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ABSTRACT

In reinforcement learning, an agent interacting with its en-
vironment strives to learn a policy that specifies, for each
state it may encounter, what action to take. Evolution-
ary computation is one of the most promising approaches
to reinforcement learning but its success is largely restricted
to off-line scenarios. In on-line scenarios, an agent must
strive to maximize the reward it accrues while it is learn-

ing. Temporal difference (TD) methods, another approach
to reinforcement learning, naturally excel in on-line scenar-
ios because they have selection mechanisms for balancing
the need to search for better policies (exploration) with the
need to accrue maximal reward (exploitation). This paper
presents a novel way to strike this balance in evolutionary
methods by borrowing the selection mechanisms used by
TD methods to choose individual actions and using them
in evolution to choose policies for evaluation. Empirical re-
sults in the mountain car and server job scheduling domains
demonstrate that these techniques can substantially improve
evolution’s on-line performance in stochastic domains.
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1. INTRODUCTION
In reinforcement learning, an agent interacting with its

environment strives to learn a policy that specifies, for each
state it may encounter, what action to take. Unlike super-
vised learning tasks, the agent never sees examples of correct
behavior. Instead, it receives only positive or negative re-
wards for the actions it tries. From this feedback it must
find a policy that maximizes reward over the long-term.

Evolutionary computation is one of the most promising
approaches to tackling reinforcement learning problems. Evo-
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lutionary methods have succeeded in a wide range of do-
mains, including benchmark pole balancing tasks [19], game
playing [21], and robot control [20]. However, this empirical
success is largely restricted to off-line scenarios, in which
the agent learns, not in the real-world, but in a “safe” en-
vironment like a simulator. Consequently, its only goal is
to learn a good policy as quickly as possible. It does not
care how much reward it accrues while it is learning because
those rewards are only hypothetical and do not correspond
to real-world costs. If the agent tries disastrous policies,
only computation time is lost.

Unfortunately, many reinforcement learning problems can-
not be solved off-line because no simulator is available. Some-
times the dynamics of the task are unknown, e.g. when a
robot explores an unfamiliar environment or a chess player
plays a new opponent. Other times, the dynamics of the task
are too complex to accurately simulate, e.g. user behavior on
a large computer network or the noise in a robot’s sensors
and actuators. In such domains, the agent has no choice
but to learn on-line: by interacting with the real world and
adjusting its policy as it goes. In an on-line learning sce-
nario, it is not enough for an agent to learn a good policy
quickly. It must also maximize the reward it accrues while it
is learning because those rewards correspond to real-world
costs. For example, if a robot learning on-line tries a policy
that causes it to drive off a cliff, then the negative reward
the agent receives is not hypothetical; it corresponds to the
very real cost of fixing or replacing the robot.1

To excel in on-line scenarios, a learning algorithm must
effectively balance two competing objectives. The first ob-
jective is exploration, in which the agent tries alternatives
to its current best policy in the hopes of improving it. The
second objective is exploitation, in which the agent follows
the current best policy in order to maximize the reward it
receives. Evolutionary methods already strive to perform
this balance. In fact, Holland [8] argues that the reproduc-
tion mechanism encourages exploration, since crossover and
mutation result in novel genomes, but also encourages ex-
ploitation, since each new generation is based on the fittest
members of the last one. However, reproduction allows evo-
lutionary methods to balance exploration and exploitation
only across generations, not within them. Once the mem-

1
The term on-line learning is sometimes used in a very different

way: to refer to non-stationary learning problems where the agent’s
environment is changing in ways that alter the optimal policy. In
such problems, the agent must continually adapt to perform well.
The problems of non-stationary learning and on-line learning (as we
use the term) are unrelated and orthogonal: a learning scenario can
be non-stationary but off-line or stationary but on-line. This paper
does not address non-stationary learning problems.



bers of each generation have been determined, they all typ-
ically receive the same evaluation time.

