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ABSTRACT

As intelligent agents become autonomous over longer periods of time, they may eventually be-
come lifelong counterparts to specific people. If so, it may be common for a user to want the
agent to master a task temporarily but later on to forget the task due to privacy concerns. How-
ever enabling an agent to forget privately what the user specified without degrading the rest of
the learned knowledge is a challenging problem. With the aim of addressing this challenge,
this paper formalizes this continual learning and private unlearning (CLPU) problem. The pa-
per further introduces a straightforward but exactly private solution, CLPU-DER++, as the first
step towards solving the CLPU problem, along with a set of carefully designed benchmark prob-
lems to evaluate the effectiveness of the proposed solution. The code is available at https:
//github.com/Cranial-XIX/Continual-Learning-Private-Unlearning.

1 INTRODUCTION

Continual learning (CL) studies how an intelligent agent can learn continually over a sequence of tasks. In particular,
when the agent is learning a new task, it is generally assumed that it loses access to data from previous tasks. As a
result, the goal of a successful CL algorithm is to forget as little as possible about previous tasks while maximally
adapting past knowledge to help learn the new task.

As deep learning has become increasingly popular, it has become generally known that straightforwardly applying
stochastic gradient descent (SGD) on deep architectures when learning over a sequence of tasks leads to the so-called
catastrophic forgetting phenomenon (French, 1999), i.e., the network forgets much of what it learned previously when
learning new knowledge. Thus, much CL research has focused on developing methods to mitigate forgetting. However,
forgetting is not always bad. Besides the fact that graceful forgetting—the process of deliberately compressing useful
knowledge or removing useless knowledge—can help abstract learned knowledge and leave more “space” for learning
new knowledge (Bjork & Bjork, 2019), we posit that it may also become common for an agent to be required to
completely remove any trace of having learned a specific task.

For example, consider a robot manufacturing company that produces service robots, whose system is continually
updated by learning novel skills on the data collected from its customers’ daily lives. From time to time, the company
may be asked to expunge previously learned behaviors and/or knowledge about specific tasks that are found to raise
potential fairness (Mehrabi et al., 2021), privacy or security issues (Bae et al., 2018). Looking further into the future,
consider another situation in which a person is undergoing a medical treatment plan and requests that their service
robot learns to assist with the treatment. However, after having recovered, when a friend is about to visit, the person
may not want the robot to exhibit any evidence of their previous medical treatment. In this case, the person would
like to be able to request that the robot privately remove all knowledge of the treatment plan without impairing other
unrelated knowledge it may have acquired during (or before or after) the time of the treatment. Both of the above
situations indicate that as personalized models that lifelong learn with and about humans become commonplace, it
is important for these models to carefully unlearn knowledge when necessary. This leads to the problem of machine
unlearning (MU) (Cao & Yang, 2015; Bourtoule et al., 2019). But to the authors knowledge, MU has not yet been
well studied in the continual learning setting where the underlying data distribution can shift over time.

Note that even though catastrophic forgetting often happens naturally with rich parametric models such as deep neural
networks, it might not be sufficient because 1) the user may want the agent to unlearn immediately (instead of unlearn-
ing over time) and 2) the unlearning must happen privately, meaning that after forgetting, it must not be possible to
retrieve any information pertaining to the task, or even detect that the task has been previously learned.

With this motivation in mind, in this work, we present a novel but general CL problem setting where for each task,
besides providing the task data, the user additionally provides a learning instruction indicating whether they want the
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Figure 1: The CLPU problem has the Pareto front formed by good knowledge transfer ability, small model space,
and no privacy leak. The ideal solution to CLPU achieves all of them simultaneously. We visualize what existing
continual learning (CL) methods and machine unlearning (MU) methods achieve on the Pareto front above. CLPU-
DER++ represents an initial CLPU algorithm that achieves exact unlearning and good continual learning performance,
in exchange for using model space.

agent to learn and remember the task permanently, to temporarily learn the task such that later on it will either forget
or permanently remember it, or to forget a certain task completely and privately. We call this novel problem continual
learning and private unlearning (CLPU). To the best of our knowledge, only one previous paper discusses a similar
problem setting pertaining to selective forgetting in continual learning (Shibata et al., 2021). However, the problem
in that paper is different from CLPU as it defines forgetting as maximally degrading the performance on a task. As
discussed in Sec. 5, this requirement is not privacy-preserving and can potentially leak information (e.g., that the task
has been previously learned).

To address CLPU, we propose a straightforward but exact method, named CLPU-DER++, based on both the dynamic
architecture approach (e.g. Rusu et al., 2016) and the rehearsal approach (e.g. Robins, 1995) from the CL literature.
Furthermore, we design a set of benchmark tasks along with novel evaluation metrics for evaluating any CLPU meth-
ods. To summarize, our main contributions are:

• Formulating the continual learning and private unlearning (CLPU) problem.

• Presenting an initial solution, CLPU-DER++, to CLPU that achieves exact unlearning, and demonstrating its
effectiveness on a novel set of benchmarks designed for CLPU.

2 RELATED WORK

In this section, a brief review of continual learning and machine unlearning is provided. The relationship between
CLPU and previous literature is summarized in Fig. 1.

