winner determination problem in combi-
natorial auctions [7].



license and the party that placed the bid (in case of a tie, the first bid submitted to
the FCC’s system wins). The auction ends immediately after the first round with no
new activity. Each license is then sold to its provisional winner for a price equal to the
provisionally winning bid.

As is customary in auctions, the FCC had anti-collusion rules forbidding bidders
from explicitly exchanging information before and/or during the auction.

While this underlying mechanism is simple, there have been many subtle modifi-
cations and complex rules added over time. The two that are most important for the
purposes of this paper are the rules governing allowable bids and eligibility constraints.

Allowable bids. Bids on a license that has received no bids in previous rounds must be
of a predetermined minimum bid price. After a license has received bids, further
bids can only increase the value of the current provisionally winning bid by 1 to 9
bid increments. A bid increment is a value between10% and20%, calculated by
the FCC and increasing with bidding activity.

Eligibility Constraints. Each license is worth a certain number ofbidding units (BUs),
correlated with the population of the market. Each round, a bidder has a specific
eligibility, and may not bid on more BUs than that. A bidder must maintain bidding
activity in order to maintain eligibility to bid in later rounds.3

FAucSmodels these rules and all others relevant to Auction 35 in their entirety.4

It uses a client-server architecture with the server and the bidding agents (clients) all
written in Perl and using TCP sockets to communicate with each other.

Typical auctions last between 100 and 150 rounds; Auction 35 lasted 101 rounds.

3 Simulation Overview

While the original FCC auction 35 had more than 80 bidders, only a few—about five—
were of significant individual importance in terms of the licenses won. We designate a
set of five agents asstrategic biddersto emulate the presence of five national companies
participating in Auction 35.5 By virtue of their size, particularly estimated budget size,
it is immediately apparent to all agents which bidders are strategic bidders.

3 Despite the high degree of substitutability between goods in the goal representation bidders
use, this activity rule is still very important. It forces bidders to show their hand earlier, rather
than sniping at the end of the auction, as is a common tactic in other auctions [8, 6]. This
requirement that bidders place bids significantly before prices reach their final levels also re-
quires bidders to either risk winning a license they would rather not win by bidding without
revealing their true desires until the last moment, or to bid according to their desires, thereby
divulging enough information to allow all facets of PRSDR to function.

4 The exception is that, as a simulation,FAucSbreaks ties randomly. Analysis of the actual FCC
auction data reveals that bidders tended to place their serious bids as early as possible, thus
reducing tie-breaking essentially to random (depending on the particular connection bidders
had to the FCC, the speed at which they clicked their mice, etc). For example, in the last 80%
of Auction 35, fully 45% of the bids were placed in the first minute of the 40-minute bidding
round. Thus, this is a reasonable simplification.

5 AT&T Wireless, Cingular Wireless, Sprint PCS, Verizon Wireless, and Voicestream. These
national companies were interested in winning most of the licenses and had the most money
at stake. Thus, they had the most to gain by clever, strategic bidding.



The other 75 bidders in the original auction were budget-constrained regional com-
panies with interests only in specific markets. The primary effect of these smaller bid-
ders was to create competition in every market and drive up prices: they didn’t win very
much in the end. Accordingly, we have modeled the aggregate role of these bidders
using fivesecondary bidderswhich are straightforward bidders with no budget con-
straints. These bidders each desire a license from each market but are willing to pay
only about 75% as much as the strategic bidders for any one license. These secondary
bidders ensure competition in every market until license prices are beyond the levels
they are willing to pay, effectively setting the price floor for licenses at about 75% of
strategic bidder valuations. This bidding approach served to raise prices to realistic lev-
els without requiring us to model all 75 regional bidders explicitly.

3.1 Agent Utility

For the purposes of this paper, the utility function for all agents isprofit, defined as the
value to the agent of the set of licenses it won minus its expenditures. We assume no
inter-market dependencies in market valuations. This hypothesis is a reasonable starting
point for our explorations and can be partially justified by the existence of an (ineffi-
cient) aftermarket for licenses. There is also some evidence that human bidders in these
auctions ignore intermarket dependencies.

Each agent has significantly different goals drawn from a realistic model based on
analysis of real auction data, information from real bidders, and a Merrill Lynch analysis
of the estimated theoretical values of particular markets [1]. These goals consist of
priorities andvaluationsfor each market.