This approach makes sense in deterministic domains, where
each member of the population can be accurately evaluated
in a single episode. However, most real-world domains are
stochastic, in which case fitness evaluations must be av-
eraged over many episodes. In these domains, giving the
same evaluation time to each member of the population
can be grossly suboptimal because, within a generation,
it is purely exploratory. Instead, an on-line evolutionary
algorithm should exploit the information gained earlier in
the generation to systematically give more evaluations to
the most promising individuals and avoid re-evaluating the
weakest ones. Doing so allows evolutionary methods to in-
crease the reward accrued during learning.

This paper presents a novel approach to achieving this
balance that relies on action selection mechanisms typically
used by temporal difference (TD) methods [24]. TD meth-
ods, which solve reinforcement learning problems by esti-
mating the agent’s optimal value function, naturally excel
in on-line scenarios because they use action selection mech-
anisms to control how often the agent exploits (by behaving
greedily with respect to current value estimates) and how
often it explores (by trying alternative actions). This paper
describes ways to borrow the selection mechanisms used by
TD methods to choose individual actions and use them in
evolution to choose policies for evaluation. This approach
enables evolution to excel on-line by balancing exploration
and exploitation within and across generations.

This paper investigates three methods based on this ap-
proach. The first, based on ǫ-greedy selection [26], switches
probabilistically between searching for better policies and
re-evaluating the best known policy. The second, based on
softmax selection [24], distributes evaluations in proportion
to each individual’s estimated fitness. The third, based on
interval estimation [9], computes confidence intervals for the
fitness of each policy and always evaluates the policy with
the highest upper bound.

To evaluate these methods, we implemented them in NEAT,
a neuroevolutionary method known to excel at reinforce-
ment learning tasks [19], and tested their performance in
two domains: 1) mountain car, a canonical reinforcement
learning benchmark task, and 2) server job scheduling, a
large stochastic reinforcement learning task from the field
of autonomic computing [10]. The results demonstrate that
these techniques can substantially improve the on-line per-
formance of evolutionary methods and that softmax selec-
tion and interval estimation are more effective than the sim-
ple ǫ-greedy approach.

2. NEUROEVOLUTION OF AUGMENTING

TOPOLOGIES (NEAT)2

The experiments presented in this paper use NeuroEvolu-
tion of Augmenting Topologies (NEAT) as a representative
evolutionary method for testing different approaches to on-
line evolution. NEAT is an appropriate choice because of its
empirical successes on reinforcement learning tasks like pole
balancing [19], game playing [21], and robot control [20].

In a typical neuroevolutionary system [29], the weights of
a neural network are strung together to form an individual
genome. A population of such genomes is then evolved by

2
This section is adapted from the original NEAT paper [19].

evaluating each one and selectively reproducing the fittest
individuals through crossover and mutation. Most neuroevo-
lutionary systems require the designer to manually deter-
mine the network’s topology (i.e. how many hidden nodes
there are and how they are connected). By contrast, NEAT
automatically evolves the topology to fit the complexity
of the problem. It combines the usual search for network
weights with evolution of the network structure. The re-
mainder of this section provides a brief overview of the
NEAT method. Stanley and Miikkulainen [19] present a
full description.

2.1 Minimizing Dimensionality
Unlike other systems that evolve network topologies and

weights [7, 29], NEAT begins with a uniform population of
simple networks with no hidden nodes and inputs connected
directly to outputs. New structure is introduced incremen-
tally via two special mutation operators. Figure 1 depicts
these operators, which add new hidden nodes and links to
the network. Only the structural mutations that yield per-
formance advantages tend to survive evolution’s selective
pressure. In this way, NEAT tends to search through a min-
imal number of weight dimensions and find an appropriate
complexity level for the problem.
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Figure 1: Examples of NEAT’s mutation operators for

adding structure to networks. At top, a new hidden node

splits a link in two. At bottom, a new link, shown with

a thicker black line, connects two nodes.

2.2 Genetic Encoding with
Historical Markings

Evolving network structure requires a flexible genetic en-
coding. Each genome in NEAT includes a list of connec-

tion genes, each of which refers to two node genes being
connected. Each connection gene specifies the in-node, the
out-node, the weight of the connection, whether or not the
connection gene is expressed (an enable bit), and an inno-

vation number, which allows NEAT to find corresponding
genes during crossover.