Continual Learning Continual learning (CL) assumes a learning agent learns continually over a sequence of tasks
and in general the agent loses access to previous data when learning new tasks. Due to its generality, CL has been
applied to a variety of areas including computer vision (e.g. Kirkpatrick et al., 2017), reinforcement learning (e.g. Kirk-
patrick et al., 2017; Riemer et al., 2018), natural language processing (e.g. Biesialska et al., 2020), and robotics (e.g.
Liu et al., 2021). There exist three main approaches towards continual learning. 1) Dynamic architecture approaches
study how to carefully and gradually expand the learning model to incorporate the learning of new knowledge (Rusu
et al., 2016; Yoon et al., 2017; Mallya et al., 2018; Rosenfeld & Tsotsos, 2018; Mallya & Lazebnik, 2018; Hung et al.,
2019b;a; Wu et al., 2020a). 2) Regularization-based methods design a regularization objective that prevents the model
parameter deviating too much from the previously learned model(s) (Kirkpatrick et al., 2017; Chaudhry et al., 2018a;
Schwarz et al., 2018; Aljundi et al., 2019). 3) Rehearsal methods save exemplar raw data, called episodic memory,
from previously learned tasks. When learning new tasks, these methods simultaneously learn on the new task and re-
hearse on episodic memories to retain past knowledge (Chaudhry et al., 2019; Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2018b; Buzzega et al., 2020). Other than saving the raw data points, pseudo-rehearsal like training a generative
model to replay past experience is also a popular approach (Shin et al., 2017). For a comprehensive survey of existing
continual learning methods, we refer the reader to tow survey papers (Van de Ven & Tolias, 2019; Delange et al.,
2021). In contrast to existing CL methods that focus on reducing forgetting, the CLPU problem requires the agent to
deliberately forget a particular task upon request, while minimally influencing other knowledge.
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Machine Unlearning Machine unlearning (MU) studies how to remove the effect of a specific training sample on a
learning model per a user’s request (Cao & Yang, 2015). The most straightforward approach is to retrain the model
on all data except the portion that has been removed, but this approach is in general impractical if the entire training
set is large. To this end, typical MU approaches consider training multiple models on different shards of data so that
unlearning only requires retraining a specific model on part of the dataset (Bourtoule et al., 2019), or storing learned
model parameters and their gradients for rapid retraining (Wu et al., 2020b). There is also research focusing on MU
with specific model or problem assumptions, such as linear models (Guo et al., 2019), random forests (Brophy &
Lowd, 2021), or k-means(Ginart et al., 2019). Based on differential privacy, Golatkar et al. introduced “scrubbing”
that removes information from the weights of deep networks based on the Fisher Information Matrix (Golatkar et al.,
2020). Mixed-Linear Forgetting proposes a tractable optimization problem by lineary approximating the amount of
change in weights due to the addition of any training data (Golatkar et al., 2021). The above methods all consider the
MU problem in general where the preserved dataset (e.g., data except the removed ones) is available, which is not the
case in continual learning. Recently, a particularly relevant study first considers MU in the context of continual learning
(Shibata et al., 2021). However, their problem definition aims to make the model predict as wrongly as possible on
the removed data, which does not in general protect the user’s privacy. For instance, if the agent has learned task B
that helps improve prediction on task A, which the agent is asked to forget, then completely random prediction on
task A also reveals that the agent has learned on it before but asked to unlearn it later. In fact, as we observe from
experimental results (Sec. 5), simply decreasing the model’s performance on removed data is not private.

3 BACKGROUND

In this section, we present the notation, definitions, and necessary background information to formalize CLPU.

3.1 CONTINUAL LEARNING

In continual learning (CL), an agent observes and learns K tasks in a sequence. In this work, we assume each
task k ∈ [K]1 is a supervised learning task with a loss function `k : X × Y → R, a training dataset Dk =

{(xk,train
1 , yk,train

1 ), . . . , (xk,train
n , yk,train

n )} and a testing dataset Dk
test = {(xk,test

1 , yk,test
1 ), . . . , (xk,test

n′ , yk,test
n′ )}. Here,

(x, y) are the raw data and labels where x ∈ X and y ∈ Y . Assume the agent adopts a model fθ parameterized
by θ ∈ Rd. For instance, for a classification task, softmax(fθ) produces a probability distribution over Y . Then `k
evaluates how well fθ predicts y given x. For instance, `k can be the standard cross-entropy loss for classification
tasks (e.g., `k(x, y, fθ) = log

∑
y′ exp

(
fθ(x)[y′]

)
− fθ(x)[y]).