Each agent’s priorityp 2 f0; 1; 2g for a given market is the number of licenses the
agent would like to acquire from that market. A market’s value to this agent increases
with the size of the licenses in megahertz and the population of the market (mhzpop).
This Market Value(MV) is the value to the agent (the maximum amount the agent is
willing to pay) for a license in a market where it wants to acquire one more license
(whether or not it has any already). If an agent wants two more licenses in a market, it
is willing to pay anEnhanced Market Valueor EMVof approximately5% more for the
first of those licenses, to try to ensure it gets at least one. Otherwise, if an agent wants
no licenses in a market, any licenses in that market have no value to the agent. Profit
earned is the difference between the value of a license to the agent and the price paid
for that license, and the only effect of priority is to control these values.

For example, if the New York market had a population of 30,000,000, 10-mhz li-
censes, and agent 3 valued the market at $5 million per mhzpop and had a priority of
2 in the market, it would be willing to pay $1.575 billion for the first license, $1.5 bil-
lion for the second, and $0 for the third. Purchasing one license for $1.2 billion would
generate a profit of $375 million.

These priorities introduce a simple type of inter-good dependency that model the
real bidders’ apparent interests, as expressed by one of the bidding teams from the orig-
inal (real) auction. It is interesting to note that, while this value characterization may
not be optimal since it may simplify away information about inter-good dependencies,
it is nevertheless approximately what the real human bidders used. Our conversations



with them suggested that the most probable explanation for using this simplified repre-
sentation is that the auction is so tremendously complex that even highly skilled human
bidders were unable to reason efficiently using the full complexity of all dependencies
in the situation, and had to simplify the representation they used in order to make the
problem tractable. One of our hopes in carrying out auction agent research is to re-
lieve the human bidders of some of this complexity burden, allowing them to use richer
goal representations. Potentially, this would improve the efficiency of the allocation of
goods, leading to a consequent increase in value for the bidders, the auctioneer, and
society at large through the more-efficient utilisation of goods.

3.2 Uncertain Knowledge

In our preliminary experiments [1], agents had full knowledge of each others’ utility
functions; however, in reality, agents have only rough estimates of each others’ utilities,
arising from market research on that company’s competitors. In this paper, we only
consider strategies that are robust to uncertain knowledge.

We obtained an agent’s estimate of the budget and MVs of other agents by taking
the actual budget and MVs of those agents and randomly perturbing the values by up to
20% in either direction, separately for each value. Every priority for every other agent
had approximately a25% chance of being guessed incorrectly. Note that under this pes-
simistic uncertainty scheme, any set of priorities can be guessed for any agent. Particu-
larly problematic is the interaction between this extreme randomness, the large variation
in market size, and strategic bidders with relatively modest goals; simply guessing the
priority of the largest market (New York) incorrectly for the strategic bidder with the
smallest budget would add50%–100% to the estimate of that bidder’s overall desired
value of licenses. This large uncertainty poses a significant problem for any agent strat-
egy that makes use of knowledge about the other agents, requiring successful strategies
to be robust to misinformation.

4 General Agent Strategy

Table 1 summarizes the agent bidding algorithm. The quantities in Steps 2 and 3 are:

Remaining eligibility: bidder’s current eligibility minus the bidding units tied up in
licenses of which it is provisional winner;

Remaining budget: bidder’s total budget6 minus the money tied up in licenses of
which it is provisional winner;

Current values for markets: use the MV or EMV, depending on the agent’s priority
for the market and the number of licenses in the market for which the bidder is
already provisional winner;

Current costs for each market: prices of the least expensive licenses in each market.

6 We use strict budget limits to more accurately model the real auction; our conversations with
a human bidding team revealed they were allocated a fixed block of money by their parent
company, and were unable to spend more without extensive negotiation.



Table 1: High-level overview of the general agent bidding algorithm. Agents differ in opera-
tionalizations of Step 4

REPEAT (once per round)
1. Get market prices from server
2. Compute remaining budget and eligibility
3. Compute current values and costs of markets
4. Choose desired licenses within constraints
5. Submit bids to server at cheapest increment

UNTIL game over

Once the set of desired licenses is determined, the agent bids at the 1-increment
price for those and only those licenses (Step 5 in Table 1). All agents in this paper
use this basic strategy; they only differ in how they choose desired licenses (Step 4).
Note that in some implementations Step 5 is conducted in several stages throughout the
execution of Step 4, but is otherwise unchanged.

4.1 Knapsack and Improvements

The baseline agent we used was the Knapsack agent. This agent was built on the real-
ization that determining which licenses to bid on for maximum profit given a limited
budget is very similar to the classic knapsack problem. The addition of BUs and eligi-
bility costs for each license makes this problem more complex, however treating it as a
knapsack problem usually yields optimal solutions [1].

While the Knapsack agent is extremely effective, it has one major weakness: it does
not explicitly take into account the presence of other bidders. Our search for improved
strategies is driven by two questions:

1. Can we develop a strategy that will beat a field of Knapsack agents?
2. Can we find a strategy that will outperform Knapsack when used by all agents?