In order to perform crossover, the system must be able
to tell which genes match up between any individuals in
the population. For this purpose, NEAT keeps track of the
historical origin of every gene. When a new gene appears
(through structural mutation), a global innovation number

is incremented and assigned to that gene. The innovation
numbers thus represent a chronology of every gene in the
system. When these genomes crossover, innovation numbers
on inherited genes are preserved. Thus, the historical origin
of every gene in the system is known throughout evolution.



Through innovation numbers, the system knows exactly
which genes match up with which. Genes that do not match
are either disjoint or excess, depending on whether they oc-
cur within or outside the range of the other parent’s innova-
tion numbers. During crossover, the genes in both genomes
with the same innovation numbers are lined up. Genes that
do not match are inherited from the more fit parent, or if
they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover with-
out expensive topological analysis. Genomes of different or-
ganizations and sizes stay compatible throughout evolution,
and the problem of matching different topologies [15] is es-
sentially avoided.

2.3 Speciation
In most cases, adding new structure to a network initially

reduces its fitness. However, NEAT speciates the popu-
lation, so that individuals compete primarily within their
own niches rather than with the population at large. Hence,
topological innovations are protected and have time to op-
timize their structure before competing with other niches in
the population.

Historical markings make it possible for the system to
divide the population into species based on topological sim-
ilarity. The distance δ between two network encodings is a
simple linear combination of the number of excess (E) and
disjoint (D) genes, as well as the average weight differences
of matching genes (W ):

δ =
c1E

N
+

c2D

N
+ c3 · W. (1)

The coefficients c1, c2, and c3 adjust the importance of the
three factors, and the factor N , the number of genes in the
larger genome, normalizes for genome size. Genomes are
tested one at a time; if a genome’s distance to a randomly
chosen member of the species is less than δt, a compatibility
threshold, it is placed into this species. Each genome is
placed into the first species where this condition is satisfied,
so that no genome is in more than one species.

The reproduction mechanism for NEAT is explicit fitness

sharing [6], where organisms in the same species must share
the fitness of their niche, preventing any one species from
taking over the population.

2.4 NEAT for Reinforcement Learning
Since NEAT is a general purpose optimization technique,

it can be applied to a wide variety of problems. In this
paper, we use NEAT to solve reinforcement learning tasks.
Each neural network in the population represents a candi-
date policy in the form of an action selector. The inputs to
the network describe the agent’s current state. There is one
output for each available action; the agent takes whichever
action has the highest activation.

A candidate policy is evaluated by allowing the corre-
sponding network to control the agent’s behavior during an
episode and observing how much reward it receives. The
policy’s fitness is simply the sum of the rewards the agent
accrues during the episode. In deterministic domains, each
member of the population can be evaluated in a single episode.
However, most real-world problems are stochastic and the
reward a particular policy receives on a given episode has
substantial variance. To reduce this variance, evolution must
evaluate each candidate policy many times and average the

resulting fitness estimates. In such domains, the question
arises: how should episodes of evaluation be allocated among
the population so as to maximize on-line performance? The
following section presents a novel answer.

3. ON­LINE EVOLUTIONARY

COMPUTATION
If e is the total number of episodes conducted in each

generation and |P | is the size of the population, evolution-
ary methods typically evaluate each member of the popula-
tion for e/|P | episodes. In on-line scenarios, this strategy is
grossly suboptimal because it makes no attempt to properly
balance exploration and exploitation within a generation. In
fact, this strategy is purely exploratory, as every individual
is evaluated for exactly the same number of episodes.

In this section, we present three methods that attempt
to boost evolution’s on-line performance by balancing ex-
ploration with exploitation. Instead of giving each individ-
ual the same number of episodes, these methods exploit the
information gained from early episodes to favor the most
promising candidate policies and thereby boost the reward
accrued during learning. All three methods work by borrow-
ing action selection mechanisms traditionally used in TD
methods and applying them in evolutionary computation.
In TD methods, these mechanisms directly balance explo-
ration and exploitation by determining how often the agent
behaves greedily with respect to current value estimates and
how often it tries alternative actions.

