
To appear in Proceedings of The Eighteenth European Conference on Machine Learning (ECML-07),
Warsaw, Poland, September 2007.

Graph-Based Domain Mapping for Transfer

Learning in General Games

Gregory Kuhlmann and Peter Stone

Department of Computer Sciences, The University of Texas at Austin
1 University Station C0500, Austin, Texas 78712-1188

{kuhlmann,pstone}@cs.utexas.edu

Abstract. A general game player is an agent capable of taking as input
a description of a game’s rules in a formal language and proceeding to
play without any subsequent human input. To do well, an agent should
learn from experience with past games and transfer the learned knowl-
edge to new problems. We introduce a graph-based method for identi-
fying previously encountered games and prove its robustness formally.
We then describe how the same basic approach can be used to identify
similar but non-identical games. We apply this technique to automate
domain mapping for value function transfer and speed up reinforcement
learning on variants of previously played games. Our approach is fully
implemented with empirical results in the general game playing system.

1 Introduction

We consider the problem of General Game Playing (or Meta-Game Playing as
it was introduced by [10]). In this paradigm, the challenge is to design an agent
that can receive descriptions of previously unseen games and play them without
subsequent human input. In its lifetime, a GGP agent will encounter a variety of
different games. To leverage this experience, the agent must transfer knowledge
from past games in a way that is beneficial to a new task that it is given.

In the transfer learning paradigm, an agent trains on a source task and
leverages that experience to speed up learning on a target task. In particular, we
are interested in transferring a value function found through temporal difference
learning. The intention is to provide a reasonable starting place for learning,
while allowing refinement for the specifics of the target task.

Because the source task and target task may have different state and action
spaces, and different goals, a prerequisite for value function transfer is a domain
mapping between the two. We present a set of general mapping functions to
automatically translate a value function between certain classes of game variants,
a process that is typically carried out manually. Also, unlike typical transfer
scenarios, an agent in our paradigm is responsible for selecting the appropriate
source task from its database, rather than being given a specific source task
to use. We contribute a graph-based method for recognizing similar games and
prove that it is robust even when game descriptions are intentionally obfuscated.

2 Gregory Kuhlmann and Peter Stone

1. (role white) (role black)
2. (init (cell a 1 b)) (init (cell a 2 b)) (init (cell a 3 b))
3. (init (cell a 4 bk)) ... (init (cell d 1 wr)) ... (init (cell d 4 b))
4. (init (control white)) (init (step 1))
5. (<= (legal white (move wk ?u ?v ?x ?y))
6. (true (control white)) (true (cell ?u ?v wk)) (kingmove ?u ?v ?x ?y)
7. (true (cell ?x ?y b)) (not (restricted ?x ?y)))
8. (<= (legal white noop) (true (control black)))
9. (<= (next (cell ?x ?y ?p)) (does ?player (move ?p ?u ?v ?x ?y)))
10. (<= (next (step ?y)) (true (step ?x)) (succ ?x ?y))
11. (succ 1 2) (succ 2 3) (succ 3 4) (succ 4 5) ... (succ 7 8) (succ 8 9) (succ 9 10)
12. (nextcol a b) (nextcol b c) (nextcol c d)
13. (<= (goal white 100) checkmate)
14. (<= (goal black 100) (not checkmate))
15. (<= terminal (true (step 10)))
16. (<= terminal stuck)

Fig. 1. Partial game description for “Minichess”. GDL keywords shown in bold.

The following section provides background on GGP and discusses the key
elements of the game description language as well as our method for analyz-
ing such descriptions. Section 3 introduces our graph-based game recognition
algorithm, sketches a proof of its robustness, and outlines the recognized game
variant classes. In Section 4, we discuss how to map learned value functions be-
tween game variants. Our complete approach is evaluated in the GGP framework
in Section 5. Section 6 surveys related work and Section 7 concludes.

2 General Game Playing

The general game playing scenario adopted for this work is taken from the AAAI
General Game Playing competition [8]. In the competition setup, the Game

Manager connects to each player process and sends the game description along
with time limits called the start clock and play clock. Players have the duration
of the start clock to analyze the game description before the game begins and the
duration of the play clock to choose their moves each turn. The game continues
until a terminal state is reached. No human intervention is permitted at any
point: the general game player must be a complete and fully autonomous agent.