The first question assumes that the other agents have not discovered a strategy su-
perior to Knapsack, and so will all be Knapsack agents. Accordingly, it is necessary
to adopt a strategy that, when faced with competing Knapsack agents, will generate
more profit than when using Knapsack. Certain types of strategies (such as Budget
Stretching [1]) which exploit the myopic nature of Knapsack initially appeared promis-
ing, allowing significant profit gains in the perfect-knowledge case. However, when we
relaxed the unrealistic assumption of perfect knowledge, the gains all but disappeared—
the strategies seemed too fragile to be effective in the more realistic setting.

In this paper, we focus on the second question, describing a strategy (PRSDR)
which—when used by all agents—will significantly outperform Knapsack and addi-
tionally has the stability property that in an auction of all PRSDR agents, each agent is
better off sticking with PRSDR than reverting back to Knapsack.

5 Randomized SDR

One simple strategy that can lead to an improvement in the utilities of all involved is
Strategic Demand Reduction (SDR) [9]. In SDR, bidders avoid competing with each



other for licenses, keeping the prices on those licenses low for all involved. Essentially,
bidders using SDR allocate the goods available among themselves and then do not
compete on goods they have not been allocated.

For example, consider two identical bidders with$15 each bidding on two identical
items worth$10 each. Myopic greedy bidding, like Knapsack, would see each bidder
obtain one item for$8, since they can afford to pay$7 for each item but$8 for only
one. Realizing this, the bidders can reduce their demands to one item each, ensuring
both bidders will obtain an item for only$1, earning$9 of profit instead of$2.

Since explicit communication is not permitted, the strategy needs implicit methods
to allocate licenses [4]. Hence, it is necessary to use a variant of SDR that can allocate
licenses dynamically and with only implicit communication.

The essential idea inRandomizedSDR (RSDR) is to bid for any desired unclaimed
license; recall that ties are broken randomly. The first strategic bidder to become the
provisional winner of a license is said toown that license. This approach (shown in
Table 2) provides step 4 of Table 1’s general agent bidding algorithm.

Table 2: Description of the naive RSDR implementation of Step 4 in Table 1
4. Use Knapsack to bid for an optimal set of desired li-

censes that are not owned by another strategic bidder
(i.e., don’t steal licenses from strategic bidders).

An agent always takes any licenses it owns back from secondary bidders. The simu-
lator reports a provisional winner for each license that has received a bid, ensuring that
each license any agent desires will become owned by a strategic bidder, and hence can
be acquired by that bidder without competition from other RSDR agents.

No profit above the valuations of the secondary bidders (the effective price floor)
is wasted in figuring out this allocation; with this approach, the strategic bidders will
determine their allocation while the secondary bidders are still active.

5.1 RSDR Algorithm

The expected net value to an agent when all agents use naive RSDR is directly related
to the total value the agent desires and inversely related to the amount of competition in
those desired markets, as is reasonable. However, due to the underlying randomness, it
is possible for an agent to be unlucky and receive only a small amount of value.

For each agent, one can compute asatisfactionvalue, which is simply the total value
to that agent of the licenses it owns divided by the total value to that agent of all of its
goals. If the satisfaction of an agent is sufficiently below that of the other agents, it has
been anunlucky bidder. If the satisfaction of an agent is low enough, the agent might
actually receive less profit from RSDR than from Knapsack.

An unlucky agent can notice that it is such well before the end of the auction, since
license allocations are largely determined early. Additionally, an agent can always start



out using RSDR and then later switch to using Knapsack.7 Thus, the unlucky agent
would likely switch to Knapsack and earn more while lowering the profits of the other
agents, which may be desirable if they are competitors. Accordingly, an unlucky bidder
will defect from the RSDR scheme and go back to using Knapsack.

This risk of defection lowers the utility of RSDR, and so should be minimized.
One simple method of avoiding such unlucky bidders is by introducing a process of
fairing. The algorithm allows an unlucky bidder to randomly take licenses that it wants,
regardless of ownership, until its satisfaction is no longer too low (Table 3). If this
strategy drives another agent’s satisfaction too low, the newly unlucky agent would then
take licenses from others, until every agent has a reasonable amount. Since not all agents
can be above average satisfaction, the threshold that determines an unlucky bidder must
be less than the average; in practice, a value around 90% works well, although any
threshold low enough to prevent profit loss due to spurious fairing would also suffice.

Table 3: Description of the RSDR implementation of Step 4 in Table 1
4.1. Use Knapsack to bid for an optimal set of desired li-

censes that are not owned by a strategic bidder.
4.2. Submit bids on randomly selected licenses until no

longer an unlucky bidder. (i.e., only steal as much as
is fair)

Table 3 shows Step 4 of the RSDR algorithm. In Step 4.2, ownership of a license can
be taken just by bidding on that license and becoming provisional winner. This process
greatly smoothes out the randomness of the scheme, but is not without risks of its own.