In a sense, the problem faced by evolutionary methods
is the opposite of that faced by TD methods. Within each
generation, evolutionary methods naturally explore, by eval-
uating each member of the population equally, and so need
a way to force more exploitation. By contrast, TD meth-
ods naturally exploit, by following the greedy policy, and so
need a way to force more exploration. However, the goal is
the same: a proper balance between the two extremes.

To apply TD selection mechanisms in evolutionary com-
putation, we must modify the level at which selection is per-
formed. Evolutionary algorithms cannot perform selection
at the level of individual actions because, lacking value func-
tions, they have no notion of the value of individual actions.
However, they can perform selection at the level of episodes,
in which entire policies are assessed holistically. The same
selection mechanisms used to choose individual actions in
TD methods can be used to select policies for evaluation,
allowing evolution to excel on-line by balancing exploration
and exploitation within and across generations. The rest of
this section details three ways to perform on-line evolution.

3.1 ǫ­Greedy Evolution
When ǫ-greedy selection is used in TD methods, a single

parameter ǫ controls what fraction of the time the agent
deviates from greedy behavior. Each time the agent selects
an action, it chooses probabilistically between exploration
and exploitation. With probability ǫ, it explores by selecting
randomly from the available actions. With probability 1−ǫ,
it exploits by selecting the greedy action.

In evolutionary computation, this same mechanism can
be used at the beginning of each episode to select a policy
for evaluation. With probability ǫ, the algorithm selects a
policy randomly. With probability 1 − ǫ, the algorithm ex-
ploits by selecting the best policy discovered so far in the
current generation. The score of each policy is just the av-



erage reward per episode it has received so far. Each time a
policy is selected for evaluation, the total reward it receives
is incorporated into that average, which can cause it to gain
or lose the rank of best policy.

To apply ǫ-greedy selection to NEAT, we need only alter
the way networks are selected for evaluation. Instead of iter-
ating through the population repeatedly until e episodes are
complete, NEAT selects for evaluation, at the beginning of
each episode, the policy returned by the ǫ-greedy selection
function described in Algorithm 1. This function returns a
policy p which is either selected randomly or which maxi-
mizes f(p), the fitness of p averaged over all the episodes for
which it has been previously evaluated.

Algorithm 1 ǫ-greedy selection(P, ǫ)

1: // P : population, ǫ: NEAT’s exploration rate
2:
3: with-prob(ǫ) return random(P )
4: else return argmaxp∈P f(p)

Using ǫ-greedy selection in evolutionary computation al-
lows it to thrive in on-line scenarios by balancing explo-
ration and exploitation. For the most part, this method
does not alter evolution’s search but simply interleaves it
with exploitative episodes that increase average reward dur-
ing learning. The next section describes how softmax selec-
tion can be applied to evolution to create a more nuanced
balance between exploration and exploitation.

3.2 Softmax Evolution
When softmax selection is used in TD methods, an ac-

tion’s probability of selection is a function of its estimated
value. In addition to ensuring that the greedy action is cho-
sen most often, this technique focuses exploration on the
most promising alternatives. There are many ways to im-
plement softmax selection but one popular method relies on
a Boltzmann distribution [24], in which case an agent in
state s chooses an action a with probability

eQ(s,a)/τ

P

a′∈A eQ(s,a′)/τ
(2)

where A is the set of available actions, Q(s, a) is the agent’s
value estimate for the given state-action pair and τ is a
positive parameter controlling the degree to which actions
with higher values are favored in selection. The higher the
value of τ , the more equiprobable the actions are.

As with ǫ-greedy selection, we use softmax selection in
evolution to select policies for evaluation. At the begin-
ning of each generation, each individual is evaluated for one
episode, to initialize its fitness. Then, the remaining e− |P |
episodes are allocated according to a Boltzmann distribu-
tion. Before each episode, a policy p in a population P is
selected with probability

ef(p)/τ

P

p′∈P ef(p′)/τ
(3)

where f(p) is the fitness of policy p, averaged over all the
episodes for which it has been previously evaluated. In
NEAT, softmax selection is applied in the same way as ǫ-
greedy selection, except that the policy selected for eval-
uation is that returned by the softmax selection function

Algorithm 2 softmax selection(P, τ)

1: // P : population, τ : softmax temperature
2:
3: if ∃ p ∈ P | e(p) = 0 then
4: return p
5: else
6: total←P

p∈P ef(p)/τ

7: for all p ∈ P do

8: with-prob( ef(p)/τ

total
) return p

9: else total← total− ef(p)/τ

described in Algorithm 2, where e(p) is the total number of
episodes for which a policy p has been evaluated so far.