2.1 Game Description Language

For an agent to interpret a game, it must be described in a well-defined language.
In the Game Description Language (GDL), used in the competition, games are
modeled as state machines. An agent can derive its legal moves, the next state
given the moves of all players, and whether or not it has won by applying reso-
lution theorem proving. Part of the description for a game called “Minichess” is
shown in Figure 1. A GGP agent must be able to play any game, given such a
description. We illustrate the features of GDL through this example.

First, GDL declares the game’s roles (line 1). “Minichess” has two roles,
white and black. Next, the initial state of the game is defined (2–4). Each func-
tional term inside an init relation is true in the initial state. Besides init, none

Graph-Based Domain Mapping for Transfer Learning in General Games 3

of the tokens in these lines are GDL keywords. The predicates cell, control and
step are all game-specific. With the exception of goal values, even the numbers
do not have any external meaning. If any of these tokens were to be replaced by
a different token throughout, the meaning would not change.

GDL also defines the set of legal moves available to each role through legal

rules (5–8). The <= symbol is the reverse implication operator. Tokens begin-
ning with a question mark are variables. The true relation is affirmative if its
argument can be satisfied in the current state. The state transition function is
defined using the next keyword (9–10). The does predicate is true if the given
player selected the given action in the current state. Finally, GDL defines rules
to determine when the game state is terminal (15–16). When the game ends,
each player receives the reward defined by the game’s goal rules.

A game description may define additional relations to simplify the conditions
of other rules and support numerical relationships. For instance, the succ rela-
tion (11) defines how the game’s step counter is incremented, and the nextcol

relation (12) orders the columns of the chess board. Identifying such relationships
is valuable because they bridge logical and numerical representations.

2.2 Automated Domain Analysis

An approach common to most computer game playing systems is heuristic
search, in which game states are evaluated based on the contribution of various
features. Although these features are typically supplied by the system designer [3,
11], the general game playing setting prohibits such human involvement, moti-
vating the development of automated methods.

In prior work on automated domain analysis [9], we developed techniques for
generating features automatically from GDL game descriptions. The structures
identified during domain analysis are also valuable in domain mapping. One of
the most basic structures to look for is a successor relation. This type of relation
induces an ordering over a set of objects. We have already seen two examples
in lines 11–12 of Figure 1. A major challenge for automated domain analysis
in GGP is that, during the competition, the description’s non-keyword tokens
are scrambled to prevent the use of lexical clues. In a competition setting, the
same successor relations may look something like: (tcsh pico cpio) (tcsh

cpio grep) ... (tcsh echo ping).
Our system can still identify these relations as successors because order is

a structural, rather than lexical, property. Based on these relations, the agent
identifies additional structures such as a step counter, which is a functional term
in the game’s state that increments each time step. Our system identifies it by
looking for a rule such as the one on line 10 of Figure 1.

Another example of a structure that our agent attempts to identify is a board.
A board is a two dimensional grid of cells that change state, such as a chess or
checkers board. Once a board is identified, the system looks for markers, which
are objects that occupy the cells of the board and pieces, special markers that
occupy only one cell at a time. In “Minichess”, the white rook, wr, and the black
king bk are examples of pieces. Games like Othello have only markers.

4 Gregory Kuhlmann and Peter Stone

next

true

<=

next

true

<=

succ

step step?x

?y ?y ?x

next

true

<=

succ

step step?x

?y ?y ?x

Order Edges Added Final Graph w/ Label NodesArgument Edges Only

Fig. 2. Rule graph construction for step counter rule on line 10 of Figure 1.

3 Graph-Based Domain Mapping

An important step in transferring knowledge from a known game to a new,
unknown game is recognizing the extent to which the games are similar. Because
their rules are reordered and tokens scrambled during a competition, it is not
clear from the GDL descriptions even if two games are identical. To address
this problem, we introduce the concept of rule graphs, canonical form graph
structures that capture the important aspects of the game description while
ignoring inconsequential elements such as token names and rule order.

3.1 Rule Graphs

Rule graphs are colored, directed graph representations of game rules. To de-
scribe rule graph construction, we use the example of the step counter rule in
line 10 of Figure 1. Conceptually, a rule graph is constructed in three stages.
These stages for the step counter graph are show from left to right in Figure 2.