5.2 Cheater Detection

The fairing process allows agents to take licenses that other agents had considered their
own. This behavior provides great temptation to cheat by deciding not to use RSDR and
defecting to Knapsack instead: if the other agents are using RSDR, they will allow you
to take any licenses you want, and won’t compete for them.

To dissuade agents from cheating, there must be a punishment for it such that
cheaters expect to make asmallerprofit than when they don’t cheat. Adding such pun-
ishments to RSDR makes a self-enforcing algorithm, calledPunishingRSDR (PRSDR).

Before cheaters can be punished, they must be detected by observing which agents
take licenses from other bidders when they shouldn’t. In theFAucSdomain, three ob-
servations are key to our detection algorithm:

1. A PRSDR agent only takes licenses owned by another agent through either fairing
or by punishing a cheater.

2. Fairing only occurs when an agent is unlucky (below-average satisfaction rating).
7 This is since all RSDR or PRSDR agents bid each round on at least enough licenses to attain

the average satisfaction level, meaning such agents will always have enough eligibility to be
able to switch to Knapsack without disadvantage.



3. A PRSDR agent punishes at most one of the five strategic bidders.

These points tightly circumscribe the situations in which a PRSDR agent will take
licenses from another agent; it must either have low satisfaction (fairing) or only take
from one agent (punishing). Accordingly, our agents identified cheaters as follows:

– If an agent has a high satisfaction in a round (at least 10% higher than average for
that round) and yet it bids on licenses owned by two or more other agents, then it is
showing evidence of cheating.

– If an agent shows evidence of cheating in five or more total rounds in the auction,
then it is considered a cheater for the remainder of the auction.

The second requirement is a result of the agent’s uncertain knowledge about each
other’s goals, and thus satisfaction levels. Since an agent that appears to have a high
satisfaction may in fact not, evidence of cheating in a round is not proof that the agent
is in fact a cheater. To reduce false positives, the satisfaction threshold for an agent to
be considered a cheater must be greater than the average satisfaction for the round, and
this evidence of cheating must be present for more than one round.

In practice, using a threshold of 10% over average satisfaction and requiring evi-
dence of cheating in 5 total rounds led to good results. These settings correctly iden-
tified every cheater in all of 60 test runs, while incorrectly identifying a complying
PRSDR agent as a cheater in none. Further experimentation indicated that good cheater
detection is not particularly sensitive to these two parameters: values within a modest
window of those above gave perfect or near-perfect ability to identify all cheaters. Thus,
there is no requirement that all agents agree upon a precise set of parameters.

Due to this high accuracy and the minimal effect of the rare errors potentially caused
by randomness, we assumed correct detection in our tests. While cheating was all-
or-nothing in this implementation, one could envision a more careful cheater who at-
tempted to stay hidden by cheating in moderation. However, any cheating that pushes
the cheater’s satisfaction over the threshold – usually 10% over the average – will be
detected, leaving little room for hidden cheating even with this simple all-or-nothing al-
gorithm. Moreover, the uncertain nature of the other agents’ information about an agent
means that any amount of cheating raises the risk of being flagged as a cheater, with
more cheating causing more risk. In particular, even cheating by adhering to the PRSDR
algorithm but with a higher fairing constant–say, insisting on having 100% of average
satisfaction instead of the default 90%–raises the chance of being flagged as a cheater
and severely punished. We leave the investigation of more sophisticated cheating and
cheating detection strategies for future work.

5.3 PRSDR Algorithm

Once the cheater(s) have been identified, many methods of punishment are possible.
Our work aimed for aggressive simplicity: if a cheater takes one of your licenses, make
it your first priority to take it back and then keep that license away from the cheater
(Table 4).

Cheaters are not considered to own licenses, and so any license that the other strate-
gic bidders have any interest in will become owned by one of them. Thereafter, any



Table 4: Description of the full PRSDR implementation of Step 4 in Table 1
4.1. Bid for any licenses stolen by a cheater. (i.e., don’t let

anyone steal more than is fair)
4.2. Use Knapsack to bid for an optimal set of desired li-

censes that are not owned by a strategic bidder.
4.3. Submit bids on randomly selected licenses until no

longer an unlucky bidder.

license the cheater tries to take will provoke an immediate reaction from the agent per-
ceived to be the legitimate owner of that license, who will not let the cheater have the
license until it becomes too expensive to take back, at which point the cheater will re-
ceive only a small amount of profit from the license. This removes any advantages due
to PRSDR from the cheater while still allowing other agents to profitably cooperate
among themselves in other markets.