Softmax selection provides a more nuanced balance be-
tween exploration and exploitation than ǫ-greedy because it
focuses its exploration on the most promising alternatives
to the current best policy. Softmax selection can quickly
abandon poorly performing policies and prevent them from
reducing the reward accrued during learning.

3.3 Interval Estimation Evolution
An important disadvantage of both ǫ-greedy and softmax

selection is that they do not consider the uncertainty of the
estimates on which they base their selections. One approach
that addresses this shortcoming is interval estimation [9].
When used in TD methods, interval estimation computes a
(100−α)% confidence interval for the value of each available
action. The agent always takes the action with the highest
upper bound on this interval. This strategy favors actions
with high estimated value and also focuses exploration on
the most promising but uncertain actions. The α parameter
controls the balance between exploration and exploitation,
with smaller values generating greater exploration.

The same strategy can be employed within evolution to
select policies for evaluation. At the beginning of each gen-
eration, each individual is evaluated for one episode, to ini-
tialize its fitness. Then, the remaining e − |P | episodes are
allocated to the policy that currently has the highest up-
per bound on its confidence interval. In NEAT, interval
estimation is applied just as in ǫ-greedy and softmax selec-
tion, except that the policy selected for evaluation is that
returned by the interval estimation function described in Al-
gorithm 3, where [0, z(x)] is an interval within which the area
under the standard normal curve is x. f(p), σ(p) and e(p)
are the fitness, standard deviation, and number of episodes,
respectively, for policy p.

Algorithm 3 interval estimation(P, α)

1: // P : population, α: uncertainty in confidence interval
2:
3: if ∃ p ∈ P | e(p) = 0 then
4: return p
5: else
6: return argmaxp∈P [f(p) + z( 100−α

200
)

σ(p)√
e(p)

]

4. EXPERIMENTAL SETUP
To empirically compare the methods described above, we

used two different reinforcement learning domains. The first
domain, mountain car, is a standard reinforcement learning
benchmark task. The second domain, server job scheduling,
is a large, stochastic domain from the field of autonomic
computing.



4.1 Mountain Car
In the mountain car task [4], depicted in Figure 2, an agent

strives to drive a car to the top of a steep mountain. The car
cannot simply accelerate forward because its engine is not
powerful enough to overcome gravity. Instead, the agent
must learn to drive backwards up the hill behind it, thus
building up sufficient inertia to ascend to the goal before
running out of speed.

Figure 2: The mountain car task. This figure was
taken from Sutton and Barto [21].

The agent’s state at timestep t consists of its current posi-
tion pt and its current velocity vt. It receives a reward of -1
at each time step until reaching the goal, at which point the
episode terminates. The agent’s three available actions cor-
respond to the throttle settings 1, 0, and -1. The following
equations control the car’s movement:

pt+1 = boundp(pt + vt+1)

vt+1 = boundv(vt + 0.001at − 0.0025cos(3pt))

where at is the action the agent takes at timestep t, boundp

enforces −1.2 ≤ pt+1 ≤ 0.5, and boundv enforces −0.07 ≤
vt+1 ≤ 0.07. In each episode, the agent begins in a state
chosen randomly from these ranges. To prevent episodes
from running indefinitely, each episode is terminated after
2,500 steps if the agent still has not reached the goal.

To represent the agent’s current state to the network, we
divided each state feature into ten regions. One input was
associated with each region (for a total of twenty inputs) and
was set to one if the agent’s current state fell in that region
and to zero otherwise. Hence, only two inputs were activated
for any given state. The networks have three outputs, each
corresponding to one of the actions available to the agent.

4.2 Server Job Scheduling
While the mountain car task is a useful benchmark, it

is a very simple domain. To assess whether on-line evolu-
tion performs well in a much more complex problem, we
use a challenging reinforcement learning task called server
job scheduling. This domain is drawn from the burgeoning
field of autonomic computing [10]. The goal of autonomic
computing is to develop computer systems that automati-
cally configure themselves, optimize their own behavior, and
diagnose and repair their own failures.

