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Abstract— A central goal of robotics and Al is to be able to
deploy an agent to act autonomously in the real world over an
extended period of time. To operate in the real world, autonomous
robots rely on sensory information. Despite the potential richness
of visual information from on-board cameras, many mobile
robots continue to rely on non-visual sensors such as tactile
sensors, sonar, and laser. This preference for relatively low-
fidelity sensors can be attributed to, among other things, the
characteristic requirement of real-time operation under limited
computational resources. Illumination changes pose another big
challenge. For true extended autonomy, an agent must be able to
recognize for itself when to abandon its current model in favor
of learning a new one; and how to learn in its current situation.
We describe a self-contained vision system that works on-board
a vision-based autonomous robot under varying illumination
conditions. First, we present a baseline system capable of color
segmentation and object recognition within the computational
and memory constraints of the robot. This relies on manually
labeled data and operates under constant and reasonably uniform
illumination conditions. We then relax these limitations by
introducing algorithms for i) Autonomous planned color learning,
where the robot uses the knowledge of its environment (position,
size and shape of objects) to automatically generate a suitable
motion sequence and learn the desired colors, and ii) [llumination
change detection and adaptation, where the robot recognizes for
itself when the illumination conditions have changed sufficiently
to warrant revising its knowledge of colors. Our algorithms are
fully implemented and tested on the Sony ERS-7 Aibo robots.

Index Terms— Color Learning, Illumination Invariance, Real-
time Vision.

I. INTRODUCTION

OBILE robotic systems have recently been used in

fields as diverse as medicine, surveillance, rescue, and
autonomous navigation [1]-[3]. One key enabler to such ap-
plications has been the development of powerful sensors such
as color cameras and lasers. Visual input, in the form of color
images from a camera, can be a rich source of information,
considering the sophisticated algorithms recently developed in
the field of computer vision, for extracting information from
images. Even so, most robots continue to rely on non-visual
sensors such as tactile sensors, sonar, and laser [4].

This preference for relatively low-fidelity sensors rather than
vision can be attributed to three major discrepancies between
the needs of robots and the capabilities of state-of-the-art
vision algorithms.

1) Most state-of-the-art approaches to challenging com-
puter vision problems, such as segmentation [5], [6],
blob clustering [7], object recognition [8]-[10] and
illumination invariance [11]-[13] require a substantial
amount of computational and/or memory resources.
However, mobile robotic systems typically have strict
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constraints on the computational and memory resources
available, but still demand real-time processing.

2) Most mobile robot platforms are characterized by a
rapid nonlinear motion of the camera, especially legged
robots. But most vision algorithms assume a stationary
or slowly moving camera [10], [14].

3) Most current vision algorithms require extensive manual
color calibration, making them inapplicable in domains
with changing illumination conditions; robots, while
moving around the world, often go into places with
changing illumination. The very same pixel values cor-
responding to a color under one illumination may corre-
spond to a different color in another illumination. Many
current mobile robot applications ignore color because
of this sensitivity to illumination, thereby overlooking
potentially useful information.

This paper aims to address these challenges by exploiting the
structure that is often present in a robot’s environment. We
define structure as the objects of unique shapes and colors
that exist at known locations — a color-coded world model.
We show that a robot can use this structure to model the color
distributions, thereby achieving efficient color segmentation.
Specifically, knowing that it is looking at an object of known
color allows it to treat certain image pixels as labeled training
samples. The domain knowledge also helps develop object
recognition algorithms that can be used by the robot to localize
and navigate in its complex world towards additional sources
of color information.

We have developed a mobile robot vision system that
learns colors using the uniquely color-coded objects at known
locations, and adapts to illumination changes. Specifically, this
article makes the following contributions:

« First, it describes a baseline vision system that tackles
color segmentation and object recognition on-board a
robot with constrained computational and memory re-
sources. The baseline system is robust to jerky nonlinear
camera motion and noisy images. However, it relies on
manually labeled training data and operates in constant
and uniform illumination conditions.

e Second, it exploits the structure inherent in the envi-
ronment to eliminate the need for manual labeling. The
image regions corresponding to known objects are used
as labeled training samples. The learned color distri-
butions are used to better identify the objects, thereby
localizing and possibly moving to other sources of color
information. We introduce a hybrid color representation
that allows for color learning both within the controlled
lab settings and in un-engineered indoor corridors.

o Third, it provides robustness to changing illumination



conditions. We introduce an algorithm that enables the
robot to detect significant changes in illumination. When
a change in illumination is detected, the robot au-
tonomously adapts by revising its current representation
of color distributions. As a result, the robot is able to
function over a wide range of illuminations.

The focus of this article is on the design of efficient robot
vision algorithms that address challenging problems such as
color segmentation, object recognition, color learning and
illumination invariance. Using our algorithms the robot is able
to operate autonomously in an uncontrolled environment with
changing illumination over an extended period of time. The
vision system is fully implemented and tested on a commercial
off-the-shelf four-legged robot, the Sony ERS-7 Aibo [15]. We
also illustrate the general applicability of our algorithms with
the running example of a vision-based autonomous car on the
road; we refer to it as the car-on-the-road task.

The remainder of the article is organized as follows. After a
brief description of our test platform (Section II), we present
our baseline vision system (Section III), which tackles the
problems of color segmentation, object recognition and line
detection, in real-time. Section IV extends the baseline system
by eliminating the offline color calibration phase: the robot
uses the environmental structure to autonomously generate a
suitable motion sequence to learn the desired colors. Section V
further enables the robot to detect significant illumination
changes and adapt to them. We compare our approaches to
related work in Section VII and present our conclusions and
directions for future research in Section VIII.

II. TEST PLATFORM

The experiments described in this paper were performed on
the Sony ERS-7 Aibo four-legged robot [15]. It is ~ 280mm
tall and ~ 320mm long. It has 20 degrees of freedom: 3 in its
head, 3 in each leg, and 5 more in its mouth, ears and tail. Its
primary sensor is a CMOS color camera with a limited field-
of-view (56.9° horz. and 45.2° vert.). Images are captured at
30Hz in the YCbCr image format, with a resolution of 208 x
160 pixels. In addition to 64MB on-board memory, the robot
has noisy touch sensors, IR sensors, and a wireless LAN card
for inter-robot communication.

The Aibo is popular in part due to its use as the standard
platform in the RoboCup Legged League', where teams of
four Aibos play a competitive game of soccer on an indoor
field of size =~ 4m x 6m (Figure 1). The goal is to direct a
ball into the opponents’ goal while preventing the other team
from scoring a goal. All processing for vision, localization,
locomotion and action-selection, is performed on board using
a 576MHz processor. Not operating at frame rate places the
robot at a severe disadvantage in terms of reaction time. Games
are currently played under constant and reasonably uniform
illuminations, but the ultimate goal of the RoboCup initiative
is to create a team of humanoid robots that can beat the
human soccer champions by the year 2050 on a real, outdoor
soccer field [16]. The computational (and memory) constraints
and the rapid nonlinear camera motion make the Aibo a
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Fig. 1: An Image of the Aibo and the field.

challenging representative test platform. Other robot platforms
may have more (or less) computational resources, and different
camera parameters. But, in all mobile robot domains there are
some hard constraints on these properties, within which the
robot has to operate. Though we use the Aibo as a case study,
our algorithms are described in general terms and are hence
applicable to other mobile robot domains as well.

III. BASELINE VISION SYSTEM

We first present a real-time vision system that runs on a
mobile robot platform with limited computational and memory
resources, and rapid camera motions. Within these constraints
that are characteristic of mobile robots we tackle the tasks of
color segmentation, object recognition, and line detection.

Our baseline vision system takes as input a stream of
limited-field-of-view images, the robot’s initial position, and
its joint angles over time, including the tilt, pan and roll
of the camera. Additional sensory inputs, if available, can
also be considered. On the Aibo, accelerometer values can be
used to determine the body tilt and roll. The desired outputs
are the distances and angles, with an associated probability
measure, to a set of color-coded objects. In order to operate at
frame rate (30Hz), each complete cycle of operation, including
localization, locomotion, and decision-making, can take a
maximum of 33msec. Throughout this section, we provide
timing data for our algorithms. Though motivated by the robot
soccer domain, this problem formulation is characteristic of
other common mobile robot vision applications. In the car-on-
the-road task for example, the camera mounted on a rapidly
moving car has to deal with a noisy, distorted stream of images
and detect color-coded objects such as stop and yield signs.

Our vision algorithm proceeds in two stages: i) color
map generation and region/blob formation (Section III-A) ii)
marker and line recognition (Section III-B). Figure 2 shows
four representative images from the robot soccer environment,
which we use to illustrate the results of each stage of our vision
system (Figures 3—-6). Sample videos showing the robot’s view,
after each stage of processing, are available online.?
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(a) (b) () (d)
Fig. 2: Sample Images in the RGB color space.

A. Color Segmentation and Region Merging

The first step in our baseline vision system is color seg-
mentation, mapping image pixels to color labels. > A complete
mapping identifies a label for each point in YCbhCr space:

Vp,q,r € [0,255], {Yy, Cby, Crr} = 1 |ic[o,5] (1)

Though prior research has produced several good segmen-
tation algorithms [S5], [17], [18], they are computationally
expensive to perform on robots such as the Aibo, given
its computational constraints. A variety of approaches have
been implemented in the RoboCup domain, including decision
trees [19] and axis-parallel rectangles in color space [20].