5.4 Algorithm Detail

Table 5 recaps PRSDR in full algorithmic detail. The table presents only Step 4 of
Table 1; otherwise, an agent using PRSDR acts identically to a Basic Agent. The set of
strategic bidders participating in this improved strategy is denoted asB = fbigji=1::5.
Without loss of generality, we use the convention that an agent always refers to itself
as agentb1, and all other strategic bidders are agentsb2 throughbN , whereN = jBj.
Following this convention,Xi refers to the itemX corresponding to agenti.

In Table 5, license selection covers the first half of Part 1 (lines 1–10) and all of
Part 2. Part 1 handles internal state, while Part 2 computes the sets of available licenses
in each market, which is simply those licenses that are not owned by a strategic bidder
and whose price is less than this agent’s value for the license. Part 3 implements fairing,
and punishment is implemented in the second half of Part 1 (lines 11–16).

6 Empirical Results

In this section we present empirical results demonstrating the effectiveness PRSDR.
Our runs included only the largest 67 markets from Auction 35 (this is the subset

of the top 100 U.S. markets that were available in Auction 35), which constitute a large
majority of the value in the auction. This helped reduce run times to manageable levels.
There were 163 licenses available in these markets. As described above, we used five
strategic bidders and five aggregated secondary bidders, with priorities, market values,
and budgets randomly selected from a constrained distribution so as to realistically
represent the Auction 35 scenario. The secondary bidders are used to simulate realistic
auction conditions; hence only strategic bidders are included in the results.

6.1 Homogeneous Strategy Results

Our initial experiment measured the potential gain when all agents use the PRSDR
strategy compared to when they all use the Knapsack strategy. Aggregate results from



Table 5: PRSDR algorithm – steps 4 and 5 of general algorithm in Table 1
1. Initialize internal state

– bid queueQ = ;, 8i, won listWi = ; (1)
– 8 l 2 L (2)
� PWl � provisional winnerof l (3)
� Vl;i � valueof l to bi givenWi (4)
� Cl � price of l (minimum acceptable bid) (5)
� if PWl = 1 (i.e., this agent is prov. winner) (6)

� deduct cost paid, BUs ofl (7)
� addl toW1 (8)

� Ol � ownerof l (9)
� if Ol 6= b1, addl toWOl

(10)
� if PWl is acheaterandOl = b1, lock l (11)
� if l is locked, PWl 6= b1, andVl;1 > Cl (12)

� submit bid forl (13)
� deduct cost, BUs ofl (14)
� addl toW1 (15)

� else ifVl;1 < Cl unlock l (16)
2. Bid for available licenses

– 8 marketsm (17)
� Am � fl 2 mjVl;1 > Cl; Ol = ;g (18)
� until addedPriority(m) licenses fromm: (19)

(a) add alll 2 m s.t.PWl = b1 toW1 (20)
(b) add alll 2 m s.t.Ol = b1, l unlocked toQ (21)
(c) choosel 2 Am uniformly at random; add toQ (22)

– W1 =W1 [Q (23)
– bid onQ via Knapsack;Q = ; (24)

3. Conduct randomized fairing
– 8 bi 2 B (25)

� estimatesatisfactionSi =

P
l2Wi

Vl;iP
l2L

Vl;i

(26)

– setSavg =

P
b2B

Sb

jBj
(27)

– WhileS1 < 90% ofSavg (28)
� choose somel 2 L randomly (29)
� if l 62 W1; Vl;1 > Cl (30)

� addl toQ (31)
� addl toW1 (32)
� recomputeS1 (33)

– bid onQ via Knapsack (34)

120 runs of each of the Knapsack and PRSDR algorithms can be seen in Table 6. Profits
are rounded to the nearest$10 Million and cost is shown as a ratio of the amount of
money paid to the agent’s value for the licenses won.

These results show that PRSDR gives a large benefit to each agent over Knapsack.
The fourth column gives the ratio between the mean profit earned by that agent in the
Knapsack runs—defined to be 1.00—and in the PRSDR runs. The mean of these ratios



Table 6: PRSDR vs. Knapsack results
Method Agent Profit ($M) RatioCost

1 980 (�170) 1.00 .82
2 650 (�85) 1.00 .82

Knapsack 3 830 (�91) 1.00 .84
4 170 (�20) 1.00 .84
5 550 (�96) 1.00 .86

1 1240 (�210) 1.26 .76
2 820 (�83) 1.25 .77

PRSDR 3 1300 (�290) 1.58 .74
4 300 (�44) 1.78 .79
5 930 (�240) 1.68 .76

was 1.51, so on average an agent saw more than a50% increase in profit from using
PRSDR instead of Knapsack. Summing over all agents, they earned44% more profit
when all agents used PRSDR than when they used Knapsack.