On learning task k, the agent loses its access to D<k = {D1, . . . , Dk−1}. After learning all K tasks, the agent’s
objective is to achieve low loss on all test datasets {Dk

test}k∈[K]. Assume the agent learns with a model f that is
parameterized by θ ∈ Rm. Denote the agent’s model after learning task k as fθk . Then, the overarching objective of a
CL agent is to optimize

min
θK

1

K

∑
k∈[K]

E(x,y)∼Dktest

[
`k(x, y, fθK )

]
. (1)

However, equation 1 is hard to directly optimize using gradient-based methods (e.g., Stochastic Gradient Descent
(SGD)) because of the dependency of θK on all previous θk such that k < K. Therefore, alternatively, from an
induction point of view, the objective can be decomposed into K objectives throughout the learning process. For
learning the first task, the agent just optimizes the training loss `1 on the training dataset D1 as in standard supervised
learning. For any task k > 1, the agent is asked to achieve low loss on task k while maintaining its performance on
previously learned tasks (Lopez-Paz & Ranzato, 2017):

min
θ∈Rm

E(x,y)∼Dk

[
`k(x, y, fθ)

]
︸ ︷︷ ︸

performance on task k

s.t. ∀τ < k, E(x,y)∼Dτ

[
`τ (x, y, fθ)− `τ (x, y, fθ(k−1))

]
︸ ︷︷ ︸

forgetting on task τ

≤ 0. (2)

Note that here we also replace the testing loss by training loss as the agent is not assumed to have access to test
data during training. In practice, when the underlying K tasks share the same loss function (e.g., they are all image
classification tasks), which we assume for the rest of this paper, we can elide the superscript k in `k.

The main challenge for solving CL results from losing access to D<k. Regularization-based methods assume all
information learned from D<k is in θk−1. Thus they aim to minimize the training loss on Dk while ensuring that θ

1[K] denotes {1, 2, . . . ,K}.
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stays close to θk−1:

min
θ∈Rm

E(x,y)∼Dk

[
`(x, y, fθ)

]
+ αD(θ, θk−1), (3)

where α is a hyperparameter determining the strength of regularization and D(θ, θk−1) is a divergence measure that
captures how similar θ is to θk−1. Another popular and empirically more effective approach in CL is the rehearsal-
based approach. These methods allow the agent to store a small number of exemplar data points, known as the
episodic memory {Bτ}τ<k, for maintaining the agent’s learned knowledge on previous tasks. In particular, Bτ stores
bτ � |Dτ | i.i.d. sampled data points from Dτ , optionally with fθτ ’s final layer output (a.k.a. the logits):

Bτ =

{(
xi, yi, hi = fθτ (xi)

) ∣∣∣∣ (xi, yi)
i.i.d∼ Dτ

}
1≤i≤bτ

.

As a result, the general objective of rehearsal-based methods is

min
θ∈Rm

β

|Dk|
∑

(x,y)∼Dk
`(x, y, fθ) + (1− β)

∑
τ<k

1

|Bτ |
∑

(x′,y′,h′)∼Bτ

ˆ̀(x′, y′, h′, fθ), (4)

where β > 0 is a hyper-parameter that weights the trade-off between learning new and preserving old knowledge. ˆ̀can
be the standard cross-entropy loss `, the knowledge distillation loss `distill(x, h, fθ) = DKL

(
softmax(fθ(x)) || h

)
, or

the mean-square-error between the predicted and saved logits `mse(x, h, fθ) = 1
2 ||fθ(x)−h||22, which has shown strong

performance at preserving past knowledge (Buzzega et al., 2020). Specifically, for the Dark Experience Replay++
(DER++) method (Buzzega et al., 2020), ˆ̀ is a linear combination of the standard cross entropy loss and mean-
square-error loss: ˆ̀(x′, y′, h′, fθ) = α1`(x

′, y′, fθ) + α2`mse(x
′, h′, fθ).

3.2 MACHINE UNLEARNING

Unlike continual learning which studies learning over sequential tasks, contemporary research in machine unlearning
(MU) mainly focuses on single-task learning (Cao & Yang, 2015). In particular, MU is often studied in the context
of supervised learning, though extensions to other types of learning are relatively straightforward. Under the standard
supervised learning setting, the agent is given a training dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}. The agent
applies a (stochastic) learning algorithm A on D to learn a model fθ parameterized by θ, such that fθ achieves
low empirical loss (e.g., 1

n

∑n
i=1 `(xi, yi, fθ) is small). Denote A(D) as the distribution over the resulting model

parameters θ when A is applied on D.

A user can then request that the agent unlearn part of the dataset, which we call the forget set, Df ⊂ D. Denote
Dr = D \Df as the retained dataset. Machine unlearning (MU) aims to find an unlearning algorithm RA that returns
a model θ ∼ RA(D,A(D), Df ), which possesses no information about Df while performing well on Dr. In general,
it is usually assumed that |Df | � |D|, otherwise one can directly retrain a model on Dr. If the unlearned model from
RA(D,A(D), Df ) has no information about Df , an adversary cannot differentiate the model after unlearning from
a model that is retrained on Dr, and we say that (A,RA) achieves exact unlearning. The formal definitions are as
follows.

Definition 3.1 (Exact Unlearning). A pair of learning and unlearning algorithms (A,RA) achieve exact unlearning if

∀D, Df ⊂ D, A(Dr) =d RA(D,A(D), Df ), where Dr = D \Df . (5)

Here X =d Y means X and Y share the same distribution.

The definition of exact unlearning is quite restrictive and therefore can be hard to achieve in practice. As a relaxation,
Ginart et al. (2019) proposed the following definition of approximate unlearning.