Our approach is motivated by the desire to create mappings
from each YCbCr pixel value to a color label [21]. We
represent this mapping as a color map, or color cube, created
via an off-board training phase. A set of images (x 25)
captured by the robot’s camera are hand-labeled such that the
robot learns the range of pixel values that map to each color.
The hand-labeled data labels only ~ 3% of the color space,
and to generalize from this labeling, each cell in the color
map is assigned a color label that is the weighted average
of the cells a certain Manhattan distance away (a form of
Nearest Neighbor-NNr). As a result, holes and edge effects
are removed, and a good representation is created for colors
with overlap. To reduce memory requirements we subsample
the color space to have values ranging from 0-127 in each
dimension. The resulting color map, ~ 2MB in size, is loaded
on the robot and is used to segment subsequent images.

The segmentation in the YCbCr color space is sensitive to
minor illumination changes, such as with shadows or high-
lights. Previous research in rescue robotics has suggested that
a spherically distributed color space, LAB, inherently provides
some robustness to illumination changes [2]. To take advantage
of LAB’s properties without incurring the overhead of on-line
conversion, the initial labeling and the NNr operation are done
in LAB. Then, each cell in the YCbhCr color map is labeled
based on the label of the corresponding cell in the LAB color
map. The on-line pixel-level segmentation process remains a
table lookup process taking ~ 0.1msec per image.
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Fig. 3: Sample Segmented Images — Compare with Figure 2.

We compared the segmentation accuracy of the two color
spaces over ~ 30 images captured to reflect small changes in
illumination. The classification accuracies (%) were 81.2+4.4

3pink, yellow, blue, orange, red, darkblue, white, green, black.

and 92.7 £ 2.5 for YCbCr and LAB respectively (statistically
significant at 95% confidence level). Figure 3 shows the
segmentation performance on the images in Figure 2.

The next step is to find contiguous regions of constant
colors, i.e. cluster pixels of the same color into meaning-
ful groups. Our approach is modeled after previous ap-
proaches [21]. As the image pixels are segmented they are
organized into run-lengths [22] represented as the start point
and length in pixels of a contiguous color strip. As an
optimization, we only encode colors that identify objects of
interest — we omit the colors of the field (green) and the
lines (white). Lines are detected by an efficient line-detection
algorithm described in Section III-B.

Next, we use an implementation of the Union-Find algo-
rithm [23] to merge run-lengths of the same color that are
within a threshold Euclidean distance from each other. We also
progressively build bounding boxes i.e. rectangular boundaries
around the regions. This abstraction provides a set of bounding
boxes, one for each region in the current image, and a set of
properties corresponding to each region, such as the number
of pixels it envelopes. Our technical report [24] has complete
details on the thresholds and properties used in this process.
Figure 4 shows the result of region formation.
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Fig. 4: Sample Regions — Compare with Figure 2.

Color segmentation and region formation, which constitute
the low-level vision module, take ~ 18msec per image.
Though presented in the context of the Aibo, the algorithms
presented here generalize to other mobile robot applications.
In the case of the car-on-the-road task, we would still need
to recognize colored regions in varying backgrounds, e.g. red
for the stop sign, yellow for the yield sign, and white for the
lines on the road.

(d)

B. Object Recognition and Line Detection

Once we have candidate regions, the next step is to rec-
ognize the relevant objects in the image. Segmentation errors
due to noise and/or irrelevant objects (people, chairs, walls,
computers) can lead to the formation of spurious regions
(Figure 4) and make object recognition challenging. Though
several successful approaches have been proposed for object
recognition [9], [10], they typically involve extensive compu-
tation of object features or large amounts of storage in the
form of object templates corresponding to different views.

Most robot application environments are structured and
this domain knowledge can be exploited to recognize useful
objects. The domain knowledge that gets incorporated as
geometric and heuristic constraints depends on the application.
Here, all the objects in the robot’s environment (fixed markers
used for localization and the moving objects that are tracked)
are color-coded. In the car-on-the-road task, the objects could
include the stop and yield signs, other vehicles and grass by
the side of the road.



A set of geometric and heuristic constraints are designed to
eliminate spurious regions that do not meet constraints on size,
density and image position. For example, all objects of interest
to the robots are on or a certain distance above the ground,
and have bounding boxes with high densities. Full details of
the heuristics are available in our technical report [24]. These
heuristics are easy to apply since the required properties were
stored in the region formation stage. The degree of conformity
between expected and observed values of the properties is
used to determine the probability of occurrence of each object.
For example, if the known aspect ratio (height/width) of an
object is 2.0 and observed aspect ratio in the image is 1.5, the
probability of occurrence of the object is 0.75.

We tested the object recognition performance over eight
sequences of ~ 200 images each, ground truth provided by
a human observer. We performed this test both without and
with robot motion (objects stationary). The corresponding
classification accuracies were 100% and 92.7% respectively
(no false positives). The motion-based image distortion causes
a decrease in accuracy. Figure 5 shows sample results.

(a) (b) (©) (d)
Fig. 5: Sample Object Recognition — Compare with Figure 2.

Once an object is recognized in the image, the relative
distance and angle to the object are determined using trigono-
metric transforms and known sizes [24]. The vision module, up
to the object recognition phase, takes ~ 28msec per frame. A
video of the robot’s view, as it moves and recognizes objects,
can be seen online.*

In addition to the objects, lines with known locations are
important sources of information, especially since the robots’
main focus (during a game) is the ball, and other robots
may occlude the markers. In the car-on-the-road task, lines
help recognize lanes and pedestrian crossing zones. Previous
research has resulted in methods such as Hough Transforms,
and edge detectors such as Canny and Sobel [22]. But given
that the robot also has to localize, move, and cooperate with
team-members using its limited computational resources, these
algorithms are computationally expensive to use.

Our approach builds on a previous approach in the RoboCup
domain [25]. It utilizes environmental knowledge: edges of
interest on the field involve a white-green or green-white-
green transition corresponding to the borders and the field
lines respectively. A series of vertical scans are performed
on the segmented image, the scan lines spaced 4 — 5 pixels
apart to speed up the scanning, and to eliminate noisy lines that
extend only a few pixels across. The observation of lines closer
to the robot provides more reliable (less noisy) information.
The robot therefore scans the image from the bottom of the
top, and once an edge pixel is detected along a scan line,
the algorithm proceeds to the next scan line even though it
prevents it from finding line pixels further along the scan
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line. The scan lines are suitably oriented to compensate for
the camera motion-based image rotation. The candidate edge
pixels are filtered through a set of heuristic filters whose
parameters were determined experimentally [24].

Instead of using the detected edge pixels as localization
inputs, as in previous approaches [25], lines are fit to the
edge pixels using the Least Square Estimation procedure [26].
Although line pixels (or lines) provide useful information, the
line intersections, though still not unique, involve much less
ambiguity, which can be resolved using prior robot pose. In
order to determine the line intersections, a pair of lines are con-
sidered at a time. Line intersections are accepted only if they
satisfy experimentally determined heuristic thresholds [24].
Figure 6 shows a set of images with field lines in pink and
border lines in red.
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Fig. 6: Sample Line Recognition — Pink Field Lines and Red
Borders.

We also analyzed the performance over =~ 2000 images
both for a stationary and moving robot. The corresponding
classification accuracies were 100% and 93.3% respectively,
with no false positives in either case. We noticed a significant
improvement in our localization accuracy (10 — 15%) once
we used lines/line intersections as inputs to our particle
filtering localization algorithm [27]. The entire baseline system
operates at ~ 27msec per frame so that the robot is able to
operate at frame-rate (=~ 33msec per frame).

C. Summary - Baseline System

We have described a baseline vision system that works
in real-time on the robot, performing color segmentation,
object recognition and line detection. This work is also
described in [28]. Though fully implemented and effective
in the robot soccer domain, the system suffers from two
major drawbacks that prevent autonomous operation. First,
even for a fixed illumination, the vision system requires time-
consuming manual color calibration. Second, the system is
highly dependent on constant and uniform illumination for
its operation, something that is not representative of a typical
mobile robot environment. In the next two sections we present
our solutions to these problems: autonomous color learning
and illumination invariance.

IV. PLANNED COLOR LEARNING

The baseline system described above (Section III-A) in-
volved hand-labeling several (=~ 20 — 30) images, leading to
more than an hour of manual effort before the robots can be
deployed. The calibration has to be repeated each time the
illumination changes significantly. Here, we present a novel
approach that enables the robot to autonomously learn the
desired colors, suitably planning its motion sequence based on
known positions of color-coded objects. Using a hybrid color



representation the entire color map is learned autonomously in
less than five minutes, both within controlled lab settings and
in the less controlled settings outside it. The segmentation and
localization accuracies are comparable to those from a hand-
labeled color map.

A key defining feature of the algorithm is that there is no
a priori color knowledge or labeled color data. The method
depends only on the known positions, shapes and colors of ob-
jects. It is independent of the actual color labels (blue, yellow
etc.) assigned to each object, and is hence robust to different
illuminations and even changes of entire colors (e.g. repainting
all red objects as blue and vice versa). Even in the car-on-the-
road task, we could use objects of known colors: red-stop sign,
yellow-yield sign, white/yellow lines on the road, to learn the
desired colors. Note that we are not entirely removing the
human input: we still provide the positions of useful objects.
But, in many applications, particularly when object locations
change less frequently than illumination, it is more efficient
than hand-labeling several images.

As in the case of the baseline vision system (Section III),
the problem of color segmentation can be characterized by a
set of inputs, outputs and constraints.

1. Inputs:

e A color-coded model of the world that the robot in-
habits. The model contains a representation of the size,
shape, position, and colors of all objects of interest. We
did not use this in the baseline system.

e A stream of limited-field-of-view images. The images
present a view of the world with many useful color-
coded objects, but also many unpredictable elements.

e The initial position of the robot and its joint angles over
time, particularly those specifying the camera motion.