Note that the standard deviations of the profits are relatively large. Due to random
tie-breaking and the highly discrete nature of the licenses being acquired, even simple
Knapsack auctions tend to be quite variable; indeed, simply adding one license from
one of the biggest markets can easily add30% to the profit earned by an agent.

The costcolumn is an indication of the amount of potential profit the agents are
earning. Recall that secondary bidders had valuations of approximately75% those of
the strategic bidders. Therefore, the strategic bidders were always forced to pay on av-
erage75% or more of their values for all licenses. It can be seen that PRSDR preserved
almost all of the remaining available profit, while Knapsack was not nearly as efficient.

6.2 Heterogeneous Strategy Results

The preceding results show the utility of all bidders using PRSDR or RSDR, which
are equivalent in all situations without unilateral defection. This section addresses the
question of cheaters. Table 7 presents the experiments with a single agent unilaterally
defecting to Knapsack, both with RSDR (lacking countermeasures) and with the more
robust PRSDR. The first two rows are repeated from Table 6 with the raw profit values
removed for clarity and all results aggregated into per-agent averages.

Table 7: Defection and punishment results
Method Ratio Cost

Knapsack 1.00 .84
(P)RSDR 1.51 .76

RSDR Cheater 1.63 .76
RSDR Victims 1.22 .79

PRSDR Cheater1.02 .83
PRSDR Enforcers1.17 .81



Rows 3 and 4 reflect the case in which a single agent (the “cheater”) defects to
Knapsack while all other agents (the “victims”) use (non-punishing) RSDR. The results
are averaged over 120 runs with each of the 5 agents defecting in 24 of the runs. The
results indicate that Knapsack is an effective defection from RSDR.

Note that the victims still do markedly better than by using Knapsack, even with a
Knapsack-using cheater—the RSDR algorithm still works as usual in markets in which
the cheater does not bid, and even in markets the cheater enters, competition is still kept
low. Due to the high price floor brought about by the secondary bidders (75% of value),
the cheater cannot afford to buy all the licenses it desires, so many are left for the other
agents; in a scenario with a lower price floor, however, this would be less true and there
would be more of a benefit to cheating and more of a loss for the victims.

The last two rows of Table 7 reflect the case in which the cheater still defects to
Knapsack, but the other agents identify the cheater and use PRSDR against it. Results
are averaged over 600 runs with each of the 5 agents defecting in 120 of the runs. In
this case, almost all of the cheater’s gains over Knapsack are removed by the punitive
bidding. Meanwhile, the other agents lose only a small amount of profit by punishing
the cheater (1.17 ratio vs. 1.22). Moreover, a lower price floor (under 75%) would likely
erase or even reverse this loss of profit for enforcing punishment, since a lower price
floor would allow an unchecked cheater to take more licenses and steal more of the
profit. In addition, recent evidence suggests people are indeed willing to pay a small
amount in order to punish a cheater [2]. Finally, alternative punishment strategies can
reduce or remove this negative effect.

These results indicate that given the choice of using PRSDR or Knapsack, all agents
do better if they all opt for PRSDR, and no individual agent can improve its profit by
unilaterally defecting to Knapsack.

6.3 Additional Results

In this section, we examine the effects of more than one agent defecting to Knapsack
simultaneously, and also examine the effects of varying the valuations of the secondary
bidders. Table 8 summarizes the results.

Table 8: Robustness results
Method Price Floor RatioLocal RatioCost

Multiple Cheater 75% 1.03 .84
Multiple Enforcer 75% 1.01 .83

Knapsack 50% 1.70 1.00 .74
PRSDR 50% 3.42 2.02 .51

Knapsack 75% 1.00 1.00 .84
PRSDR 75% 1.51 1.51 .76

Knapsack 85% 0.68 1.00 .89
PRSDR 85% 0.81 1.19 .87



The first two rows show average results of 72 runs, each with two agents running
Knapsack (the “cheaters”) and the rest running PRSDR (the “enforcers”). In aggregate,
the results are almost identical to scenarios where all agents use Knapsack.

The remaining rows of Table 8 show the results of varying the secondary bidder
valuation from the75% used in the preceding experiments. The values for the run with
secondary bidder valuations at75% are repeated from Table 7. All values in the “Ratio”
column are compared to the defined1:00 baseline set by Knapsack at75% secondary
bidder valuation level, while “Local Ratio” is the ratio between PRSDR and Knapsack
at that particular secondary bidder valuation level.