One important autonomic computing task is server job
scheduling [27], in which a server, such as a website’s appli-
cation server or database, must determine in what order to
process the jobs currently waiting in its queue. Its goal is to
maximize the aggregate utility of all the jobs it processes. A
utility function for each job type maps the job’s completion
time to the utility derived by the user [25]. The problem of
server job scheduling becomes challenging when these util-
ity functions are non-linear and/or the server must process

multiple types of jobs. Since selecting a particular job for
processing necessarily delays the completion of all other jobs
in the queue, the scheduler must weigh difficult trade-offs to
maximize aggregate utility.

Our experiments were conducted in a Java-based simula-
tor. During each timestep, the server removes one job from
its queue and completes it. During each of the first 100
timesteps, a new job of a randomly selected type is added
to the end of the queue. Hence, the agent must make de-
cisions about which job to process next even as new jobs
are arriving. The simulation begins with 100 jobs preloaded
into the server’s queue and ends when the queue becomes
empty. Since one job is processed at each timestep, each
episode lasts 200 timesteps. For each job that completes,
the scheduling agent receives an immediate reward deter-
mined by that job’s utility function.

Utility functions for the four job types used in our exper-
iments are shown in Figure 3. Users who create jobs of type
#1 or #2 do not care about their jobs’ completion times so
long as they are less than 100 timesteps. Beyond that, they
get increasingly unhappy. The rate of this change differs
between the two types and switches at timestep 150. Users
who create jobs of type #3 or #4 want their jobs completed
as quickly as possible. However, once the job becomes 100
timesteps old, it is too late to be useful and they become
indifferent to it. As with the first two job types, the slopes
for job types #3 and #4 differ from each other and switch,
this time at timestep 50. Note that all these utilities are
negative functions of completion time. Hence, the schedul-
ing agent strives to bring aggregate utility as close to zero
as possible.
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To make the state and action spaces more manageable,
we discretize them. The range of job ages from 0 to 200 is
divided into four sections and the scheduler is told, at each
timestep, how many jobs in the queue of each type fall in
each range, resulting in 16 state features. The action space
is similarly discretized. Instead of selecting a particular job
for processing, the scheduler specifies what type of job it
wants to process and which of the four age ranges that job
should lie in, resulting in 16 distinct actions.

The server job scheduling domain is a perfect example of a
reinforcement learning task that needs to be solved on-line.
Though we use a simulator for the purpose of experimental
research, creating an accurate simulator in the real world
would not be practical. Such a simulator would have to
precisely model the server’s internal workings and the be-
havior of all the system’s users, including how that behavior
changes in response to different scheduling policies. Hence,
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in the mountain car and server job scheduling domains. In both domains, all rewards are negative so the agents strive

to get average reward as close to zero as possible.

good policies can probably only be learned on-line, by try-
ing them out on real servers. In such scenarios, maximizing
on-line performance is critical, since lost reward corresponds
to delays for real users.

5. RESULTS AND DISCUSSION
As a baseline of comparison, we applied the original, off-

line version of NEAT to both the mountain car and server
job scheduling domains and averaged its performance over
25 runs. The population size |P | was 100 and the num-
ber of episodes per generation e was 10,000. Hence, each
member of the population was evaluated for 100 episodes.
See Appendix A for more details on the NEAT parameters
used in our experiments. Next, we applied the ǫ-greedy,
softmax, and interval estimation versions of NEAT to both
domains using the same parameter settings. Each of these
on-line methods has associated with it one additional pa-
rameter which controls the balance between exploration and
exploitation. For each method, we experimented informally
with approximately ten different settings of these parame-
ters to find ones that worked well in the two tasks. Finally,
we averaged the performance of each method over 25 runs
using the best known parameter settings.