Definition 3.2 (Approximate δ-Unlearning). (A,RA) satisfies δ-unlearning if

∀D, Df ⊂ D, and E ⊆ Rd, P
(
RA(D,A(D), Df ) ∈ E

)
≤ δ−1P

(
A(Dr) ∈ E

)
. (6)

These definitions are based on the assumption that the adversary can directly access the model parameters θ and
therefore the definitions are based on the distribution over θ. A more general assumption is that the adversary can only
access the model via an output function O(θ,D), where O : Θ×X −→ O and X denotes the space of input data. For
instance, if O(θ, x) = fθ(x), it means the adversary only has access to the agent’s prediction on any data point x. In
that case, we can modify the definitions by replacing RA(·) by O ◦RA(·) and A(·) by O ◦A(·).
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Remarks

• MU depends on both A and RA. As RA highly depends on the learning algorithm A, MU focuses on the
design of both. But note that purely achieving exact unlearning without considering the model’s performance
is meaningless. For example, one can achieve exact unlearning trivially if A yields a constant mapping and
RA is an identity mapping. Therefore, the challenge is to maintain RA(D,A(D), Df )’s performance on Dr,
while unlearning exactly.

• MU differs from differential privacy (DP): ε-DP does not divide the data into Df and Dr and requires that
no individual data point can significantly influence the model’s prediction. But in MU (with exact unlearning),
it is required that any data point x ∈ Df has zero influence on the model’s prediction after the unlearning,
with no restrictions on the effects of data x ∈ Dr.

• δ-Unlearning is asymmetric The above definitions implicitly assume that P (θ | A(Dr)) = 0 =⇒ P (θ |
RA(D,A(D), Df )) = 0. However, we do not assume the converse, meaning that it is permissible for RA to
not generate models that could have been generated by A(Dr).

4 PROBLEM AND METHOD

We start this section with a formal introduction to the continual learning and private unlearning (CLPU) problem.
Then we introduce a straightforward solution to CLPU that achieves exact unlearning by saving extra models, thus
sacrificing some space complexity compared to using a fixed-sized model throughout learning.

4.1 CLPU: THE CONTINUAL LEARNING AND PRIVATE UNLEARNING PROBLEM

In Continual Learning and Private Unlearning (CLPU), an agent receives T requests from the user sequentially and
is asked to learn from a pool of K tasks in total. The t-th request Rt is a tuple Rt = (It, Dt, ρt). Here, It ∈ [K]

is the task ID, indicating the current task of interest. Dt is either the training dataset {(xi, yi)}|D
t|

i=1 or an empty set ∅
depending on what ρt is. ρt ∈ {R,T,F} is a learning instruction:

• ρt = R: the user asks the agent to learn on task i permanently.

• ρt = T: the user asks the agent to temporarily learn on task i, which can be forgot in the future.

• ρt = F: the user asks the agent to forget task i with exact unlearning.

The agent keeps a dictionary Ψt of the learned tasks’ statuses, which, givenRt, is updated by:{
Ψt[It] = (Dt, ρt) if ρt ∈ {R,T}
Ψt ← Ψ(t−1) \ {It} if ρt = F.

(7)

Here, Ψ \ I indicates the removal of the key I as well as its corresponding values (D, ρ) from Ψ. If It ∈ Ψ(t−1) and
ρt = R, the agent is to fully memorize a task that has previously been temporarily learned with instruction T. In both
this case and the case when ρt = F, we assume Dt = ∅ as there is no need for the user to provide the dataset for the
same task twice.

Now we are ready to present the formulation of CLPU. Denote all requests up to the (t − 1)-th request as R<t =
[R1,R2, . . . ,R(t−1)].2 A CLPU solution consists of a continual learning algorithm A and an unlearning algorithm
RA. Let fθ be the learning model parameterized by θ ∈ Rm and θt denote the model parameter after processing
the t-th request. Then both A and RA map the previous model parameters and the current request to updated model
parameters. In particular, we have the following recursion:{

θt ∼ A(θ(t−1),Rt = (It, Dt, ρt)) if ρt ∈ {R,T},
θt ∼ RA(θ(t−1),Rt = (It, Dt, ρt)) if ρt = F.

(8)

For simplicity of notation, if all requests from Rs to Rt (Rs:t for short), have ρ ∈ {R,T}, then we denote θt ∼
A(θs−1,Rs:t). Additionally, denote [τ ∈ Ψ(t−1)] as all tasks with ρ ∈ {R,T} that have been observed and not
removed up to the (t − 1)-th request. The objective of a CLPU agent when processing Rt is for A and RA to output

2We use list notation [R1,R2, . . . ] to indicate that the ordering matters.
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Request

Figure 2: An illustration of the Continual Learning and private unlearning (CLPU) problem setting. After the agent
has temporarily learned on task b with data Db, if the agent is later requested to unlearn task b, the unlearned model
parameters θ4 should be indistinguishable from θ2′ in distribution as if the agent has never learned on task b. Except
for the unlearn requests, the agent should perform continual learning over the remaining sequence of tasks.

θt with the following properties:

θt ∼



arg minθ E(x,y)∼Dt

[
`(x, y, fθ)

]
s.t

∀τ ∈ Ψ(t−1), E(x,y)∼Dτ

[
`(x, y, fθ)− `(x, y, fθ(t−1))

]
≤ 0

if ρt ∈ {R,T},

RA(θ(t−1),Rt) s.t. D
(
RA(θ(t−1),Rt)

∣∣∣∣ A(θ0,R[τ∈Ψ(t−1)])

)
= 0 if ρt = F.