Regardless of the price floor, PRSDR still preserves the available profit margin al-
most optimally, resulting in only fractionally more than the price floor being paid for the
licenses acquired; by comparison, in the low price-floor (50%) case, Knapsack wastes
almost half of the potential profit. At the higher price floor, PRSDR still outperforms
Knapsack, but only marginally. In this scenario, there is little room for profit since once
the secondary bidders drop out, the prices are very close to the agents’ values, and at
most one bid can be made above the 85% price floor before the license is too expensive.

Overall, these results indicate that PRSDR is an effective and stable strategy in the
auction scenario considered here.

6.4 Improved Auction Design

The PRSDR bidding strategy relies on the bidders’ ability to exchange information via
the auction mechanism, for example via their bids or knowledge of current provisional
winners; this amounts to implicit collusion. Since the auctioneer — in this case, a pow-
erful government — receives much of the same information as the bidders in terms of
rough goal estimates and bid history, it is important to note that the auctioneer is not
able to simply shut down PRSDR. Most important to note is that the auctioneer is bound
by the auction rules just as strongly as the bidders, preventing it from arbitrarily levying
punishments against bidders whose actions it does not like.

Moreover, especially since the auctioneer is highly unlikely to have information
more precise than the very rough estimates available to the bidders, it is not at all clear
that the auctioneer would even be able to conclude with any confidence that collusion
was taking place. While the auctioneer can employ the same cheater-detection algo-
rithm as the bidders, it is crucial to note that this algorithm can never provide proof
than any agent is indeed using PRSDR, only that the agent may be using any number
of possible strategies, including PRSDR, that lead to the observed bidding behaviour.
Absence of evidence is not evidence of absence, so concluding a bidder is using a collu-
sive strategy rather than some unknown non-collusive strategy is by no means a trivial
problem. Accordingly, the efficiency of the auction may be improved by effecting rule
changes that make it harder for bidders to exchange the information necessary to coor-
dinate SDR.

One way to limit information exchange is to reduce the total number of bidding
rounds. Our paper demonstrates that unrealistically low minimum starting bids make
coordinating SDR easier by allowing exchanging signals via bids that are still unreal-
istically low and thus totally risk-free. A higher minimum bid (perhaps 40% of the li-
cense’s presumed value) would permit agents to place far fewer bids on the license, thus



limiting their ability to coordinate demand reduction using PRSDR or other methods.
Weighing against this, the minimum bid cannot be too high as the auctioneer usually
wants to ensure the sale of the item even if it overestimates its value. Moreover, PRSDR
may be able to succeed even in this setting, as the higher minimum bid only lowers the
risk-free rounds in which to do fairing but does not remove all opportunities.

A second possible way to prevent PRSDR is to restrict the information the auction-
eer makes available to the bidders. For example, if agents are only told current prices
and the licenses of which they are provisional winner, then PRSDR is impossible to
implement: the bidders cannot tell which licenses are unowned or which were taken by
a secondary bidder. On the other hand, there are good reasons to reveal information to
the bidders from a theoretical perspective [3], as more information tends to result in a
more efficient auction. Sealed-bid auctions also remove this information channel, but
are more challenging for bidders and force the auctioneer to solve the winner determi-
nation problem [7]. Ultimately, in realistic complex scenarios there may be no perfect
auction mechanism. Our research, as exemplified in this paper, focuses on improving
agent bidding strategies given a fixed mechanism.

7 Discussion

In Section 4.1 we laid out one of the goals of this work as trying to “find a strategy that
will outperform Knapsack when used by all agents.” In Section 6 we demonstrated that
PRSDR is such a strategy. However, it wouldn’t be a practical strategy were it possible
for an individual agent to improve its performance by unilaterally changing back to
Knapsack while the others use PRSDR. Thus, we also demonstrated that PRSDR is
self-enforcing.

This last property is the key property of Nash equilibria strategies in game theory.
Indeed, one way of looking at this result is as an equilibrium strategy of a repeated
bimatrix game as examined in [4]8. A bimatrix game is defined by a pair of matrices
M1 andM2 of the same size (same number of rows and same number of columns). At
each stage, the players choose actions, a rowi for the row player and a columnj for the
column player. The row player receives payoffM1[i; j] and the column player receives
payoffM2[i; j]. The objective for the players is to maximize their average payoff over
an unbounded number of stages.

For example, consider the following2� 2 game.

M1 =

�
3 0
5 1

�
;M2 =

�
3 5
0 1

�
:

If the row player selects action 0 and the column player selects action 1, then the row
player receives payoff 0 and the column player receives payoff 5.

This game is commonly known as the prisoner’s dilemma. It roughly characterizes
the interactions between the strategies RSDR (action 0) and Knapsack (action 1): If both

8 Although the agents presented in this paper do not maintain state from run to run as is typically
the case in an iterated scenario, the fact that each run consists of many rounds gives the agents
a chance to respond to each others’ strategies.



agents do RSDR, they are both better off than if they both do Knapsack; but knowing
that the other agent is going to do RSDR, it is better to defect to Knapsack.