2. Output:

e A Color Map that assigns a color label to each point
in the input color space.
3. Constraints:

e Limited computational and memory resources with all
processing being performed on-board the robot.

e Rapid motion of the limited-field-of-view camera with
the associated noise and image distortions.

We aim to generate a reliable mapping from the inputs to the
outputs, while operating within the constraints imposed by the
test platform. In our approach, the robot uses the color-coded
world model to plan a motion sequence that puts it in positions
appropriate to learn the desired colors. At each position, the
robot selects suitable image regions and models colors using
a hybrid color representation. The learned colors are used
to recognize objects, localize and hence move to positions
suitable for learning other colors. We begin by formally
describing the color segmentation problem (Section IV-A), a
generalization of the description in Section III-A. Section IV-
B provides details of the actual algorithm. A description of the
experimental setup and the experimental results (Section IV-C)
is followed by a summary (Section IV-D).

A. Problem Specification

In order to recognize objects and operate in a color-coded
world, a robot typically needs to recognize a certain discrete

number of colors (I € [0,N — 1]). A complete mapping
identifies a color label for each point in the color space:

Vi, j,k € [0,255],
Og : {c1i,c2,5,c3.6} = Uicpo,n—1) 2

where c;, ¢z, c3 are the color channel (e.g. RGB) values, and
E depicts the dependence on the current illumination.

In our preliminary color learning approach [29], each color
was represented using a three-dimensional (3D) Gaussian with
mutually independent color channels, i.e. we assume that
there is very little correlation between the values along the
three color channels for any color. In practice this assumption
does not hold perfectly, depending on the color space under
consideration. For example, in the lab, the correlation coef-
ficients between Cb and Cr color channels in the Y CbC'r
color space, pcper = —0.71,—0.67 for yellow and orange
respectively. But for most colors in the color space we use for
segmentation (L A B), the correlation is small enough to justify
the independence assumption, which simplifies the compu-
tation considerably. Using empirical data and the statistical
technique of bootstrap [30], we determined that the Gaussian
representation closely approximates reality. In addition, the
Gaussian model only requires the computation and storage
of the mean and covariance matrix for each color, thereby
reducing the memory requirements.

For the 3D Gaussian model, the apriori probability density
functions (pdfs) for a color (I € [0, N — 1]) is given by:

1
p(ell) (271')3/2|2l|1/2
where the random variable ¢ = ¢;, ¢z, c3 represents the distri-
bution of color’s values along the three color channels, while
N(p;,X;) defines the 3D Gaussian for color [. Assuming
equal priors (P(I) = 1/N, VI € [0,N — 1]), each color’s
aposteriori probability is given by:

p(l|c) o< p(c|l) “)

The Gaussian model for color distributions performs well
inside the lab, generalizing with limited samples and handling
minor illumination changes when the color distributions are
actually unimodal. However, in un-engineered settings outside
the lab, factors such as shadows and larger illumination
changes result in multi-modal color distributions which cannot
be modeled properly using Gaussians.

Color histograms provide an excellent alternative to Gaus-
sians when colors have multi-modal distributions in the color
space [31]. Here, the possible color values (0-255 along each
channel) are discretized into a specific number of bins that
store the count of pixels that map into that bin. The 3D
histogram of a color can be normalized to provide the pdf
for that color (Equation 3):

. 6{_%(C_“l)t2;1(c_”l)} (3)

HiStl(bl, b2, b3)
Z Hist;
where by, b2, bz represent the histogram bin indices corre-

sponding to the color channel values c;, ca, c3. The aposteriori
probabilities for each color are then given by Equation 4.

plell) = ©)



Unfortunately, histograms do not generalize well with lim-
ited training data, for instance for new samples produced by
minor illumination changes. Constrained resources prevent the
implementation of operations more sophisticated than smooth-
ing. Also, histograms require more storage, which would be
wasteful for colors that can be modeled as Gaussians. Here,
we combine the two representations such that they complement
each other: colors for which a 3D Gaussian is not a good fit
are modeled using 3D histograms. The decision is made online
by the robot, for each color, based on pixel samples.

Other distribution models were also found to be feasible
(exponential, mixture-of-Gaussians etc), but the Gaussian and
histogram constitute a minimal set of models that provide the
required capability to model the desired distributions, and they
perform as well as the other more sophisticated models. In
addition, the parameters of these two models can be easily
determined in real-time within the computational constraints
of mobile robot platforms.

B. Algorithm

Algorithm 1 describes our approach. Underlined function
names are described below.

Our preliminary algorithm [29] (lines 11,12,17 — 20) had
the robot learn colors by moving along a prespecified motion
sequence, and modeled each color as a 3D Gaussian. As
mentioned above, the Gaussian assumption may not hold out-
side the constrained lab setting. The current algorithm uses a
hybrid representation that automatically chooses between two
different models for each color and automatically generates
a motion sequence suitable for learning colors for any given
robot starting pose and object configuration.

The robot starts off at a known pose with the locations
of various color-coded objects known. It has no prior color
information (images segmented black). It has a list of colors
to be learned (Colors) and an array of structures (Regions),
where each structure corresponds to an object of a particular
color and stores a set of properties, such as its size (length,
width) and its three-dimensional location (x,y,z) in the world
model. Both the robot’s starting pose and the object locations
can be varied between trials, which causes the robot to modify
the list of candidate regions for each color. Though this
approach does require human input, in many applications,
particularly when object locations change less frequently than
illumination, it is more efficient than hand-labeling images.

Due to the noise in the motion model and the initial lack
of visual information, constraints need to be imposed on
the robot’s motion and the position of objects, in order to
resolve conflicts that may arise during the learning process.
These heuristic constraints depend on the problem domain.
Here, two decisions need to be made: the order in which
the colors are to be learned, and the best candidate object
for learning a particular color. The algorithm currently makes
these decisions greedily and heuristically, i.e. it analyzes one
step at a time without actually planning for the subsequent
steps. The details of the algorithm and the corresponding
heuristics are presented primarily for the replicability of our
work. Our aim is to demonstrate that such autonomous color

Algorithm 1 Planned Autonomous General Color Learning

Require: Known initial pose (can be varied across trials).

Require: Color-coded model of the robot’s world - objects at
known positions, which can change between trials.

Require: Empty Color Map; List of colors to be learned -
Colors.

Require: Arrays of colored regions, rectangular shapes in 3D;
Regions. A list for each color, consisting of the properties
(size, shape) of the regions of that color.

Require: Ability to navigate to a target pose (z,y, 0).

1: 1 =0,N = MaxColors
2: Timege = CurrTime, Time[] — the maximum time
allowed to learn each color.

3: while ¢ < N do

4. Color = BestColorToLearn( 7 );

5. TargetPose = BestTargetPose( Color );

6:  Motion = RequiredMotion( T'argetPose )

7:  Perform Motion {Monitored using visual input and
localization}

8: if TargetRegionFound( C'olor ) then

9: Collect samples from the candidate region,

Observed|][3].

10: if PossibleGaussianFit(Observed) then

11: LearnGaussParams( C'olors|i] )

12: Learn Mean and Variance from samples

13: else { 3D Gaussian not a good fit to samples }

14: LearnHistVals( C'olors]i] )

15: Update the color’s 3D histogram using the sam-

ples

16: end if

17: UpdateColorMap()

18: if !Valid( Color ) then

19: RemoveFromMap( Color )

20: end if

21:  else

22: Rotate at target position.

23:  end if

24:  if  CurrTime — Timess > Time[Color] or
RotationAngle > Ang:, then

25: t=i+1

26: Timeg = CurrTime

27:  end if

28: end while
29: Write out the color statistics and the Color Map.

learning can be accomplished in a setting where it is typically
done manually.

In our task domain, the following three factors influence
these choices:

1. The amount of motion (distance) that is required to
place the robot in a location suitable to learn the color.

2. The size of the candidate region the color can be
learned from.

3. The existence of a region that can be used to learn
that color independent of the knowledge of any other (as
of yet) unknown color.



Specifically, if a color can be learned with minimal motion
and/or is visible in large quantities around the robot’s current
location, it should be learned first. Sometimes a color can
be learned more reliably by associating it with another color
around it. For example, in our default configuration, pink has
regions of the same size associated with either blue or yellow.
The robot attempts to learn one of those two colors before it
attempts to learn pink. Essentially, these factors are used by
the robot in a set of heuristic functions to learn the colors
with minimal motion and increase the chances of remaining
well-localized. The relative importance weights assigned to
the individual factors are used to resolve the conflicts, if any,
between the factors.

The robot computes three weights for each color-object
combination ([,4) in its world:

wy = fa( d(l,7) )
we = fi( s(l,7) )
ws = fu( 0(,i) ) (©)

where the functions d(l,3), s(I,4) and o(l,i) represent the
distance, size and object description for each color-object com-
bination. The function f4( d(l,¢) ) assigns a smaller weight
to distances that are large, while fs( s(l,7) ) assigns larger
weights to larger candidate objects. The function fy,( o(l,37) )
assigns larger weights if the particular object (i) for a particular
color (1) is "unique’, which here implies that it is not composed
of any color, in addition to (1), that is currently unknown.

The BestColorToLearn (line 4) is chosen as:

arg max

le[O,Nfl]{ ie[{)r,lla\ll‘fil] [ fa(d(t,9))

FRCAGD) + fuloli)) ]} )

where the robot parses through the different objects available
for each color (IV;) and calculates the weights. For each color,
the object that provides the maximum weight is determined.
Next, the color that results in the maximum among these
values is chosen to be learned first. The functions are currently
experimentally determined based on the relative importance of
each factor, though once estimated they work across different
environments. One future research direction is to estimate
these functions automatically as well.