(9)

Here, D(A || B) is a distance between distributions A and B. In other words, in the first case when ρt ∈ {R,T},
the expected loss cannot get any worse for any previously learned (but not forgotten) task. In the second case when
ρt = F, then the unlearned model parameters cannot be distinguished from the model parameters learned over the
sequence of non-forgetting tasks with the divergence D. The CLPU problem setting is illustrated in Fig. 2.

How does CLPU differ from CL and MU? 1) In CLPU, in addition to exhibiting knowledge transfer as in CL, the
agent also needs to unlearn specific tasks while maintaining all knowledge unrelated to the forgotten tasks. 2) Unlike
MU where generally the agent learns on i.i.d. samples from the entire dataset D, in CLPU the agent learns online
over different tasks and hence the ordering of the sequence of tasks matters. In addition, CLPU does not in general
assume the agent can keep all previous data, which makes the unlearning (or more specifically the retention of learned
knowledge) more difficult.

4.2 CLPU-DER++: AN INITIAL CLPU ALGORITHM

In this section, we present a straightforward method to CLPU, named CLPU-DER++ as it adapts the DER++
method (Buzzega et al., 2020) to the CLPU problem. The CLPU-DER++ method achieves exact unlearning upon
request and learns continually over a sequence of tasks otherwise.

Inspired by Sharded, Isolated, Sliced, and Aggregated training (SISA) (Bourtoule et al., 2019), for each task with
ρ = T, the CLPU-DER++ agent creates an isolated temporary network with parameters θ̂. Based on the subsequent
learning instruction for the same task, the agent either removes this isolated model (F) or merges it with the main
model (R).

Specifically, we assume the agent maintains a main model with parameters θmain and a set N of temporary models. In
other words, θ = {θmain} ∪ N . Upon the t-th request Rt = (It, Dt, ρt), there are four possible cases. 1) If ρt = R
and It /∈ Ψ(t−1), then this is the first time the agent has observed task It, so the agent then performs conventional CL
using Dark Experience Replay++ (DER++) (Buzzega et al., 2020) and updates the main model parameters to θtmain. 2)
If ρt = T, in order to benefit from prior learning experience, the agent initializes an isolated model with parameters
θ̂ copied from θ

(t−1)
main , then directly performs SGD update on θ̂ using the dataset Dt and includes the updated network

to N (e.g., N ← N ∪ θ̂It ). In both cases, the agent stores episodic memory BI
t

(See Sec. 3.1) for the task It. 3) If
ρt = R and It ∈ Ψ(t−1), this means the agent has previously learned on task It with a temporary network θ̂I

t

. Then

6



Published at 1st Conference on Lifelong Learning Agents, 2022

Algorithm 1 Continual Learning and private unlearning - Dark Experience Replay++ (CLPU-DER++)
1: Input: Initial main model parameters θ0

main and temporary networks N = ∅, initial task status dictionary Ψ0 = ∅,
the total number of user requests T , and memory sizes {bt}Tt=1.

2: for t = 1 : T do
3: Receive requestRt = (It, Dt, ρt).
4: Update Ψt by {

Ψt[It] = (Dt, ρt) if ρt ∈ {R,T}
Ψt ← Ψ(t−1) \ {It} if ρt = F.

5: Case I: ρt = R and It /∈ Ψ(t−1)

6: Perform H steps of SGD from θ
(t−1)
main by optimizing:

θtmain = arg min
θ∈Rm

1

|Dt|
∑

(x,y)∼Dt
`(x, y, fθ) +

1

|Ψ(t−1)|
∑

i∈Ψ(t−1)

1

|Bi|
∑

(x′,h′)∼Bi
`mse(x

′, h′, fθ).

7: Build the episodic memory BI
t

: BI
t

=
{(
xi, yi, fθtmain

(xi)
) ∣∣ (xi, yi)

i.i.d∼ Dt
}

1≤i≤bt .
8: Case II: ρt = T

9: Initialize θ̂I
t

from θ
(t−1)
main .

10: Perform H steps of SGD on θ̂I
t

by optimizing:

θ̂I
t

= arg min
θ∈Rm

1

|Dt|
∑

(x,y)∼Dt
`(x, y, fθ) +

1

|Ψ(t−1)|
∑

i∈Ψ(t−1)

1

|Bi|
∑

(x′,h′)∼Bi
`mse(x

′, h′, fθ).

11: Store the temporary network: N ← N ∪ {θ̂It}.
12: Build the episodic memory BI

t

: BI
t

=
{(
xi, yi, fθtmain

(xi)
) ∣∣ (xi, yi)

i.i.d∼ Dt
}

1≤i≤bt .

13: Case III: ρt = R and It ∈ Ψ(t−1)

14: Merge θ̂I
t

back to θtmain by performing H step of SGD and optimize:
15:

θt = arg min
θ∈Rm

1

|BIt |
∑

(x,h)∼BIt
`mse(x, h, fθ) +

1

|Ψt|
∑
i∈Ψt

1

|Bi|
∑

(x′,h′)∼Bi
`mse(x

′, h′, fθ).