Those settings were as follows. For ǫ-greedy, ǫ was set to
0.25. This value is larger than is typically used in TD meth-
ods but makes intuitive sense, since exploration in NEAT
is safer than in TD methods. After all, even when NEAT
explores, the policies it selects are not drawn randomly from
policy space. On the contrary, they are the children of the
previous generation’s fittest parents. For softmax, the ap-
propriate value of τ depends on the range of fitness scores,
which differs dramatically between the two domains. Hence,
different values were required for the two domains: we set
τ to 50 in mountain car and 500 in server job scheduling.
For interval estimation, α was set to 20, resulting in 80%
confidence intervals.

Figure 4 summarizes the results of these experiments by
plotting a uniform moving average over the last 1,000 episodes
of the total reward accrued per episode for each method.
We plot average reward because it is an on-line metric:
it measures the amount of reward the agent accrues while
it is learning. The best policies discovered by evolution,
i.e. the generation champions, perform substantially higher

than this average. However, using their performance as an
evaluation metric would ignore the on-line cost that was in-
curred by evaluating the rest of population and receiving
less reward per episode. Error bars on the graph indicate
95% confidence intervals. In addition, Student’s t-tests con-
firm, with 95% confidence, the statistical significance of the
performance difference between each pair of methods except
softmax and interval estimation.

The results clearly demonstrate that selection mechanisms
borrowed from TD methods can dramatically improve the
on-line performance of evolutionary computation. All three
on-line methods substantially outperform the off-line version
of NEAT. In addition, the more nuanced strategies of soft-
max and interval estimation fare better than ǫ-greedy.3 This
result is not surprising since the ǫ-greedy approach simply
interleaves the search for better policies with exploitative
episodes that employ the best known policy. Softmax se-
lection and interval estimation, by contrast, concentrate ex-
ploration on the most promising alternatives. Hence, they
spend fewer episodes on the weakest individuals and achieve
better performance as a result.

The on-line methods, especially interval estimation, show
a series of 10,000-episode intervals. Each of these inter-
vals corresponds to one generation. The performance im-
provements within each generation reflect the on-line meth-
ods’ ability to exploit the information gleaned from earlier
episodes. As the generation progresses, these methods be-
come better informed about which individuals to favor when
exploiting and average reward increases as a result.

While these intervals reveal an important feature of the
on-line methods’ behavior, they can make it difficult to com-
pare performance. For example, in the mountain car do-
main, interval estimation begins each generation with a lot
of exploration and, consequently, relatively poor performance.
However, that exploration quickly pays off and its average
performance rises slightly above that of softmax. Which of
these two methods is receiving more reward overall? It is
difficult to tell from plots of average reward. Hence, Figure 5
plots, for the same experiments, the total cumulative reward

3
Though detailed comparisons with TD methods are beyond the

scope of this paper, in other experiments we find that for these tasks
both off-line and on-line NEAT outperform TD methods such as Q-
learning and Sarsa with neural network function approximators [27].
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Figure 5: The cumulative reward accrued by off-line NEAT, compared to three versions of on-line NEAT in the

mountain car and server job scheduling domains. In both domains, all rewards are negative so the agents strive to

keep cumulative reward as close to zero as possible.

accrued by each method over the entire run. As with the
previous graph, error bars indicate 95% confidence intervals
and Student’s t-tests confirmed, with 95% confidence, the
statistical significance of the performance difference between
each pair of methods except softmax and interval estimation.
Not surprisingly, the off-line version of NEAT accumulates
much less reward than the on-line methods and ǫ-greedy
accumulates less reward than the other on-line approaches.
These graphs also show that, in mountain car, interval esti-
mation’s exploration early in each generation pays off, as it
earns at least as much reward overall as softmax.

Together, these results demonstrate that borrowing selec-
tion mechanisms from TD methods can greatly improve the
on-line performance of evolutionary computation. However,
they do not address how on-line evolution affects the qual-
ity of the best policies discovered. Does excelling at on-line
metrics necessarily hurt performance on off-line metrics? To
answer this question, we selected the best policies discov-
ered by each method (i.e. the final generation champions)
and evaluated them each for 1,000 additional episodes.