Once a color is chosen, the robot determines the target
object to learn the color from (best-candidate-object):

{ faCdai))
1A+ fulolli)) } o (®)

For a chosen color, the best candidate object provides the
maximum weight for the given heuristic functions.

Next, the robot calculates the BestTargetPose() (line 5) to
detect this target object. Specifically, using the known world
model, it attempts to move to a pose where the entire candidate
object would be in its field of view. Using its navigation
function — RequiredMotion() (line 6) — the robot determines
and executes the motion sequence to place it at the target pose.
The current knowledge of colors is used to recognize objects

arg max
i€0,N;—1]

and localize using particle filtering [27] thereby providing
visual feedback for the motion.

Once it gets close to the target pose, the robot searches
for image regions that satisfy the heuristic constraints for the
target object. The structure Regions[Color][best-candidate-
object] provides the actual properties of the target object
such as its (x,y,z) location, width and height. Based on its
pose and geometric principles, the robot uses these properties
to dynamically compute suitable constraints. The robot stops
when either TargetRegionFound() (line 8) is true or its pose
estimate corresponds to the target position.

If a suitable region is found, the robot stops with the region
at the center of its visual field. The pixel values in the region,
which satisfy simple out-lier checks, are used as verifica-
tion samples, Observed, to check goodness-of-fit with a 3D
Gaussian (PossibleGaussianFit() — line 10). The statistical
bootstrap technique is used, with KL-divergence [32] as the
distance measure (Algorithm 2). Appendix II describes the
bootstrap test and shows that the 3D Gaussian is a good fit
for the color distributions within controlled lab settings.

Algorithm 2 PossibleGaussianFit(), line 10 of Algorithm 1
1: Determine Maximum-likelihood estimate of Gaussian pa-
rameters from samples, Observed.
2: Draw N samples from Gaussian — Estimated, N = size
of Observed.
Dist = K LDist(Observed, Estimated).
Mix Observed and Estimated — Data, 2N items.
for ¢ =1 to NumTrials do
Sample N items with replacement from Data — Sety,
remaining items — Sets.
Dist; = KLDist(Sety, Sets)
8: end for
9: Goodness-of-fit by p-value: where Dist lies in the distri-
bution of Dist;.
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If the 3D Gaussian is a good fit, the robot executes Learn-
GaussParams() (line 11). Each pixel of the candidate region
(currently black, i.e. unlabeled) that is sufficiently distant from
the means of the other known color distributions is selected.
The mean and covariance of these pixel values represent the
pdf of the color under consideration. If the 3D Gaussian is
not a good fit for the samples, the robot models the color as
a 3D histogram, the same candidate pixels now being used to
populate the histogram (LearnHistVals() — line 14).

Next, the function UpdateColorMap() (line 17) uses the
learned distributions to generate the Color Map. Assigning
color labels to each cell in the 128 x 128 x 128 map is
computationally expensive and is performed only once every
five seconds. Histograms are normalized (Equation 5) to
generate pdfs. Each cell in the color map, which corresponds
to a particular 3D vector of pixel values, is assigned a label
corresponding to the color which has the largest aposteriori
probability (Equation 4) for that vector of pixel values.

By definition, Gaussians have a non-zero value throughout
the color space. During the learning process, the robot could
classify all the color map cells into one of the colors currently
included in the map, resulting in no candidate regions for



the other colors. Therefore, a cell is assigned a particular
color label iff its distance from the mean of the corresponding
color lies within an integral multiple of the color’s covariance.
Histograms do not have this problem.

The updated map is used to segment subsequent images
and detect objects. This helps validate the learned parameters
and remove erroneous color statistics (Gaussian/Histogram) if
necessary (line 18, 19). Furthermore, it helps the robot localize
and move to suitable locations to learn the other colors.
Our learning algorithm essentially bootstraps, the knowledge
available at any given instant being exploited to plan and
execute the subsequent tasks efficiently.

If the candidate object is not found at the target location, it
is attributed to slippage and the robot turns in place, searching
for the candidate region with slightly relaxed constraints. The
robot turns a complete circle rather than turning a certain
amount in each direction to avoid abrupt transitions. The
constraints on size and location prevent the selection of a
wrong target image region under most cases, and the validation
process handles the other cases. If the robot has turned in
place for more than a threshold angle (Ang;, = 360°) and/or
has spent more than a threshold amount of time on a color
(T'ime[Color] = 20sec), it transitions to the next color in the
list. The process continues until the robot has tried to learn
all the colors. Then the color map and statistics are saved. A
video of the color learning process can be seen online.’

Instead of providing a color map and/or the motion sequence
each time the environment or the illumination conditions
change, we now just provide the object descriptions in the
robot’s world and have it plan its motion sequence and learn
colors autonomously. The robot can be deployed a lot faster,
especially in domains where object locations change less
frequently than illumination conditions.

C. Experimental Results

Our algorithm is successful if the robot is able to plan a
suitable motion sequence and learn all the desired colors in
its environment. Hence, we test both the color learning and
the planning components of the algorithm. We hypothesized
that the hybrid color learning scheme should allow the robot
to automatically choose the best representation for each color
and learn colors efficiently both inside and outside the lab. Our
goal is for the hybrid representation to work outside the lab
while not resulting in a reduction in accuracy in the controlled
lab setting. We proceeded to test that as follows.

We first compared the two color representations, Gaussians
(AllGauss) and Histograms (AllHist), for all the colors, inside
the controlled lab setting. Qualitatively, both representations
produced similar results (Figure 7). We then quantitatively
compared the two color maps with the labels provided by a
human observer, over ~ 15 images. Since most objects of
interest are on or slightly above the ground (objects above
the horizon are automatically discarded), only suitable image
regions were hand-labeled (on average 6000 of the total
33280 pixels). The average classification accuracies for AllHist
and AllGauss were 96.7 £ 0.85 and 97.1 £ 1.01 while the

Swww.cs.utexas.edu/users/AustinVilla/?p=research/auto_vis

corresponding storage requirements were 3000K b and 0.15Kb
respectively i.e. AllHist performs as well as AllGauss but
requires more storage.

(g (h) (1)
Fig. 7: Images inside the lab. (a)-(c) Original, (d)-(f) AllGauss, (g)-
(i) AllHist. AllHist performs as well as AllGauss.

A main goal of this work is to make it applicable to less-
controlled settings. We next tested the robot in two indoor
corridors, where the natural setting consisted of a series of
overhead fluorescent lamps placed a constant distance apart,
resulting in non-uniform illumination and a lot of highlights
and shadows on the objects and the floor. In the first corridor,
the floor was non-carpeted and of a similar color as the walls.
The robot was provided with a world model with color-coded
objects of interest, but because of the non-uniform illumination
the floor and the walls had multi-modal color distributions.
AllGauss could not determine a suitable representation for the
ground and walls, causing problems with finding candidates
for the other colors — Figure 8§).

(a) “ (b (c) G

Fig. 8: Segmentation with: (a)-(b) 3D Gaussians, (c)-(d) 3D His-
tograms. Histograms model ground or wall colors better.

With the hybrid color representation, GaussHist, the robot,
based on the statistical tests, ended up modeling one color
(walls and ground) as a histogram and the others as Gaussians.
Figure 9 compares AllHist with GaussHist.

The AllHist model does solve the problem of modeling
ground color better. But, while Gaussians are robust to slight
illumination changes, histograms, in addition to requiring more
storage, do not generalize well to tackle minor illumination
changes that are inevitable during testing (errors in row 2
of Figure 9). The inability to generalize well also causes
problems in resolving conflicts between overlapping colors.
For example, when the robot attempts to learn red (opponent’s
uniform color) after learning other colors, it is unable to
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Fig. 9: Images outside the lab: (a)-(c) Original, (d)-(f) AllHist, (g)-
(1) GaussHist. GaussHist performs better under minor illumina-
tion changes.

identify a suitable candidate region. As seen in Figure 10 (e,
f), it leads to false positives and the segmentation performance
over other colors deteriorates.

Fig. 10: Images with opponent color in map: (a)-(c) Original,
(d) GaussHist, (e)-(f) AllHist. GaussHist models overlapping
colors better.

With Gaussians, the robot has the option of varying the
spread of the known overlapping colors, such as orange and
pink. Hence GaussHist successfully learns the total set of
colors using the good features of both models.

Next, we ran the color learning algorithm in a different
corridor, where the floor had a patterned carpet with varying
shades and the illumination resulted in multi-modal distri-
butions for the ground and the walls. Once again, AllGauss
did not model the multi-modal color distributions well while
AllHist had problems when faced with the inevitable minor
illumination variations during testing. But GaussHist enabled
the robot to successfully learn the desired colors. We also ran
the color learning experiments with other objects instead of
those on the robot soccer field (trash cans, boxes etc.). These
objects were not uniform-colored, resulting in multi-modal
color distributions. But the robot successfully learned those
colors as well, as a result of the hybrid color representation.

Table I documents numerical results for the two test cases

outside the controlled lab setting. The storage requirements
reflect the number of colors represented as histograms instead
of Gaussians. Sample images for this setting can be seen
online.® We also provide images to show that the planned color
learning scheme can be applied to different illuminations, and
can handle re-paintings — changing all yellow objects to white
and vice versa poses no problem.

| Type | Accuracy (%) | (KB) |
AllHist — 1 89.53 +4.19 | 3000
GaussHist —1 | 97.13 & 1.99 440
AllHist — 2 91.29 4+ 3.83 | 3000
GaussHist —2 | 96.57 4 2.47 880

TABLE I: Accuracies and storage requirements of models in two
different indoor corridors. The results are statistically significant.