16: Remove the temporary network: N = N \ {θ̂It}.
17: Case IV: ρt = F

18: Remove the temporary network: N = N \ {θ̂It}.
19: end for

the agent merges the knowledge learned in θ̂I
t

into θtmain to reduce space and encourage knowledge transfer. To do so,
CLPU-DER++ performs knowledge distillation on the combined episodic memories from task It and the rest of the
previously fully remembered tasks in Ψt. 4) If ρt = F, we simply remove the temporary network θ̂I

t

from N . The
details of CLPU-DER++ are presented in Alg. 1.

Remark CLPU-DER++ achieves exact unlearning (See Def. 3.1) by construction. For any task k that the agent has
learned previously and then attempts to unlearn, the unlearn process only involves removing the relevant temporary
model from N and the corresponding episodic memory: it does not influence the main model parameter θmain. On
the other hand, CLPU-DER++ achieves privacy at the expense of memory, as it stores a full extra model for each
temporary learning task, which can be particularly important for large modern neural architectures.

5 EXPERIMENTAL RESULTS

In this section, we first introduce the experiment setup and introduce how we form novel benchmarks by adapting
conventional CL datasets for the CLPU problem. Then we introduce the evaluation metrics designed for measuring the
agent’s performance in terms of both continual learning and private unlearning. In the end, we present the evaluation
results by comparing CLPU-DER++ against the following baseline methods: sequential learning (Seq), indepdent
learning (Ind), Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), Learning without Forgetting (LwF) (Li
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& Hoiem, 2017) , Experience Replay (ER) (Chaudhry et al., 2019), Dark Experience Replay++ (DER++) (Buzzega
et al., 2020), and Learning with Selective Forgetting (LSF) (Shibata et al., 2021). All the above baselines except
LSF are state-of-the-art CL methods, but we adapt some of them for the CLPU setting. In particular, for sequential
learning, the agent performs SGD directly over the sequence of tasks. For independent learning, the agent creates a
new model for each new task, and removes a model if the user requests to unlearn the corresponding task. For ER and
DER++, for an unlearning task, we remove the corresponding episodic memory and let the agent perform normal ER
and DER++ updates on the remaining episodic memories and predict uniform distributions for the forgotten task to
accelerate forgetting.

5.1 CLPU EXPERIMENT SETUP

We consider four conventional CL benchmarks: rotation MNIST (rot-MNIST), permutation MNIST (perm-MNIST),
split CIFAR-10 and split CIFAR-100. rot-MNIST and perm-MNIST datasets are formed by rotating the images and
randomly permuting the pixels of the images, respectively, in the MNIST dataset. Each task is a 10-class classifi-
cation task. Split CIFAR-10 and split CIFAR-100 are formed by treating the 10 classes in CIFAR-10 as five 2-class
classification tasks, and the 100 classes in CIFAR-100 as five 20-class classification tasks. To be consistent, we build
rot-MNIST and perm-MNIST also with 5 sequential tasks. Then, to adapt these datasets to the CLPU setting, we form
the following sequence of requests:

R1:8 =
[
(1, D1,R), (2, D2,T ), (3, D3,T ), (4, D4,R), (1, ∅,R), (2, ∅,F ), (5, D5,T ), (5, ∅,F )

]
.

The corresponding sequence of requests that involve no unlearning is therefore

R̂1:4 =
[
(1, D1,R), (3, D3,T ), (4, D4,R), (1, ∅,R)

]
.

For all datasets, we use the SGD optimizer without momentum with 0.0005 weight decay. For all datasets, the learning
rate is set to 0.01 and we perform 10 epochs of training for each task. When the agent is asked to unlearn a task, we
also perform 10 epochs of the algorithm-specific unlearn updates. The implementations of the baseline methods are
adapted from the open-source DER implementation.3

5.2 EVALUATION METRICS

To evaluate a method on CLPU, we consider metrics both for continual learning and for private unlearning. To measure
the method’s performance on continual learning, we report the final average accuracy (ACC) of the model over all tasks
that remain in the final task status dictionary Φ, as well as the forgetting measure (FM), which is the average drop in
performance on each task, compared to the model’s performance when the agent first learned these tasks. Note that all
evaluations are done on holdout testing data {Dk

test} for each task k. To be specific, denote ats as the agent’s prediction
accuracy on task s’s test dataset Ds

test after processing user’s t-th request, then we define

ACC =

T∑
t=1

∑
s∈Φt

ats and FM =

T∑
t=1

∑
s∈Φt

aτ(s)
s − ats, where τ(s) = arg min

t
(It = s). (10)

In short, ACC measures how well the agent performs on the tasks with ρ ∈ {R,T} after processing all requests. FM
measures how much the agent forgets on the same set of tasks compared to when they were first learned.

In addition to the above two metrics for evaluating the continual learning performance, we also compare, on all
tasks with ρ = F, the divergence between the model’s output distribution on that task after unlearning versus the
distribution that would have resulted had the agent not learned the task. In other words, we use the output function
O(θ, x) = fθ(x) because comparing the distributions of fθ(·) with different θs is more computationally efficient than
directly comparing the distributions of different θs. Concretely, for all requestsRt such that ρt = F, we measure how
different fθt is from fθt′ , where θt ∼ A(θ0,R≤t) and θt

′ ∼ A(θ0,R[τ∈Ψt]). To measure the difference, we train
c models using different random seeds on R≤t to get parameters {θt1, . . . , θtc}, and similarly get c model parameters
{θt′1 , . . . , θt

′

c } by training onR[τ∈Ψt]. After that, for each pair of models that are trained onR[τ∈Ψt], we calculate the
in-group Jensen-Shannon (IJSD) distance between their outputs on the testing dataset DIt

test.
4 Similarly, for any model

trained onR[τ∈Ψt] and any other model trained onR≤t, we also calculate their output distributions’ Jenson-Shannon
distance, which we call the Across-group Jensen-Shannon Distance (AJSD). For the entire sequence of requests, we

3DER code from https://github.com/aimagelab/mammoth.
4We use Jensen-Shannon Distance because it is a symmetric divergence for comparing probability distributions.