First, the graph contains a node for each logical sentence, relational sentence,
constant and variable in the rule. For each of these terms, an argument edge

is added from the term’s node to all of the term’s arguments. Variable nodes
are shown as diamonds. Logical sentence nodes are labeled by the sentence’s
operator. Relational sentences and constants are labeled with their functor’s
name and shown as circles, if they are keywords, and shown as squares, otherwise.
The resulting graph is shown on the far left in Figure 2. For the purpose of
matching, each circular node with a different label is considered a different color.

As shown in the center graph in the figure, we add additional edges to force
ordering constraints on arguments. For each relational sentence with arity greater
than one, we add an order edge from each argument to the argument that follows
it. The edge between the two arguments of the succ relation in the figure is an
example of such an edge. Also, we constrain the consequent of an implication
to precede the antecedents without enforcing an order on the antecedents them-
selves. We achieve this constraint by adding edges from the consequent to each
of the antecedents, as in the edge from next to succ and from next to true.

Finally, we must identify which variables and constants are the same without
keeping the specific labels. For each unique variable in a rule and for each unique

Graph-Based Domain Mapping for Transfer Learning in General Games 5

non-keyword constant in the game description, we create a new label node and
add edges to each of their instances. Variable label nodes are shown as dashed
diamonds and non-keyword constant label nodes as dashed squares. The final
graph for the step counter rule is shown on the far right in Figure 2.

To determine if two rules graphs are isomorphic, one must simply use any
off-the-shelf graph isomorphism algorithm. Through informal experimentation
we found VF [4] to be relatively efficient for the structure of rule graphs.

3.2 Correctness Proof

In this section, we sketch a proof for the correctness of rule graph isomorphism
as a means to determine if two games are the same, modulo scrambling. We
begin with a few definitions, followed by the formal statement of the theorem.

In GDL, an atomic sentence is a relation constant of arity k applied to k

terms: p(x1, . . . , xk) or equivalently p(xk
1). An example of an atomic sentence is

father(bob, X). If k is 0 then the sentence is called an object constant. A term is
either a variable (e.g. X) or an atomic sentence. A more complex example of an
atomic sentence is the following: f(X, g(Y, h(p)), q). The constants may be user-
defined, such as cell, or GDL keywords such as not, terminal, or distinct.

A rule is an implication of the form: h⇐ b1∧· · ·∧bn, where h, the head, and
each bi in the body are atomic sentences. Although GDL supports disjunction in
the body, it is always possible to remove this disjunction and write rules in this
form. Because conjunction is associative and commutative, we can represent the
body of a rule as a set, B. Therefore, we represent such a rule as a pair h⇐ B

where B = {b1, b2, . . . , bn}. If the set B is empty, then the head of the rule is an
unconditionally true fact.

A game description is a set of rules. A variable scrambling is a one-to-one
function over the variable labels present in a rule. A constant scrambling is a
one-to-one function over the constant labels present in a game description. A
game scrambling of a game description γ is a constant scrambling of γ and a set
of variable scramblings, one for each rule in γ. Two game descriptions γ and γ′

are scramble-equivalent if there exists a scrambling η such that γ′ = η(γ).

Theorem Two game descriptions γ and γ′ are scramble-equivalent if and only if

the rule graph G created from γ and rule graph G′ created from γ′ are isomorphic.

Proof Sketch.

The forward implication of the theorem is fairly straightforward to prove. If two
game descriptions are scramble-equivalent, then their corresponding rule graphs
will be isomorphic. A simple argument for this statement is that the graph
construction algorithm is deterministic and does not depend on the exact names
of the non-keyword tokens.

The reverse direction is a bit more subtle. We will prove that isomorphic rule
graphs imply scramble-equivalent game descriptions by induction on the size of
the game description. Beginning with the base case of γ =Ø, we can construct
any game description by composing the following operations:

6 Gregory Kuhlmann and Peter Stone

1. Add new rule with object constant head and empty body:
γ −→ γ ∪ {c ⇐Ø}

2. Add object constant as antecedent of existing rule:
γ ∪ {h ⇐ B} −→ γ ∪ {h ⇐ B ∪ {c}}

3. Append object constant to some atomic sentence in head of existing rule:
γ ∪ {p(. . . r(xk

1
) . . .) ⇐ B} −→ γ ∪ {p(. . . r(xk

1
, c) . . .) ⇐ B}

4. Append variable to some atomic sentence in head of existing rule:
γ ∪ {p(. . . r(xk

1
) . . .) ⇐ B} −→ γ ∪ {p(. . . r(xk

1
, X) . . .) ⇐ B}

5. Append object constant to some atomic sentence in body of existing rule:
γ ∪ {h ⇐ B ∪ {p(. . . r(xk

1
) . . .)}} −→ γ ∪ {h ⇐ B ∪ {p(. . . r(xk

1
, c) . . .)}}

6. Append variable to some atomic sentence in body of existing rule:
γ ∪ {h ⇐ B ∪ {p(. . . r(xk

1
) . . .)}} −→ γ ∪ {h ⇐ B ∪ {p(. . . r(xk

1
, X) . . .)}}

For each of the above operations, we construct a corresponding abstract rule
graph, G. This graph can be divided into two partitions: the nodes and edges
present prior to applying the operation, and those added by the operation. By the
definition of isomorphism, the isomorphic rule graph, G′, can then be partitioned
in the same way. By applying the graph building algorithm in reverse, we get
a partitioned game description γ′. By the induction hypothesis, the original
subgraph isomorphism implies scramble-equivalent subgames. What remains is
to show that there exists a scrambling compatible with the subgame scrambling
that makes the induction step rule equivalent to its partner in the isomorphic
game. The same procedure proves the induction step for each operation.

3.3 Identifying Similar Games

While it is undoubtedly useful to recognize identical games, the applicability of
our algorithm is much greater if we extend it to similar, but non-identical games.
Our approach is to continue using identical rule graph isomorphism, but to test
against generated variants of previously played games. We begin by identifying
the classes of variants that we have determined to produce small, local changes
to rule graph structure. Each variant defines a transformation procedure, which
modifies the original rule graph by adding and/or deleting nodes and edges.

The first class of variants are those that change only the initial state of the
game. By comparing all of the rules other than the initial state declarations,
the standard graph isomorphism algorithm can identify these variants: Num
Markers, in which the number of markers on the board differs and Piece Con-
figuration, in which the location of pieces is different.

A more challenging class of variants to identify are those that change one or
more of the game’s successor relations. For example, the nextcol relation defined
on line (12) of Figure 1 could be made longer by adding another rule: (nextcol
d e) or shorter by removing the rule (nextcol c d). Alternatively, we could
make the sequence cyclic by adding the rule: (nextcol d a). Each of these game
description changes correspond to rule graph transformations. By applying these
candidate transformations prior to matching, we can identify the Board Size
variant, in which the length successor relation ordering the coordinates of one
or more of the board dimensions has been changed. The Cylindrical/Toroidal
Board variant makes cyclic the successor relation that orders one or more of the
coordinates of the board. Finally, Step Limit alters the maximum number of
steps before forced termination by changing the step number in the termination
condition and expanding the counter’s successor relation as necessary.

Graph-Based Domain Mapping for Transfer Learning in General Games 7

Step Limit is a composite variant in that it modifies both a successor rela-
tion and a goal condition. Another goal variant is Inverted Goal, in which the
constants “100” and “0” are swapped in the second argument of all instances of
goal. In Switched Role, the rule graph is unchanged but the player’s assigned
role is different (e.g. playing as O instead of X in tictactoe). Lastly, in the Miss-
ing Feature variants, a state feature present in the source task state is absent
in the target task state. The transformation procedure removes all instances of
the feature and the rules that include it, (e.g. removal of a step counter).

Offline, the agent generates a rule graph for each applicable transformation of
each previously played game. When faced with a new game, the agent generates
its rule graph and attempts to match it against every graph in the database. Non-
matching graphs are typically rejected very quickly; only correct matches require
any significant amount of computation. With a database of roughly 100 games,
the entire process never requires more than 27 secs on a 2.80GHz machine.

Although this approach can detect quite complicated transformations of
games, there are limits to its power. Game variants that affect many rules at
once are particularly difficult to handle. For example, the board topologies in 3
and 4 player Chinese checkers games differ by too many rules to describe their
difference as a concise, generally-applicable transformation procedure.

To this point, we have described our procedure for identifying game variants.
In the next section, we describe our approach to transferring knowledge between
these games for the purpose of speeding up learning.

4 Value Function Transfer

The approach detailed in this work transfers a learned value function from a
source task to initialize the value function of a target task, identified to be
similar through the graph-based method described in the previous section. Before
introducing our approach to value function transfer, we provide some background
on the reinforcement learning paradigm and detail the assumptions and design
choices of our learning algorithm.