PRSDR in effect adds a third action possibility to the game such that if both players
do it, there is no incentive to defect: it is a pure Nash equilibrium. The following3� 3
game roughly characterizes this situation, with action 0 representing RSDR, action 1
representing PRSDR, and action 2 representing Knapsack.

M1 =

2
43 3 0
3 3 2
5 1 1

3
5 ;M2 =

2
43 3 5
3 3 1
0 2 1

3
5 :

These numbers are reflective of the data presented in Table 79. The 3’s characterize the
fact that if all agents play PRSDRor RSDR, they all do equally well. It is only when
one of the agents plays Knapsack that the payoffs deviate.

Note that in this game, both agents playing the middle action (reflecting PRSDR) is
a pure Nash equilibrium with each agent getting a payoff of 3, while in the prisoner’s
dilemma the only pure Nash equilibrium is when both agents play action 1 (Knap-
sack), giving them each a payoff of 1. In the larger (3-action) game, unlike in prisoner’s
dilemma, the Nash equilibrium strategy is also pareto optimal, meaning that no agent
can achieve a better result without harming the other. This demonstrates the potential
utility of adding a “punish” action to the space of possible actions.

Ideally, we would like to conclude that a version of PRSDR is a an equilibrium
strategy within the fullFAucSdomain. However, identifying equilibrium strategies in
such a complex scenario is far from straightforward. The preceding analysis applies
only for the three strategies considered in this paper: Knapsack, RSDR, and PRSDR.
The possibility remains open that there exist other strategies that outperform the general
PRSDR strategy.

8 Conclusions and Future Work

The general PRSDR strategy applies to any simultaneous multiple-round (SMR) auc-
tions in which there is room to bid below the expected sell prices and in which their are
not complex value interdependencies among the goods for sale. By this strategy, bidders
tacitly agree to reduce demand provided that others appear to be doing the same. While
the full details of PRSDR as presented in this paper are specific to the FCC spectrum
auction scenario, the goal of this work has been both to introduce the general strategy
and to implement it fully in a complex, realistic auction scenario.

There is some evidence that strategies related to PRSDR actually do emerge in
practice. PRSDR is essentially a randomized scheme for SDR in that bidders allow

9 The small cost agents pay to punish a cheater is arguably acceptable [2], and is likely an
artifact of our particular implementation, as it utilised a particularly aggressive punishment
scheme that concentrated on powerful deterrence over short-term profit maximization. More-
over, a lower small-bidder price floor would allow a cheater to steal more licenses, likely
worsening the loss victims suffer and making punishment more attractive. Accordingly, this
game-theoretic analysis concentrates on the general characteristics of the scenario.



a random process to influence their winnings. Roth and Ockenfels [6] argue that the
common practice of late-bidding (sniping) in eBay auctions is evidence that people use
similar randomized strategies.

As we examined only a small part of the strategy space, we make no claims that
PRSDR should or would emerge in real-life spectrum auctions. However, given that the
Knapsack strategy is relatively effective against unknown strategies, and hard to beat
unilaterally if all other agents adopt it, it is significant to note that a stable, robust, and
more profitable strategy exists.

More than creating a bidding strategy for immediate use, this work examines inter-
esting and promising ideas, the concepts behind which may be applied in future work
to define directly-usable bidding strategies or countermeasures to such strategies. In
particular, PRSDR demonstrates that useful implicit communication is possible even in
realistic settings where significant work has been devoted to the problem of preventing
communication. Our work suggests general methods both for exploiting this available
communications channel and for blocking information transfer in this means. PRSDR
as given is indeed usable, however, so the question remains how this algorithm would
be employed, especially given the restrictions on communication present in many real
auctions. While PRSDR relies on assumptions about the other bidders to be effective,
the necessary assumptions are limited to the following:

1. All bidders are actively seeking means to maximize their profit.
2. They are likely to have heard of or discovered PRSDR on their own and realize that

PRSDR leads to more profit than competitive bidding.
3. They are open to trying a rational profit-seeking strategy like PRSDR.

As noted, bidders can, with no harm to themselves, abandon PRSDR partway through
if not enough others are using it. Hence, starting out using PRSDR has little to no risk
and great potential reward: it is worth giving others the chance to use PRSDR so ev-
eryone can win. If enough of the biggest bidders in an auction independently decide to
try starting with PRSDR, there is the potential for them to improve their profits without
ever having had a bit of communication outside of the bids they place.

Our ongoing research focuses on continuing to explore the strategy space of this
particular auction mechanism while generalizing our results to other scenarios.
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