8

https://github.com/aimagelab/mammoth


Published at 1st Conference on Lifelong Learning Agents, 2022

Perm-MNIST

Method ACC(↑) FM(↓) IJSD AJSD JS-ratio(↓) IRR(↑)
Ind (Upper Bound) 95.59 ± 0.05 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.14 0.96

Seq 75.75 ± 2.44 19.97 ± 2.45 0.17 ± 0.05 0.92 ± 0.03 4.47 0.00
EWC 93.67 ± 0.25 0.45 ± 0.18 0.04 ± 0.01 0.65 ± 0.01 13.73 0.00
ER 91.83 ± 0.25 3.96 ± 0.24 0.11 ± 0.02 0.73 ± 0.01 5.92 0.00
LwF 79.09 ± 3.19 17.12 ± 3.23 0.08 ± 0.02 0.83 ± 0.03 9.41 0.00
LSF 91.18 ± 0.24 0.44 ± 0.08 0.06 ± 0.01 0.49 ± 0.02 7.49 0.00
DER++ 93.88 ± 0.14 2.01 ± 0.14 0.07 ± 0.01 0.66 ± 0.01 8.82 0.00
CLPU-DER++ (scratch) 93.26 ± 0.25 2.33 ± 0.21 0.10 ± 0.01 0.09 ± 0.02 0.09 1.00
CLPU-DER++ 93.48 ± 0.25 2.25 ± 0.30 0.10 ± 0.01 0.09 ± 0.02 0.13 0.96

Rot-MNIST

Method ACC(↑) FM(↓) IJSD AJSD JS-ratio(↓) IRR(↑)
Ind (Upper Bound) 95.53 ± 0.06 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.14 0.96

Seq 90.88 ± 0.43 5.66 ± 0.38 0.14 ± 0.02 0.80 ± 0.02 4.88 0.00
EWC 94.75 ± 0.12 0.29 ± 0.12 0.09 ± 0.01 0.72 ± 0.01 7.50 0.00
ER 95.12 ± 0.18 1.39 ± 0.17 0.16 ± 0.02 0.79 ± 0.02 3.87 0.00
LwF 95.72 ± 0.19 0.87 ± 0.18 0.07 ± 0.01 0.76 ± 0.01 9.60 0.00
LSF 92.56 ± 0.09 0.30 ± 0.07 0.08 ± 0.01 0.65 ± 0.02 6.94 0.00
DER++ 95.94 ± 0.09 0.36 ± 0.08 0.12 ± 0.02 0.74 ± 0.02 5.38 0.00
CLPU-DER++ (scratch) 94.69 ± 0.11 1.02 ± 0.10 0.13 ± 0.02 0.11 ± 0.04 0.14 1.00
CLPU-DER++ 95.37 ± 0.12 0.91 ± 0.09 0.14 ± 0.02 0.11 ± 0.04 0.17 1.00

Table 1: Performance of CLPU-DER++ against baseline methods on the Perm-MNIST and Rot-MNIST CLPU bench-
marks. We report the mean and standard deviation for each result over 5 independent runs. The best results for each
metric are bolded.

average over the number of unlearning tasks for both IJSD and AJSD. Therefore, in total we have c(c−1)
2 distances for

IJSD and c2 distances for AJSD, over the entire sequence of requests. Formally,

IJSD =

{ ∑
1≤i<j≤c

1

|
∑
t∈[T ],ρt=F 1|

∑
t∈[T ],ρt=F

E(x,y)∼DIt

[
JS

(
f(x; θt

′

i )

∣∣∣∣∣∣∣∣ f(x; θt
′

j )

)]}
,

AJSD =

{ ∑
i,j∈[c]

1

|
∑
t∈[T ],ρt=F 1|

∑
t∈[T ],ρt=F

E(x,y)∼DIt

[
JS

(
f(x; θti)

∣∣∣∣∣∣∣∣ f(x; θt
′

j )

)]}
.