4.1 Reinforcement Learning in Games

In a Reinforcement Learning (RL) problem [13], an environment is modeled as
a Markov Decision Process (MDP), defined by a transition function, T , and
a reward function, R. Many common algorithms for solving RL problems are
based on learning a value function, Q, which approximates the expected long-
term reward for executing action a in state s.

In GGP, R is known, but for multiplayer games, T is only partially known,
because the transition function depends on the opponent’s unknown policy. If we
consider only turn-taking games, in which the next state is uniquely determined
by the agent’s action on its turn, then we need only learn a function V over
what are commonly called afterstates. Although it is still possible to learn Q, V

has fewer values, increasing generalization. Also, this representation simplifies
transfer mapping by requiring only a mapping between the states of the two
tasks and not the actions.

8 Gregory Kuhlmann and Peter Stone

Mapping Initial VT [s] Applicable Variants

Direct VS [s]
Step Limit

Num Markers
Piece Configuration

Inverse 100 − VS [s]
Inverted Goal
Switched Role

Average 1 |
B

(s)|
P

s′∈B(s) VS [s′]
Board Size

Missing Feature

Fig. 3. Value function initialization formulas for three mappings, along with applicable
game variants. VS and VT are the value functions for the source and target tasks,
respectively. B(s) is the set of source task afterstates mapped to target afterstate s.

A popular algorithm for learning value functions is an incarnation of tem-
poral difference learning called Sarsa [13]. Taking into account the assumptions
discussed thus far and that R is defined only for terminal states, our learning
algorithm can be described by the following update rule:

V [st−1]← V [st−1] + α ·

{

(R(st)− V [st−1]) if st is terminal,

(V [T (st, at)]− V [st−1]) otherwise.

where α is the learning rate (0.3 in our experiments), st is the current state,
at is the agent’s chosen action, and st−1 is the afterstate following the agent’s
previous action. This algorithm and the rest of the transfer learning approach
described in this work make no assumptions about the representation of V . In
our experiments, each V [s] is stored as a single real value in a table. However,
there is nothing in principle that would prevent our method from working with
a function approximator, such as a neural network.

4.2 Value Function Mapping

To translate afterstate values in the source into afterstate values in the target we
must construct a mapping between their state spaces. The appropriate mapping
depends on the identified relationship of the tasks. In Figure 3 we propose three
possible mapping functions and, for each, identify applicable game variants.

The direct mapping simply copies the value of an afterstate in the source
task directly to afterstate value in the target task. This mapping assumes that
the two tasks have the same state space and roughly the same goal condition.
Because the Step Limit variant effects only the duration of the game and Num
Markers and Piece Configuration effect only the game initial state, the direct
mapping seems to be appropriate.

The inverse mapping also assumes that the state space is the same between
tasks, but that the goal has changed. In particular, it assumes that the goal of
the target task is the exact opposite of the source task. This mapping is clearly
applicable in the case of Inverted Goal. Assuming that the game is zero sum,
then the mapping is also appropriate for Switched Role.

Graph-Based Domain Mapping for Transfer Learning in General Games 9

The final mapping, average, assumes only that there is a function, B, that for
a given target afterstate, returns the set of relevant source afterstates. In the case
of Missing Feature, B(s) would return all source task afterstates with feature
values matching those of s for the features remaining in the target afterstate.
The Board Size variant uses a particular B, detailed in the next section.

4.3 Case Studies

In this section, we discuss the application of the complete mapping procedure
to three concrete examples, one from each mapping category. Our first transfer
scenario involves a miniature checkers game played on a 5× 5 board. The rules
are identical to normal checkers, except that an available jump must be taken.

This source-target pair is an example of the Num Markers variant. In the
target task, each player begins with only 4 pieces instead of 5. The goal in both
tasks is the same: to capture your opponent’s markers before they capture yours.
It is reasonable to assume that there will be some overlap in the states visited
in the source task and those in the target task, so the Direct mapping appears
to be the logical choice. At the same time, the degree to which the transfer may
help (or hurt) must be answered empirically.

In the class of games appropriate for the Inverse mapping, we looked at the
game of tictactoe and a variant in which the goal is inverted. Because the goal of
the game is the opposite of the original goal, highly valued states of the source
task should have low values in the target task and vice-versa.

Fig. 4. Full 4 × 4 “Minichess” state
and all four candidate subboards.