One challenge in experimental methodology was to mea-
sure the robot’s planning capabilities in qualitatively difficult
setups (objects configurations and robot’s initial position).
We described our algorithm to seven graduate students with
experience working with the robots and asked them to pick
a few test configurations each, which they thought would
challenge the algorithm. For each configuration, we measured
the number of successful learning attempts: an attempt is
deemed a success if all five colors needed for localization
(pink, yellow, blue, white, green) are learned. Table II tabulates
the performance of the robot in its planning task over 15
configurations, with 10 trials for each configuration.

Config | Success (%) Localization Error
X (cm) Y (cm) 0 (deg)
Worst 70 17 20 20
Best 100 3 5 0
avg 90 £ 10.7 8.6+3.7 | 13.1+£53 | 9£7.7

TABLE II: Successful Planning and Localization Accuracy.

Table II also shows the localization accuracy of the robot
using the learned color map. The robot is able to plan its
motion to learn colors and execute it successfully in most
of the configurations that were designed to be adversarial.
The corresponding localization accuracy is comparable to that
obtained with the hand-labeled color map (= 6¢m, 8cm, 4deg
in X, Y, and 0).
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Fig. 11: Sample Configuration where robot performs worst.
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One configuration where the robot performs worst is shown
in Figure 11. Here, it is forced to move a large distance
to obtain its first color-learning opportunity (from position 1
to 2). The large motion without visual feedback sometimes
leads the robot into positions quite far away from its target
location and it is unable to find any candidate image region that
satisfies the target object’s constraints. Currently, failure in the
initial stages strands the robot without any chance of recovery.
A suitable recovery mechanism using additional geometric
constraints is an important area for future work. Note that the
failure is largely due to external factors such as slippage: the
color-learning plan generated by the robot is quite reasonable.
A video of the robot using a learned color map to localize to
points in an indoor corridor can be seen online. ’

D. Summary - Color Learning

One major drawback of our baseline vision system (Sec-
tion III) was the need for elaborate manual sensor calibration
before deployment. Here, we have described an algorithm
that enables the robot to use the known world model (struc-
ture) to autonomously plan a suitable motion sequence and
learn colors. Using our hybrid representation allows for color
learning both within the controlled lab environment and in
less controlled settings outside it, such as indoor corridors.
The algorithm bootstraps — the color map available at any
stage is used to detect objects, thereby localizing better to
locations suitable for learning other colors. The segmentation
and localization accuracies with the learned color map are
comparable to that with the hand-labeled color map. In addi-
tion, the robot is able to plan its motion sequence for several
different object configurations that were specifically designed
to be adversarial. This approach is also described in [29], [33].

In our robot soccer domain the objects of interest are known
markers that are color-coded. In the car-on-the-road problem,
the vision system would be able to learn a yield sign colored
yellow and a stop sign painted red. Hence we use colors as
the distinctive features. But in environments with features that
are not constant-colored, other feature representations such as
SIFT [8], could be used. As long as the locations of the objects
remain as indicated on the map, the robot could robustly re-
learn how to detect them.

We have made it possible to quickly train a new color map
whenever illumination changes significantly. But it does not
provide a mechanism for automatically detecting and adapting
to illumination changes. In the next section, we tackle this
limitation of the baseline vision system, its sensitivity to
illumination changes.

V. ADAPTING TO ILLUMINATION CHANGES

A robot operating in the real world is subjected to il-
lumination changes, such as between day and night. When
illumination changes, it causes a nonlinear shift in the color
distributions in the color space [12], and the previously trained
color map ceases to be useful. On robots with color cameras,
this typically requires the repetition of the training phase that

Twww.cs.utexas.edu/users/AustinVilla/?p=research/gen_color
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generates the color map. In real world tasks such as the car-on-
the-road example, lack of proper color information can lead
to rather disastrous consequences.

(e) ® (€9) ()

Fig. 12: Sample Images showing Illumination Sensitivity.

As shown in Figure 12 the color map trained for an illumi-
nation condition works fine for minor changes in illumination
but results in very bad segmentation when the illumination
changes significantly. The top row shows segmentation results
when a color map is trained and tested on images captured
under the same illumination condition. The bottom row shows
the segmentation obtained when the same map is used to
segment images captured under a different illumination — note
that almost entire objects are segmented incorrectly.

Our autonomous color learning algorithm, described in
Section IV-B, enables the robot to learn the color map but
continuous human supervision is still required to enable the
detection of illumination changes. Stated differently, we have
enabled the robot to decide What to learn (choosing between
Gaussian and Histogram for color distributions) and How fo
learn (planning motion sequence). But the robot still cannot
decide When to learn. In order to work over a range of
illuminations, the robot must be able to:

1. Detect a change in illumination conditions by extracting

suitable statistics from its input images;

2. Automatically learn a new color map if it is put in an
illumination condition which it has never seen before;

3. Transition to an appropriate color map if it is placed in
an illumination condition that it has learned a color map
for, and use that for subsequent vision processing;

4. Perform all the necessary computation efficiently without
having an adverse effect on its task performance.

We formally describe the problem and our solution in Sec-
tion V-A, followed by the algorithm (Section V-B), the exper-
imental results (Section V-C) and a summary (Section V-D).

A. Problem Specification

In order to detect significant changes in illumination, a
mechanism for representing different illuminations and dif-
ferentiating between them is needed.

We hypothesized that images from the same lighting con-
ditions would have measurably similar distributions of pixels
in color space. The original image is available in the YCbCr
format, with values ranging from [0-255] along each dimen-
sion. In an attempt to reduce storage, but retain the useful
information, we transformed the image to the normalized RGB
space, i.e. (r,g,b). By definition:



R+1 G+1 B+1

r=——m— g=——— b=—"—"— (9
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since 7 + g + b = 1, any two of the three features are a

sufficient statistic. An illumination is represented by a set
of (r,g) histograms (pdfs), quantized into N bins in each
dimension, corresponding to images captured by the robot.
We then need a well-defined measure capable of detecting
the correlation between discrete distributions. Based on ex-
perimental validation (see Appendix I-C), we use the popular
entropy-based measure: KL-divergence. For two 2D (r,g)
histograms A and B with N bins along each dimension:

N-1N—-1 A
KL(AB) =) ) (Aij-In B
=0 j=0 ’
The more similar two distributions are, the smaller is the KL-
divergence (KLD) between them. Since KLD is a function of
the log of the observed color distributions, it is reasonably
robust to large peaks in the observed distributions, and hence
to images with large regions of a single color. The lack of
symmetry in KLD is eliminated using the Resistor-Average
KLD (RA-KLD) (see Appendix II-A for details).

Given a set of pdfs of pixel values corresponding to M
different illuminations, we have previously shown that it is
possible to effectively classify the test image histogram into
one of the illumination classes [34]. A major limitation to
this approach was that the illumination conditions had to be
known in advance, and color maps had to be trained for each
illumination. Here we make a significant extension in that we
do not need to know the different illuminations ahead of time.

In addition to a set of of (r, g) histograms corresponding to
an illumination (rgsqmp[¢]), the robot calculates the RA-KLD
between every pair of histograms. The resultant distribution
of the distances between the histograms under a particular
illumination, say D;, is modeled as a Gaussian that provides
a second order statistic representing the illumination. When
the illumination changes significantly, the average RA-KLD
distance between a test (r,g) pdf and rgsamp[i] maps to a
point well outside the 95% range of the intra-illumination
distances (D;), providing a measure for detecting a change
in illumination conditions.

(10)

B. Algorithm

Our algorithm for detecting illumination changes is summa-
rized in Algorithm 3 and described in the text below.

The robot begins by learning the color map for the current il-
lumination, by generating a suitable motion sequence using the
world model, as described in Algorithm 1 (line 2). The color
learning process takes less than five minutes, and we implicitly
assume that the illumination does not change significantly
during this period. Next, it moves around its environment
and collects sample image histograms in (r, g) that represent
this illumination. It also computes the distribution of RA-
KLD distances, modeling it as a Gaussian (Dcyrr111), 1.€. the
mean and standard deviation of the distances describe the
distribution (line 3).
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Algorithm 3 Illumination Change Detection

Require: For each illumination ¢ € [0, M — 1], color map and
distribution of RA-KLD distances D);.
1: Begin: M =0, current = M.
2: Generate motion sequence and learn colors - Algorithm 1.
: Generate rgsqmplcurrent][], N (r,g) space histograms,
and distribution of RA-KLD distances, D yrrent-
: Save color map and image statistics, M = M + 1.
. if currentTime — testTime > timey, then
Tgtest = sample (r, g) test histogram.
for i=0to M —1 do
dAvgiesi[i] = 7 22 ; KLDist(rgsest, rgsampli][])
end for
10:  if dAvgiest[current] lies within the threshold range of
Dcurrent then
11: Continue with current color map.
12:  else if dAvgiese[i] lies within the range of D;,i #
current then

w

B AN

13: Use corresponding color map, current = .

14:  elseif Vi € [0, M —1], dAvgies:[i] lies outside the range
of D; then

15: Re-learn color map autonomously: Algorithm 1.

16: Save (r, g) pdfs for new illumination.

17: Generate the distribution of RA-KLD distances.

18: Transition to the new color map for subsequent

operations.

19: current =M, M =M + 1.

20:  end if

21:  testT'ime = currentTime.

