Improving Efficiency of Leading a Flock in Ad Hoc Teamwork Settings

Katie Genter₁, Noa Agmon₂, and Peter Stone₁

¹University of Texas at Austin Austin, TX 78712 USA ₂Bar Ilan University Ramat Gan, 52900, Israel

May 7, 2013

Outline

1 Introduction

- 2 Problem Definition
- 3 Search Methodology
- 4 Effect of Non-stationary Ad Hoc Agents
- 5 Plan Repair Methods
- 6 Summary

Ad Hoc Teamwork

Always:

- Only in control of a single agent or subset of agents
- Shared goals
- No pre-coordination

Sometimes:

- Unknown teammates
- No explicit communication

Flocking

- Emergent behavior found in nature
 - Birds, fish, insects

- Animals follow a simple local behavior rule
- Group behavior is cohesive

Example — Leading Teammates in Ad Hoc Settings

Example — Leading Teammates in Ad Hoc Settings

Example — Leading Teammates in Ad Hoc Settings

 $L_{\text{earning}} A_{\text{gents}} R_{\text{esearch}} G_{\text{roup}}$

Why is this an ad hoc teamwork problem?

- No explicit control of flocking agents
- All agents have shared goals (maximize team utility)
- On-the-fly coordination

In previous work (Jadbabaie et al. 2003, Su et al. 2009), the flock eventually converges to a single controllable agent's heading.

In previous work (Jadbabaie et al. 2003, Su et al. 2009), the flock eventually converges to a single controllable agent's heading.

Research Problem:

Is it possible for one or more agents to lead the team to a desired orientation, and if so what is the most efficient way of doing so?

Outline

1 Introduction

2 Problem Definition

3 Search Methodology

4 Effect of Non-stationary Ad Hoc Agents

- 5 Plan Repair Methods
- 6 Summary

Problem Definition

Each agent has:

- Constant velocity
- 2D Position
- Global orientation

Problem Definition - Neighborhood

Each flocking agent reacts only to agents within a certain *neighborhood* around itself.

 Characterized by a visibility cone

UT Austin
$$L$$
earning A gents R esearch G roup

Problem Definition - Orientation Update

A flocking agent's orientation at the next time step is set to be the *average global orientation* of all agents currently within the agent's visibility cone.

Problem Definition

(Loading Video...)

14/31

Outline

1 Introduction

2 Problem Definition

3 Search Methodology

4 Effect of Non-stationary Ad Hoc Agents

5 Plan Repair Methods

6 Summary

Forward Search Planning Method (AAMAS'13)

Backward Search Planning Method

Comparison of Forward and Backward Search Methods

- Forward Search
 - Planning for moving ad hoc agents is easier and more intuitive
 - Less efficient (2^{numAdHoc} * numAdHoc + 1 * maxSteps)
- Backward Search
 - Planning for moving ad hoc agents is more difficult
 - More efficient (maxSteps * 2numAdHoc²) due to better pruning

Outline

1 Introduction

- 2 Problem Definition
- 3 Search Methodology

4 Effect of Non-stationary Ad Hoc Agents

5 Plan Repair Methods

6 Summary

Motion Can Be Helpful

Non-stationary ad hoc agents can influence the flocking agents to reach θ^* faster than stationary ad hoc agents.

(Loading Video...)

20/31

Motion Can Be Harmful

Non-stationary ad hoc agents can influence the flocking agents to reach θ^* slower than stationary ad hoc agents.

(Loading Video...)

Outline

1 Introduction

- 2 Problem Definition
- 3 Search Methodology
- 4 Effect of Non-stationary Ad Hoc Agents
- 5 Plan Repair Methods

Overview

- Altering Ad Hoc Agent Behavior
- Replanning Ad Hoc Agent Behavior
 - Move Inside Visibility Cone
 - Move Border Closer to θ^*

Altering Ad Hoc Agent Behavior

- Keeps the same desired sequence of orientations for the flocking agents
- Recalculates ad hoc orientations
- May not be possible in some situations

Replanning Ad Hoc Agent Behavior

Replanning Ad Hoc Agent Behavior

Move Border Closer to θ^*

Conjecture

Running the plan repair methods on all the minimal size plans returned by the search will obtain an optimal plan for moving ad hoc agents.

- Must all minimal size plans be repaired?
- Can just one minimal size plan be repaired?
- Or must all plans be repaired?

Related Work — Ad Hoc Teamwork

Jones et al. 2006

- Empirically studied dynamically formed heterogeneous multi-agent teams
- All agents know they are working as a team
- Agmon and Stone 2012, Stone et al. 2010
 - Leading teammates in ad hoc settings from a game theoretic approach
- Stone et al. 2010
 - Introduced the ad hoc teamwork problem

Related Work — Flocking

- Han et al. 2006
 - Studied how one agent can influence the direction in which a flock of agents is moving
 - Utilized one ad hoc agent with unlimited, non-constant velocity
- Reynolds 1987, Vicsek 1995
 - Concerned with simulating flock behavior
 - Not concerned not with adding controllable agents to the flock
- Jadbabaie et al. 2003, Su et al. 2009
 - Used controllable agents to influence the flock
 - Only concerned with making the flock converge to some orientation eventually
 Learning Agents Research Group

Future Work

Optimal behavior for non-stationary ad hoc agents

Repair one minimal plan?

- Repair all minimal plans?
- Repair all plans?

General case of non-stationary agents

Summary

Research Problem:

Is it possible for one or more agents to lead the team to a desired orientation, and if so - what is the most efficient way of doing so?