Finally, “Minichess”, the chess vari-
ant introduced in Section 2.1 is used as
an example of a Board Size variant. For
a target task with board size N ×N , we
assume that the source task has a board
size of N − 1×N − 1. In particular, we
use the 3×3 game as the source task and
the 4 × 4 game as the target task. The
afterstate mapping function B, is con-
structed as follows. An afterstate repre-
sented by the 4 × 4 board in the target
task is mapped to four candidate after-
states in the source task, each represented by a 3 × 3 board, which we call a
subboard. The first subboard consists of the top-left 3 × 3 cells of the board.
The next subboard consists of the top-right cells, continuing clockwise. Figure 4
shows a source task afterstate and its four candidate subboards. Each of these
candidates is not necessarily a valid afterstate in the source task. If no subboards
are valid, the afterstate value is initialized to the default value.

5 Experiments

We conducted experiments to determine the impact of value function transfer
in each of the described scenarios, using different amounts of training on the

10 Gregory Kuhlmann and Peter Stone

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 100 200 300 400 500 600 700 800

A
v
e
ra

g
e
 R

e
w

a
rd

Target Learning (Matches)

10,000 matches
1,000 matches

No source task training

 65

 70

 75

 80

 85

 90

 95

 0 200 400 600 800 1000

A
v
e
ra

g
e
 R

e
w

a
rd

Target Learning (Matches)

10,000 matches
1,000 matches

No source task training

Fig. 5. Transfer learning results with varying source experience. Left: “Checkers” game
with Num Markers variant. Right: “TicTacToe” game with Inverted Goal variant.

source task. Each learning trial consists of an independent source task learning
phase followed by a target task learning phase. The target task agent’s value
function is initialized by the source task value function, according to the domain’s
generated mapping function. Each trial was repeated 30 times, with a sliding
window average of 100 matches used to generate learning curves. To determine
statistical significance, we evaluated the curves at several points using a one-
tailed T-test with 95% confidence. All figures show averaged learning curves.

The results of our “Checkers” experiments are shown on the left in Figure 5.
Value function transfer produces an initial performance improvement that per-
sists until convergence. The other two curves eventually catch up, beyond the
scale of the graph. The visible differences are statistically significant for all data
points shown. The average number of state values transferred for the most ex-
perience player was 1,113, which is roughly a third of all unique afterstates en-
countered during target task learning. To make learning more valuable in these
experiments, we used an opponent agent trained for an extensive period of time
with temporal different learning rather than a random player.

The “TicTacToe” results, shown on the right in Figure 5, again demonstrate
the positive impact of transfer. In this case, the average hit rate was 68% for the
learner with 10,000 matches of source task experience. This substantial reuse
of source task values helps to explain the significance of the transfer benefit.
The performance improvement of the player with 10,000 matches of source task
experience is significantly better than the from-scratch learner until 700 matches.

To make the problem more interesting for learning, at the start of each match,
for both source and target learning, the state is initialized to a random configu-
ration of the pieces. In only about half of the initial states can the white player
force a win. However, in our experiments, the black player is controlled by a
one-move lookahead player, and thus, by exploiting the suboptimality of the
opponent, a learner is able to earn an average score above 50.

The transfer results for “Minichess” are shown in Figure 6. Transfer clearly
improves the learner’s initial performance. The experienced learners do signifi-
cantly better than the agent learning from scratch up until 1,200 target matches.
The agent learning from scratch then performs better than the experienced play-

Graph-Based Domain Mapping for Transfer Learning in General Games 11

ers between 2,500 and 4,000 matches. The fact that the slowdown is more pro-
nounced for the 1,000 match learner than for the 100 match learner indicates that
the agent may be overfitting to the source task. The negative effect is short-lived,
however, and by 4,000 target task matches, all three learners converge.

6 Related Work

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v
e
ra

g
e
 R

e
w

a
rd

Target Learning (Matches)

1,000 matches
100 matches

No source task training

Fig. 6. Transfer from 3× 3 board to 4× 4
board in “Minichess”.

Graph theoretic structures have
long been recognized for their value
to logic programming. Scheffer et
al. [12] define an occurrence graph

and demonstrate its utility in ef-
ficiently solving the θ-subsumption
problem for ILP. This graph relates
the shared variables between a pair
of clauses, but does not relate sym-
bol names across clauses like our
rule graphs.