22: end if

Periodically (times;, = 0.5, line 5), the robot generates
a test image histogram (rg:cs:, line 6) and computes its
average distance to each set of previously computed (7, g)
pdfs (rgsamplt] — lines 7-9). If the average distance lies
within the threshold range (95%) of a known distribution of
distances (D);) other than the current one, the robot transitions
to the corresponding illumination. The corresponding color
map is used for all subsequent operations (lines 12, 13). But,
if the average distance lies outside the threshold range of all
known distribution of distances (line 14), the robot represents
the current environmental state as a new illumination. It
then proceeds to learn a color map using the autonomous
color learning approach in Algorithm 1 (line 15). It also
collects image statistics, i.e. image histograms in (7, g) and the
distribution of RA-KLD distances (lines 16, 17). The statistics
are used in subsequent comparisons for change in illumination.
Changing the threshold changes the resolution at which the
illumination changes are detected but we found that the robot
is able to handle minor illumination changes reasonably using
the color map corresponding to the closest illumination. In
more recent work, which we do not describe here, we have
found that a Bayesian update can be used to smoothly track
minor illumination changes and operate consistently at high
accuracy levels. In practice, the robot ends up learning only
three different illuminations over a range of illuminations



intensities (& 450luz — 1600/ux). With transition thresholds
to ensure that a change in illumination is accepted iff it occurs
at least 6 times in 10 tests, it smoothly transitions between the
different color maps that it has learned. The entire process is
performed without manual supervision.

C. Experimental Results

We are primarily interested in testing two facets of our
algorithm: i) the ability to decide When to learn, i.e. the ability
to detect illumination changes, and ii) the ability to quickly
transition between illuminations for which a representation has
already been learned.

1) When to Learn: In order to test the ability of the robot
to detect illumination changes accurately, we had the robot
learn colors and image histograms in (r,g) corresponding
to a particular illumination. We then had the robot move
in its environment chasing a color-coded ball, and randomly
changed the illumination on the field by controlling the in-
tensity of specific lamps. We repeated the experiment over
different starting illuminations and tested the ability of the
robot to detect significant illumination changes. Table III
presents results averaged over 1000 trials. It is essentially the
confusion matrix with the rows and columns representing the
ground truth and observed values respectively.

(%) Change | Change®
Change 97.1% 2.9%
Change® 3.6% 96.4%

TABLE III: Illumination change detection: few errors in 1000 trials.

We observe that the robot detects illumination changes with
very few false positives (second row, first column) or false
negatives (first row, second column). Highlights and shadows
are the major reasons for the errors, which are handled by not
accepting a change in illumination unless it is observed over a
few consecutive frames. Whenever the robot decides to learn
a new color map, it is able to do so using the planned color
learning algorithm (Section IV-B). When the algorithm is run
with the illumination varying between (=~ 450luz — 1600luz),
the robot ended up learning color maps and image statistics
for three different cases corresponding approximately to 1600
lux, 1000 lux and 450 lux.

2) Transitions between illumination conditions: To test
the robot’s ability to transition between known illumina-
tions, we chose the three discrete illumination intensities
corresponding to the color maps that the robot had previ-
ously learned Bright(1600lux), Dark(450lux) and Intermedi-
ate(1000lux). The intensity of the overhead lamps was changed
to one of these conditions once every ~ 10 sec. Table IV shows
the results averaged over = 150 trials each.

Tllumination Transition Accuracy
Correct (%) | Errors
Bright 97.3 4
Dark 100 0
Intermediate 96.1 6

TABLE 1V: Illumination transition accuracy: few errors in ~ 150
trials.
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The first column represents the transitions to the corre-
sponding illumination. Once again the few false transitions,
mainly due to shadows or highlights, are quickly detected and
corrected in the subsequent tests.

Next, we tested the ability to transition between the three
illuminations while performing the find-and-walk-to-ball task,
wherein the robot, starting from a fixed position, turns in place
to find the ball (also at a fixed position) and walks up to it.
Without any change in illumination the robot takes 6.7(%0.6)
seconds to perform this task. The robot starts off under one
illumination and after 1.5 seconds (the time it takes to turn
and see the ball), the illumination is changed by adjusting the
intensity of all the lamps. The robot is timed as it performs the
task. With a single color map, when the illumination condition
changes significantly, the robot is unable to see a ball that is
right in front of it, and cannot complete the task even if given
unlimited time. With our algorithm, when the illumination
changes, the robot seems lost for a couple of seconds while
it recognizes the change and then transitions to the suitable
color map. It then functions as normal, finding the ball and
walking to it again. The results are shown in Table V.

| Lighting (start/after 1.5 seconds) | Time (seconds) |

Bright / Interim 8.5 £0.9
Bright / Dark 11.8 +£1.3
Interm / Bright 8.6 £1.0
Interm / Dark 9.6 £3.1
Dark / Interm 115 +1.4
Dark / Bright 10.7 £1.1

TABLE V: Time taken to find-and-walk-to-ball under changing
illumination.

The increase in the time taken to perform the task is due
to the time taken to detect the change in illumination and
transition to the appropriate color map. The values in the table
are different for different transitions because the corresponding
transition thresholds (for noise filtering) are different to reflect
the fact that different transitions have different likelihoods. For
example, a sudden transition from Bright to Dark is less likely
than a transition from Bright to Interm. Complete details on
the actual threshold values and the experiments that determine
their choice can be found in [34]. Videos showing the robots
performing under varying illuminations are available online. ®

In an attempt to explore the robustness of our approach, we
finally tested the algorithm for illuminations in between the
ones that the robot ended up learning color maps for. These
test illuminations would not register as being significantly
different from the known illumination representations, and the
robot would not learn new color maps for them. To enable
comparison of these results, we recorded the time taken by
the robot to find-and-walk-to-ball. In Table VI we present the
values corresponding to the case where the robot starts off
under the Bright illumination. About 1.5 seconds later, the
illumination is changed such that it is between the Bright and
the Interm illuminations (we also tested for the illumination
midway between Interm and dark).

8www.cs.utexas.edu/~ AustinVilla/?p=research/illumination_invariance



| Lighting | Time (seconds) |
1227 05 ]

[ bet interm and dark | 133 £2.0 |
TABLE VI: Time taken (in seconds) to find-and-walk-to-ball

[ bet. bright and interm |

We conclude that even when the illumination is changed to
one that is in between those that were significant enough to
learn a new color map for, the robot transitions to using the
closest illumination representation and is able to perform its
tasks well. The increase in the time taken to perform the task
is, once again, a result of the time taken to detect the change
in illumination and transition to the appropriate color map.

D. Summary - Illumination Invariance

We have presented an approach that enables the robot to
autonomously detect changes in illumination robustly and effi-
ciently, without prior knowledge of the different illuminations.
Each discrete illumination is characterized by a color map
and a set of image histograms in the (r, g) color space, both
of which are generated by the robot. The image histograms
are used to generate second-order statistics that represent a
particular illumination. When the robot detects an illumination
that it had already learned a representation for, it smoothly
transitions to using the corresponding color map. If it detects a
new illumination, it automatically learns a new suitable color
map and collects image statistics to be used in subsequent
comparisons for change in illumination. Even when presented
with illuminations that are in between the ones that it already
has learnt color maps for, and which, by definition, are
not significantly different from the known illuminations, it
smoothly selects the closest illumination and transitions to the
appropriate color map. The whole process is autonomous and
proceeds without human supervision.

The algorithm is also applicable to other domains. In the
car-on-the-road task, the vision system could learn a color
map for sunny conditions. When illumination changes, such
as when the sun goes behind a cloud (or sets in the evening),
the system would detect it and adapt to this change by learning
a new color map. When the sun comes back, the system would
automatically switch back to the previous color map.

VI. SUMMARY - OVERALL

The main aim of our work is to enable a mobile robot to
perform autonomously in its environment, using the structure
that is inherent in its environment. We first developed a
vision system that tackled challenging vision problems such
as segmentation, object recognition and line detection in
real-time, under rapid camera motions, though it required
manual calibration and was sensitive to illumination changes.
Next, we designed an algorithm that enabled the robot to
autonomously plan its motion sequence and learn the colors
using the structure inherent in its environment. Finally, we
also presented a scheme for the robot to automatically detect
significant changes in illumination and use the color learning
scheme to adapt to these changes. The overall system learns
colors autonomously, and detects and adapts to significant illu-
mination changes, thereby recognizing objects and performing
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its tasks efficiently. Next, we describe some related approaches
to color learning/segmentation and illumination invariance.

VII. RELATED WORK

In this section, we review some related approaches to color
learning and illumination invariance, comparing them with our
algorithms to motivate our approach.

A. Segmentation and Learning

Color segmentation is a well-researched field in computer
vision with several good algorithms, for example mean-
shift [5] and gradient-descent based cost-function minimiza-
tion [6]. The mean-shift algorithm is a non-parametric tech-
nique for the analysis of complex multi-modal feature spaces
and the detection of arbitrarily shaped clusters. The feature
space is modeled as an empirical probability density function
(pdf) using a density estimation-based clustering approach.
Dense regions in the feature space correspond to local maxima,
i.e. the modes of the unknown pdf. Once the modes are found,
the associated clusters can be separated based on the local
structure of the feature space. Mean-shift is a procedure that
determines vectors aligned with the local gradient estimates,
defining a path to the desired modes. It provides good per-
formance on vision tasks such as segmentation and tracking,
but its quadratic complexity makes it expensive to perform on
mobile robots with computational constraints.