In mountain car, using on-line evolution has no noticeable
effect: the best policies of off-line and all three versions of
on-line NEAT receive an average score of approximately -52,
which matches the best results achieved in previous research
on this domain [16, 23]. While the mountain car domain
is simple enough that all the methods find approximately
optimal policies, the same is not true in scheduling, where
ǫ-greedy performs substantially worse. Its best policies re-
ceive an average score of approximately -11,100, whereas
off-line and the other two versions of on-line NEAT all re-
ceive an average score of approximately -10,100. This result
is not surprising: since ǫ-greedy evolution spends most of its
episodes re-evaluating the best policy, its fitness estimates
for the rest of the population are less accurate. By focusing
exploration on the most promising individuals, softmax and
interval estimation offer the best of both worlds: they excel
at the on-line metrics without sacrificing the quality of the
best policies discovered.

Overall, these results verify the efficacy of these methods
of on-line evolution. It is less clear, however, which strategy
is most useful. Softmax clearly outperforms ǫ-greedy but
may be more difficult to use in practice because the τ pa-
rameter is harder to tune, as evidenced by the need to assign

it different values in the two domains. As Sutton and Barto
write, “Most people find it easier to set the ǫ parameter
with confidence; setting τ requires knowledge of the likely
action values and of powers of e.” [24, pages 27-30]. In this
light, interval estimation may be the best choice. Our exper-
iments show that it performs as well or better than softmax
and anecdotal evidence suggests that the α parameter is not
overly troublesome to tune.

6. RELATED AND FUTURE WORK
The approach presented in this paper is closely related to

Learning Classifier Systems [12] in that they are often ap-
plied to reinforcement learning problems and make use of
TD methodology. NCS [5] is particularly related because
it uses neural networks, as are “Pittsburgh-style” classi-
fiers [17] because, as in our approach, each member of the
population represents a complete candidate solution. The
primary difference between classifier systems and our ap-
proach is that the former strive to learn value functions
whereas the latter learns policies directly. Selection mech-
anisms like ǫ-greedy have been applied to classifier systems
to manage the exploration/exploitation trade-off (e.g. [11,
14, 28]). However, such mechanisms are typically used, as
in TD methods, to select among individual actions, not to
allocate evaluations among an entire population.

Because it allows members of the same population to re-
ceive different numbers of evaluations, this research is also
similar to previous work about optimizing noisy fitness func-
tions. For example, Stagge [18] introduces mechanisms for
deciding which individuals need more evaluations, assum-
ing the noise is Gaussian. Beielstein and Markon [2] use a
similar approach to develop tests for determining which in-
dividuals should survive. However, this area of research has
a significantly different focus, since the goal is to find the
best individuals using the fewest evaluations, not to maxi-
mize the reward accrued during those evaluations.

The problem of using evolutionary systems on-line is more
closely related to other research about the tradeoff between
exploration and exploitation, which has been studied exten-
sively in the context of TD methods [24, 26] and multiarmed
bandit problems [1, 3, 13]. The selection mechanisms used
in this paper are well-established though, to our knowledge,
their application to evolutionary computation is novel.



In future work, we aim to apply the TD selection mech-
anisms used here to other policy search methods. Nothing
in our methodology requires the underlying reinforcement
learning method to be evolutionary. Hence, we hypothe-
size that other policy search techniques (e.g. policy gradient
methods [22]) could also improve their on-line performance
via the methods studied in this paper.

7. CONCLUSION
We present a novel way of boosting the on-line perfor-

mance of evolutionary methods by borrowing selection mech-
anisms used in TD methods to choose individual actions
and using them in evolution to choose policies for evalua-
tion. Empirical results in the mountain car and server job
scheduling domains demonstrate that these techniques can
substantially improve the on-line performance of evolution-
ary methods and that softmax selection and interval estima-
tion are more effective than the simple ǫ-greedy approach.
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APPENDIX

A. NEAT PARAMETERS
This section details the NEAT parameters used in our

experiments. Stanley and Miikkulainen [19] describes these
parameters in detail. The coefficients for measuring compat-
ibility were c1 = 1.0, c2 = 1.0, and c3 = 2.0. The survival
threshold was 0.2. The champion of each species with more
than five networks was copied into the next generation un-
changed. The weight mutation power was 0.005 in mountain
car and 0.5 in scheduling. The interspecies mating rate was
0.01. The number of target species was 6. The drop-off age
was 100. The probability of adding recurrent links was 0.0.
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