(11)

After the IJSDs and AJSDs are calculated, we measure the ratio of the absolute difference between the average of
IJSD and AJSD over the average of IJSD, which we call JS-ratio, and the proportion of AJSD that are smaller than the
maximum of IJSD, which we call the In-Range Rate (IRR). Formally,

JS-ratio =

∣∣ 1
|IJSD|

∑
d∈IJSD d−

1
|AJSD|

∑
d∈AJSD d

∣∣
1
|IJSD|

∑
d∈IJSD d

, and IRR =

∑
d∈AJSD 1

(
d ≤ max(IJSD)

)∣∣AJSD
∣∣ . (12)

5.3 RESULTS

In Tab. 1-2, we report the comparison of CLPU-DER++ against the previously mentioned baseline methods on 4
benchmark datasetes. Specifically, we report the ACC, FM, JS-ratio and IRR metrics from previous section. To
provide more information, we also report the mean and standard deviation of the sets IJSD and AJSD.5

From the table, we can see that CLPU-DER++ achieves the best JS-ratio and IRR among all methods. In contrast, all
baseline methods achieve high JS-ratio and very low IRR, meaning that the unlearning indeed reveals that the model
has learned on the unlearned task previously. On the other hand, in terms of the CL metrics, DER++ achieves the best

5In Tab. 1-2, we abuse the notations of IJSD and AJSD a bit and directly report the mean and standard deviation under them.
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Split-CIFAR10

Method ACC(↑) FM(↓) IJSD AJSD JS-ratio(↓) IRR(↑)
Ind (Upper Bound) 91.84 ± 0.94 0.00 ± 0.00 0.03 ± 0.02 0.03 ± 0.01 0.12 1.00

Seq 76.73 ± 2.25 15.38 ± 2.67 0.09 ± 0.03 0.18 ± 0.02 0.95 0.04
EWC 79.43 ± 1.51 11.83 ± 2.08 0.14 ± 0.05 0.20 ± 0.03 0.40 0.76
ER 90.44 ± 0.57 0.83 ± 3.36 0.07 ± 0.02 0.16 ± 0.01 1.07 0.00
LwF 88.18 ± 1.87 4.34 ± 2.34 0.06 ± 0.02 0.16 ± 0.03 1.68 0.00
LSF 90.00 ± 2.30 2.48 ± 2.05 0.07 ± 0.02 0.14 ± 0.03 0.90 0.48
DER++ 91.26 ± 0.63 0.73 ± 3.54 0.03 ± 0.01 0.07 ± 0.01 1.11 0.60
CLPU-DER++ (scratch) 89.52 ± 1.46 1.14 ± 2.17 0.03 ± 0.01 0.03 ± 0.02 0.04 0.92
CLPU-DER++ 90.12 ± 1.65 1.89 ± 2.20 0.03 ± 0.01 0.03 ± 0.01 0.00 0.92

Split-CIFAR100

Method ACC(↑) FM(↓) IJSD AJSD JS-ratio(↓) IRR(↑)
Ind (Upper Bound) 63.86 ± 0.55 0.00 ± 0.00 0.17 ± 0.01 0.17 ± 0.01 0.00 0.96

Seq 44.34 ± 0.84 24.36 ± 2.44 0.44 ± 0.03 1.09 ± 0.03 1.47 0.00
EWC 45.39 ± 1.74 20.08 ± 1.42 0.63 ± 0.03 1.27 ± 0.04 1.02 0.00
ER 61.66 ± 1.27 7.69 ± 1.68 0.51 ± 0.03 1.11 ± 0.03 1.18 0.00
LwF 61.25 ± 2.73 8.60 ± 1.01 0.39 ± 0.03 1.06 ± 0.03 1.71 0.00
LSF 37.92 ± 2.14 26.88 ± 2.09 0.70 ± 0.03 1.09 ± 0.05 0.54 0.00
DER++ 66.66 ± 0.69 2.84 ± 0.59 0.31 ± 0.03 0.70 ± 0.02 1.24 0.00
CLPU-DER++ (scratch) 61.51 ± 0.76 3.46 ± 1.18 0.21 ± 0.01 0.19 ± 0.03 0.08 0.96
CLPU-DER++ 63.90 ± 0.77 3.90 ± 1.05 0.22 ± 0.01 0.21 ± 0.04 0.08 0.96

Table 2: Performance of CLPU-DER++ against baseline methods on on the Split-CIFAR10 and Split-CIFAR100
CLPU benchmarks. We report the mean and standard deviation for each result over 5 independent runs. The best
results for each metric are bolded.

CL performance with CLPU-DER++ finishing a close second. The difference is due to the fact that when merging the
temporary network back into the main model, the CLPU-DER++ agent essentially performs knowledge distillation to
distill the knowledge from a temporarily learned task back to the main model. However, it is known that knowledge
distillation often cannot fully recover the original model’s performance. Lastly, we observe that when creating a
temporary network, initializing from the main model (line 9 of Alg. 1) results in better performance compared to
initializing from scratch (CLPU-DER++ (scratch)).

6 CONCLUSION AND FUTURE WORK

In this work, we propose a novel continual learning and private unlearning (CLPU) problem and provide its formal
formulation. In addition, we introduce a straightforward but exact unlearning method to solve CLPU, as well as novel
metrics and adapted benchmark problems to evaluate any CLPU methods. There are many interesting future directions
for the CLPU problem. First, as shown in Fig. 1, CLPU-DER++ is an initial solutionn that achieves exact privacy and
good knowledge transfer ability. It will be interesting to extend it to the δ-unlearning setting while reducing the
space complexity by saving fewer models. Second, it is important to understand theoretically what an optimal CLPU
method can achieve. Note that in principle it might be impossible to reach the optima of the three objectives in Fig. 1
simultaneously. Lastly, it is also interesting to study how the performance of any CLPU method can be affected by the
relationship of different tasks. Intuitively, similar tasks should encourage better continual learning performance but
make privately unlearning more difficult.
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