Active contours are another set of popular methods for im-
age segmentation. The method defines initial contours and then
deforms them towards object boundaries. The methods can
be classified into three groups: edge-based, region-based and
hybrid. Manjunath et al. describe a region-based method [6]
that segments images into multiple regions and integrates an
edge-flow vector field-based edge function for segmenting
precise boundaries. The method allows the user to specify the
similarity measure based on any image characteristic, such
as color or texture. Also, the algorithm is not sensitive to the
initial curve estimates, and provides good segmentation results
on a variety of images, but the iterative optimization makes it
expensive to implement on mobile robots.

Even in the RoboCup domain, several algorithms have been
implemented for color segmentation. The baseline approach
creates mappings from the YCbCr values (0 — 255 in each
dimension) to the color labels [21]. Other methods include
the use of decision trees [19] and the creation of axis-parallel
rectangles in the color space [20]. All these approaches involve
the hand-labeling of several (=~ 30) images over a period of
an hour or more before the decision-tree/color map can be
generated. Our baseline approach for color segmentation is a
variant of these approaches, with some additional features to
make it more robust to shadows and highlights (Section III-A).

Attempts to learn colors or make them independent to
illumination changes have produced reasonable success [35],
[36] but the approaches either involve the knowledge of the
spectral reflectances of the objects under consideration and/or
require additional transformations that are computationally
expensive to perform in the mobile robot domain. Mobile



robots typically require real-time operation and frequently
operate under dynamically changing environments.

The choice of color space is an important consideration
in color learning and segmentation. Gevers and Smeulders
evaluate several color spaces to determine their suitability
for recognizing multicolored objects invariant to significant
changes in viewpoint, object geometry and illumination [36].
They present a detailed theoretical and experimental analy-
sis of the following models: RGB, Intensity I, normalized
color rgb, saturation S, Hue H, and three models that they
propose cicacs, l1lals, mimaems. They show that assuming
dichromatic reflection and white illumination, normalized rgb,
saturation S and Hue H, and the newly proposed cjcacs,
11513 and m1memsg are all invariant to the viewing direction,
object geometry and illumination. Hue H and [;/5[5 are also
invariant to highlights, while m;mqyms is independent of the
illumination color and inter-reflections under the narrow-band
filter assumption. The work provides a good reference on the
choice of color spaces.

Lauziere et al. describe an approach for learning color
models and recognizing objects under varying illumination
using the prior knowledge of the spectral reflectances of the
objects under consideration [35]. They further explain the
process of camera characterization in [37]. The color camera
sensitivity curves are measured and used to recognize objects
better under daylight illumination conditions. Mobile robots
operating the real world frequently need to be deployed in a
short period of time in previously unseen locations.

Attempts to automatically learn the color map in the legged
league have rarely been successful. Cameron and Barnes [38]
present an approach that detected edges in the image and
constructed closed figures to find image regions corresponding
to known environmental features. The color information from
these regions was used to build the color classifiers, using the
Earth Mover’s distance (EMD) [39] as the similarity metric.
The changes introduced by illumination changes are tracked
by associating the current classifiers with the previous ones.
The edge detection, closed figure formation and clustering
makes the approach time consuming even with the use of off-
board processing. Our algorithm exploits domain knowledge
but learns colors in real-time on-board the robot using an
efficient color model.

Jungel presents another approach where the color map is
learned using three layers of color maps with increasing
precision levels [40]. Colors in each level are represented
as cuboids, but colors that are close to each other are not
disambiguated. Further, the colors are defined relative to a
reference color (field green in the robot soccer domain) and
with minor illumination changes the reference color is tracked
and all the other color regions are displaced in the color space
by the same amount. But different colors do not actually shift
by the same amount with illumination changes. The generated
map is reported to be not as accurate as the hand-labeled one.
Our algorithm learns a color map in under five minutes of
robot time, and provides performance comparable to the hand-
labeled map obtained after an hour or more of human effort.
It works both within the constrained lab setting and in less
controlled settings outside the lab.
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B. Illumination Invariance

In its most general form, the problem of color constancy
can be explained using the following equation [11]:

Y

J

m? = / (E(\)SP(\)R;(\)) dA

Here, E()) is the spectral power distribution of the illuminant,
S*(A) is the surface reflectance at a scene point x, while
R;()) is the spectral response (relative) of the imaging de-
vice’s jth sensor. The response of the jth sensor of the imaging
device at pixel p, m? , is the integral of the product of these
three terms over the range of wavelengths. Changing either the
surface reflectance function or the spectral power distribution
of the illuminant can change the response at the sensor. Color
constancy requires that we either transform the response mé-’
to correlate with S(\) independent of E(\), or equivalently,
recover an estimate of E()). Several approaches have been
attempted to solve this problem, with varying levels of success.
However, almost all of them have been applied to static images
and most of them have high computational complexity.

The Retinex theory was one of the first attempts to explain
human color constancy [41]. Based on the assumption that
white reflection induces maximal rgb camera responses (since
light incident on a white patch is spectrally unchanged after
reflection), it suggested that measuring the maximum r, g, and
b responses can serve as an estimate of the scene illuminant.
When it was determined that the maximum rgb in an image is
not the correct estimate for white, the technique was modified
to be based on global or local image color averages. The
“Gray World” algorithm by Buchsbaum [42] is also based on
the same principle. Unfortunately, the image average, either
local or global, has been shown to correlate poorly with the
actual scene illuminant [43]. Also this method excludes the
possibility of distinguishing between the actual changes in
illumination and those as a result of a change in the collection
of surfaces in the scene under consideration.

Forsyth proposed the gamut mapping algorithm for color
constancy [12]. Based on the fact that surfaces can reflect no
more light than is cast on them, he concluded that the illumi-
nant color is constrained by the colors observed in the image
and can hence be estimated using image measurements alone.
The algorithm generated a set of mappings that transformed
image colors (sensor values) under an unknown illuminant to
the gamut of colors observed under a standard (canonical)
illuminant using 3D diagonal matrices. Then a single mapping
was chosen from the feasible set of mappings.

Realizing that the scene illuminant intensity cannot be
recovered in Forsyth’s approach, Finlayson modified the al-
gorithm to work in 2D chromaticity space [44]. He then
proved that the feasible set calculated by his 2D algorithm was
the same as that calculated by Forsyth’s original algorithm,
when projected into 2D, and proposed the median selection
method to include a constraint on the possible color of the
illuminant into the gamut mapping algorithm [45]. More
recently he presented a correlation framework [11], where
instead of recovering a single estimate of the scene illuminant,
he measured the likelihood that each of a possible set of
illuminants is the scene illuminant. The range of sensor values



that can occur under each of a possible set of illuminants
is calculated and once the required likelihoods are obtained
by correlating with the colors in a particular image, they are
used to determine a single estimate of the scene illuminant.
In addition to extensive computation, the approach requires
prior knowledge of the illuminations which is not feasible in
a mobile robot domain.

Brainard and Freeman tackle the problem using the
Bayesian decision theory framework, which combines all
available statistics such as gray world, subspace and physical
realizability constraints [46]. They model the relation among
illuminants, surfaces and photosensor responses and generate
a priori distributions to describe the probability of existence
of certain illuminants and surfaces. A maximum local mass
(MLM) estimator integrates local probabilities and uses Bayes’
rule to compute the posterior distributions for surfaces and
illuminants, for a given set of photosensor responses. Similar
to the above-mentioned methods, it requires significant prior
knowledge and is computationally expensive.

Tsin et al. present a Bayesian MAP (maximum a posteri-
ori) approach to achieve color constancy for outdoor object
recognition with a static surveillance camera [47]. Static
overhead high-definition color images, over several days, are
used to learn statistical distributions for reflectance and the
light spectrum. A linear iterative updating scheme is used
to converge to the classification result on the test images.
A mobile robot system needs to be robust to rapid camera
motions and dynamic changes.

In contrast to the Bayesian methods, Rosenberg et al.
present an approach where they develop models for sensor
noise, canonical color and illumination [13]. Then the global
scene illumination parameters are determined by an exhaustive
search using KL-divergence as the metric. They present results
to show that proper correction is achieved for changes in
scene illumination and compare it with the results obtained
using a MLE (maximum likelihood estimate) approach. Once
again, the method requires extensive prior knowledge and is
computationally expensive.

Schulz and Fox estimate colors using a hierarchical bayesian
model with Gaussian priors and a joint posterior on position
and environmental illumination [48]. Significant prior knowl-
edge of color distributions and illuminations, in addition to
extensive hand-labeling, are required even when tested under
two distinct illuminations and a small set of colors. In addition,
it requires almost a second of off-board processing per image.
Our approach enables the robot to model overlapping colors
with no apriori knowledge of color distributions, and detect
and adapt to a range of illuminations using autonomously-
collected image statistics.

Lenser and Veloso present a tree-based state descrip-
tion/identification technique [49], which they use for detecting
changes in lighting on Aibo robots. They incorporate a time-
series of average screen illuminance to distinguish between il-
lumination conditions, using the absolute value distance metric
to determine the similarity between distributions. We however
believe that the color space distributions could function as a
better discriminating feature. Also, their method is not run
on-board the robot while it is performing other tasks.
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Anzani et al. describe an attempt at illumination invariance
in the RoboCup middle-size league [50], where teams are
made up of mobile robots (wheeled locomotion). They use
Mixture of Gaussians to generate multi-modal distributions
for the various colors. The labeling of color classes and
association with mixture components is done by human su-
pervision, and the Bayesian decision rule is used during the
classification stage. To adapt the model parameters to changing
illumination conditions, the EM algorithm [51] is used with
online adaptation of the number of mixture components too.
The algorithm has been tested only over a few illuminations
in the lab, while we model colors and adapt to a range of
illuminations even in un-engineered indoor corridors.