In other work [6, 5], dependency

graphs, used to check for consistency
in logic programs with negation, have been extended to apply under the stable
model semantics. Dependency graphs are defined over the predicate symbols of
a knowledge base and capture a different abstraction than that in our work.

The most similar graph structure to our own is that defined by Xu and
Tao [15]. With this structure, they demonstrate that the isomorphism problem
for definite logic programs (those with only Horn clauses) is equivalent to the
graph isomorphism problem. Our proof in Section 3.2 extends this result to
general Datalog programs with negation.

In their recent work, Taylor et al. [14] demonstrate that value function trans-
fer is able to speed up learning between tasks when the domain mapping is given.
Their work also makes progress towards automating mapping by employing a
classification algorithm to map actions between tasks. This method requires that
the states are defined in terms of objects and each state feature is associated
with one of those objects.

Other work on Relational Reinforcement Learning (RRL) has shown that
by maintaining the relational structure of the domain in the representation of
the value function, it is possible to learn to solve differently parametrized tasks
simultaneously [7]. As our work makes no assumptions about value function rep-
resentation, future work may reveal RRL to be complementary to our approach.
RRL has even been applied in GGP. Asgharbeygi et al. [1] learn the values of
handcrafted relational predicates to speed up learning considerably.

Another successful example of transfer learning in GGP is the work of Baner-
jee and Stone [2], in which features of the game tree alone are leveraged for
transfer. Although the features are somewhat expensive to compute because
they require search, the learner is able to transfer learned knowledge across
games with significantly different state and action spaces.

12 Gregory Kuhlmann and Peter Stone

7 Conclusion

This work makes progress toward the complete automation of domain mapping
for value function transfer learning. The first main contribution is the rule graph

structure, which is useful for representing games in canonical form. Beyond its
use in this paper, the rule graph is likely to be of general interest to the GGP
community, as a way to leverage past experience. The second main contribution
of this paper is that rule graphs, along with a set of identified variant classes,
can be used as a practical method for recognizing variants of previously played
games and speeding up learning in the General Game Playing framework.

References

1. N. Asgharbeygi, D. Stracuzzi, and P. Langley. Relational temporal difference learn-
ing. In ICML, 2006.

2. Bikramjit Banerjee and Peter Stone. General game learning using knowledge trans-
fer. In The 20th International Joint Conference on Artificial Intelligence, pages
672–677, January 2007.

3. Murray Campbell, A. Joseph Hoane Jr., and Feng Hsiung Hsu. Deep blue. Artificial

Intelligence, 134(1–2):57–83, 2002.
4. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for

matching large graphs. In Proc. of the 3rd IAPR-TC-15 Internation Workshop on

Graph-based Representations, pages 149–159, Italy, 2001.
5. Stefania Costantini. Comparing different graph representations of logic programs

under the answer set semantics. In Proceedings of the AAAI Spring Symposium on

Answer Set Programming, 2001.
6. Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic pro-

grams and default theories. Theoretical Computer Science, 170(1):209–244, 1996.
7. S. Dzeroski, L. De Raedt, and K. Driessens. Relational reinforcement learning.

Machine Learning, 43:7–52, 2001.
8. Michael Genesereth and Nathaniel Love. General game playing: Overview of the

AAAI competition. AI Magazine, 26(2), 2005.
9. Gregory Kuhlmann, Kurt Dresner, and Peter Stone. Automatic heuristic con-

truction in a complete general game player. In Proceedings of the Twenty-First

National Conference on Artificial Intelligence, July 2006.
10. Barney Pell. Strategy generation and evaluation for meta-game playing. PhD

thesis, University of Cambridge, 1993.
11. Jonathan Schaeffer, Joseph C. Culberson, Norman Treloar, Brent Knight, Paul Lu,

and Duane Szafron. A world championship caliber checkers program. Artificial

Intelligence, 53(2-3):273–289, 1992.
12. Tobias Scheffer, Ralf Herbrich, and Fritz Wysotzki. Efficient theta-subsumption

based on graph algorithms. In Inductive Logic Programming Workshop, 1996.
13. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 1998.
14. Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Transfer via inter-task

mappings in policy search reinforcement learning. In The Sixth International Joint

Conference on Autonomous Agents and Multiagent Systems, May 2007.
15. Dao-Yun Xu and Zhi-Hong Tao. Complexities of homomorphism and isomor-

phism for definite logic programs. Journal of Computer Science and Technology,
20(6):758–762, November 2005.