In the domain of mobile robots, the problem of color
constancy has often been avoided by using non-vision-based
sensors such as laser range finders and sonar sensors [4].
Even when visual input is considered, the focus has been on
recognizing just a couple of well-separated colors [2], [52].
There has been relatively little work on illumination invariance
with a moving camera in the presence of shadows and artifacts
caused by the rapid movement in complex problem spaces.
Further, with few exceptions (e.g. [49], [50]), the approaches
that do exist for this problem cannot function in real-time with
the limited processing power that we have at our disposal.

In the DARPA grand challenge, Thrun et al. [3] model
colors as MoG and attempt to add additional Gaussians
and/or modify the parameters of the existing Gaussians in
response to the changes in illuminations. But, not all colors are
modeled well using MoG. Furthermore, they were interested
only is distinguishing safe regions on the ground from the
unsafe regions and did not have to model overlapping color
classes separately. Our approach (Section V) has the robot
use the autonomously built representations for illumination to
detect and adapt to significant changes in illumination, thereby
performing its tasks over a range of illuminations.

VIII. CONCLUSIONS AND FUTURE WORK

In this article we have introduced algorithms that address
some challenging mobile robot vision problems. We first
presented a prototype vision system that performs color seg-
mentation and object recognition in real-time, under rapid
camera motion and image noise. Here we used manual color
calibration and assumed a fixed and uniform illumination.
Next, we drastically reduced the color calibration time from
an hour or more of human effort to less than five minutes
of robot time by making the robot autonomously plan its
motion sequence and learn the color distributions by efficiently
utilizing the structure of the environment - known descriptions
of color coded objects. The algorithm bootstraps, with the
learned colors being used to segment and recognize objects,
thereby localizing better to locations suitable for learning other
colors. Finally, we also made the vision system robust to
illumination changes by autonomously detecting and adapting
to significant illumination changes. The illuminations were
represented by color-space distributions and image statistics,
and the robot transitions between the learned color maps, or
learns new ones, as required.



Our on-going research includes extending the work reported
in this article in three ways. First, we are working on the
design of an algorithm that enables the robot to learn colors
outdoors. This is a much more challenging problem where
the robot may have to use other features, in addition to color,
to represent objects of interest because the objects are less
likely to be constant-colored and the range of illuminations
can be much larger. In addition, we also plan to make the
planning parts more robust to failures based on motion model
errors, especially in the initial stages of learning where the
lack of visual information makes the robot very vulnerable.
The planning aspects can also be improved by having the
robot learn the optimal functions, based on approaches such as
reinforcement learning, instead of the current greedy approach
of minimizing heuristics.

Second, the current illumination adaptation scheme has the
robot detect significant illumination changes and re-learn the
entire color map when necessary. But this approach can be
made more robust by having the robot continuously modify
its color map for minor illumination changes as well. The
algorithm needs to have some means of detecting minor shifts
in the color distributions and then adapting to these changes
by selectively updating specific color distributions.

Third, we aim to enable the robot to learn colors from an un-
known initial position. This is a challenging problem because
the robot has to reason under a lot of uncertainty. It would
need efficient error detection and correction mechanisms.

The problems in robot vision are very challenging and far
from being solved. This work represents a step towards to-
wards solving the daunting problem of developing efficient al-
gorithms that enable a mobile robot to function autonomously
under completely uncontrolled natural lighting conditions,
with all its associated variations.

APPENDIX I
COMPARISON MEASURES

In order to compare image distributions, we need a well-
defined measure capable of detecting the correlation between
distributions under similar illumination conditions. Here we
propose and examine two such measures: a correlation mea-
sure and the popular KL-divergence measure [53].

A. Correlation measure

Consider the case where we have two distributions A and
B with IV bins along each dimension, the correlation between

the two can be computed as, .

Cor(A,B) = Y (4 By) (12)

=0
The more similar the two distributions are, the higher is
the correlation between them. This is a simple probabilistic
representation of the similarity between two distributions.

B. KL-divergence (KLD) measure

The Kullback-Liebler divergence is a popular entropy-based
measure for comparing distributions [32]. For the two distri-

butions A and B mentioned aRovle, we have:

KL(A,B) = Z(Ai-ln%)

=0

13)

(3
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As mentioned in Section V-A the more similar two distri-
butions are, the smaller is the KL-divergence between them.
Since the KLD measure is a function of the log of the observed
color distributions, it is reasonably robust to large peaks in the
observed distributions, and hence to images with large regions
of a single color.

C. Correlation vs. KL-divergence

In order to compare the performance of the two measures,
sample images were collected from the robot’s camera at
four different positions with the robot standing upright. At
each position, seven different illuminations were considered,
ordered from the brightest to the darkest, resulting in 28
samples. The illuminations were generated by adjusting the
intensity of the lamps in specific patterns. For the histogram
corresponding to each image in this set, both measures were
used to compute the closest image histogram among the others
in the set. Table VII shows the results.

Method Correct Off-by- Off-by- Incorrect
one two
Correlation 8 9 8 3
KL-divergence | 15 13 0 0

TABLE VII: Classification results using Correlation and KLD

The Off-by-one column refers to the case where an image
is classified as being from an illumination class that is one
illumination away from the true class. Incorrect classification
represents the cases where the classification result is 3 or
more classes away from the true illumination class. The results
are grouped in this manner because during task execution,
when the illumination is changed to conditions similar to
those under training, being off by one illumination class does
not make any significant difference in color segmentation.
The results are a lot different though when the robot is off
by several illumination classes. For the seven class problem,
the Correlation-based classification is off by two classes or
incorrect in several cases. The classification based on KLD is
correct in many cases and even when it is wrong, it is off only
by one illumination class. Based on these experiments and the
robustness to large peaks of a single color, the KLD measure
was chosen for comparing distributions. Since the measure is
not symmetric, some modifications were made, as described
in Section II-A.

APPENDIX II
VALIDATION OF GAUSSIAN ASSUMPTION

Here we present the validation for the Gaussian assumption
made in our approach to autonomous color learning on the
robot (Section IV).

We need to analyze the goodness-of-fit of the Gaussian
to the color distributions. To do so, we chose the method
of bootstrapping [30] using Resistor-Average Kullback-Liebler
divergence (RA-KLD) [53] as the distance measure.

Figure 13 shows the estimated and actual sample points for
one of the colors in the robot’s environment. The Maximum
Likelihood Estimate (MLE) [51] of the actual samples are used
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to define a 3D Gaussian distribution. The estimated points are
obtained by drawing random samples from this Gaussian.

We observe that the estimated Gaussian function does do a
good job of approximating the actual distributions.

A. Resistor-Average KLD

As described in Appendix [-B, KLD is a robust information
theoretic measure that has been used extensively to compare
distributions. The Krichevsky-Trofimov correction [54] is used
to handle the fact that a zero-value in one distribution with a
non-zero value in the same bin in the other distribution would
result in a KLD value of infinity. In addition, KLD is not a
true metric because it is neither symmetric nor does it satisfy
the triangle-inequality. Hence, in our experiments we use the
Resistor-Average KLD, defined as:

_ KL(A,B)-KL(B, A)
R(A,B) = 3704 B) T KL(B. A)

As mentioned in [53], one-half of the RA-KLD measure is
a close approximation to the Chernoff Bound.

(14)

B. BootStrapping

The process of bootstrapping [30] is an established statis-
tical procedure for bias removal and statistical distribution fit
analysis. We use it for our goodness-of-fit tests:

e The samples of any color’s distribution are obtained by
selecting suitable image regions and building a histogram
— Observed. Assume that there are M samples.

e Using the estimated Gaussian for that color, the same
number of samples M are randomly drawn — Actual.

e For both histograms (observed and actual), values in the
3D bins are lined up to form the 1D distributions. RA-
KLD is determined between these distributions — R,ps.

e Observed and Actual are randomly mixed together.

e From the jumbled up set of samples, two sets of M
samples are randomly drawn (with replacement) and
binned to determine the RA-KLD between them. This
is repeated several hundred times and the distribution of
distances is observed — R; i € [1,200].
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e Using the distribution of RA-KLD values and the orig-
inal one (Rps), a test (Z) statistic is determined. This in
turn provides a p-value, which can be used to test the null
hypothesis (Hy), also stated as: the estimated Gaussian
is a good fit for the sample points.

The results of this process are tabulated in Table VIII. The
table shows R,ps in the column Orig and also shows the
mean and standard deviation of the estimated distribution of
JS distances. The significance is decided on the basis of the
p-values in the last column.

Color RA-KLdists Zstat | p-val
Orig Mean Stdev

Orange 0.003808 0.004016 3.5-10~% 0.596 0.56

Green | 4.6-10~% | 4.73-10~% | 6.82-10~5 | 0.18 | 0.86

Yellow 0.00126 0.00129 1.98-10—% | 0.155 0.88

Blue 0.0017 0.0015 2.34.10° % 0.90 0.38

White 0.006 0.0057 5.7-10—% 0.81 0.42

TABLE VIII: Quality of fit based on RA-KLdists

The probability value (p-value) of a statistical hypothesis
test is the smallest level of significance that would lead to the
rejection of the null hypothesis Hy with the given data [55],
i.e. it is the significance level of the test for which the null
hypothesis would be just rejected. The smaller the p-value,
the more convincing is the rejection of the null hypothesis.
Stated differently, if the level of significance « is greater than
the p-value, Hy can be rejected. Based on values in the table
above (high p-values), we clearly fail to reject Hy.
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