
Designing Better Playlists with Monte Carlo Tree Search

Elad Liebman‡, Piyush Khandelwal‡, Maytal Saar-Tsechansky† & Peter Stone‡
‡CS Department, The University of Texas at Austin, {eladlieb, piyushk, pstone}@cs.utexas.edu

†McCombs School of Business, The University of Texas at Austin, Maytal.Saar-Tsechansky@mccombs.utexas.edu

Abstract

In recent years, there has been growing interest in the
study of automated playlist generation - music rec-
ommender systems that focus on modeling preferences
over song sequences rather than on individual songs in
isolation. This paper addresses this problem by learn-
ing personalized models on the fly of both song and
transition preferences, uniquely tailored to each user’s
musical tastes. Playlist recommender systems typically
include two main components: i) a preference-learning
component, and ii) a planning component for select-
ing the next song in the playlist sequence. While there
has been much work on the former, very little work
has been devoted to the latter. This paper bridges this
gap by focusing on the planning aspect of playlist gen-
eration within the context of DJ-MC, our playlist rec-
ommendation application. This paper also introduces
a new variant of playlist recommendation, which in-
corporates the notion of diversity and novelty directly
into the reward model. We empirically demonstrate
that the proposed planning approach significantly im-
proves performance compared to the DJ-MC baseline
in two playlist recommendation settings, increasing the
usability of the framework in real world settings.

Introduction

Individual songs are seldom listened to in isolation, and
it is well established that music is experienced in a tem-
poral manner [7]. Good music recommendation sys-
tems can take advantage of this fact while generating
customized playlists. Such playlists need to take into
account not only the enjoyment experienced by a given
listener when listening to a certain song, but also how
songs can be put in sequence appropriately to provide
greater enjoyment than simply listening to songs in an
arbitrary order.

While several recent papers have looked into the al-
gorithmic generation of music playlists, they have pre-
dominantly focused on the learning aspect of modeling
user preferences, rather than the planning aspect of uti-
lizing learned knowledge effectively to generate good se-
quences. In this paper, we address this gap by applying

Copyright c© 2017, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

the adaptation of an advanced planning approach, Up-
per Confidence Bound in Trees (UCT) [10], to generate
better song sequences.

UCT is a member of the Monte Carlo Tree Search
(MCTS) family of planning algorithms, which approx-
imately solve sequential decision making problems.
These algorithms are anytime, meaning that they can
iteratively improve results given additional computa-
tional time. MCTS algorithms execute a number of
planning simulations, i.e. Monte Carlo rollouts, and
keep track of encountered states and actions within
a tree structure. UCT was first popularized in Com-
puter Go [6], and in the past few months played a key
role in enabling a computerized Go program, AlphaGo,
to surpass the highest echelons of human level perfor-
mance [19].

In a recent paper, we have proposed a music recom-
mender system called DJ-MC [12], which treats playlist
generation as a sequential decision making task, and ap-
plies techniques from the Reinforcement Learning (RL)
literature to learn and model user preferences over both
songs and song transitions on the fly. In this paper,
we build on this approach and demonstrate how more
sophisticated Monte Carlo planning, based on Upper
Confidence Bound in Trees (UCT) [10], can improve
performance over the naive planning method used in
the original DJ-MC framework. Then, to further un-
derstand the importance of advanced planning tech-
niques in generating meaningful song sequences, we in-
troduce an alternative framework for music playlist rec-
ommendation, which aims to maximize diversity over a
sequence of preferred songs.

This paper makes two main contributions. First, we
demonstrate the effectiveness of a UCT planning ap-
proach in a music recommendation platform that has
been tested on human participants. To our knowledge,
this is the first application of such approaches in a mu-
sic recommendation domain. This extension makes DJ-
MC practical for recommending songs using realistically
large music corpora. Second, we extend the previous
framework by introducing a new recommendation ob-
jective, namely novelty search, and show that our pro-
posed approach is well suited for this setting as well.

eladlieb
Typewriter
APPEARS IN THE PROCEEDINGS OF THE TWENTY-NINTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-17), SAN FRANCISCO, FEBRUARY 2017



RL Applied to Playlist Recommendation

This section provides the technical details of the ap-
plication considered in this paper. Specifically, it in-
troduces how playlist recommendation can be modeled
as an MDP, describes the DJ-MC framework, and in-
troduces our adaptation of UCT planning to playlist
recommendation.

Playlists as Markov Decision Processes

If we consider playlists as depending on the specific se-
quence of songs, such that the enjoyment of each song
is dependent on the songs chosen before it, then at each
point in the playlist generation process, the selection of
a new song affects the choice of possible songs in the fu-
ture. From this perspective, playlist recommendation is
a sequential decision-making task, and as such, is suit-
ably formulated as a Markov Decision Process (MDP)
[20].

An episodic MDP M is represented as 〈S,A, P,R, T 〉
where S is the set of states an agent can be in, A is the
set of actions that the agent can take at a state, P is the
transition function that gives the transition probability
of reaching a particular next state s′ from state s after
taking action a (P : S × A × S → R;

∑
s′ P (s, a, s′) =

1), R is the reward received given a transition (R :
S × A × S → R), and T is the set of terminal states
which end the episode. To perform optimally in a task
that an MDP represents, an agent must find a policy
π : S → A such that from any given state s, executing
action π(s) and then continuing to act optimally (that
is, following the optimal policy π∗) would yield in the
highest expected sum of rewards over the length of the
episode. This is traditionally referred to as “solving”
an MDP.

DJ-MC formulates the playlist generation problem as
an MDP as follows. Given a finite set of songs M =
{a1, a2, . . . , an}, and the assumption that playlists are
of length k, the state representation captures a list of
all the songs that have been heard by a listener. Thus,
the set of MDP states can be constructed as follows:

S = {(a1, a2, . . . , ai) | 1 ≤ i ≤ k, ∀j≤i[aj ∈M]}.

At any state, the agent’s action directly corresponds
to the next song played by the system, and con-
sequently the action set is the entire set of songs,
i.e. A = M. Given these S and A, the MDP tran-
sition function P is trivial and deterministic, i.e. each
state-action pair maps to exactly one state. Given a
state s = (a1, a2, . . . , ai) and action a, the next state
s′ = (a1, a2, . . . , ai, a). Furthermore, since playlists are
of length k, any state s that contains k songs is termi-
nal.

On the other hand, the definition of an appropriate
MDP reward function R is far from trivial, and rep-
resents a key challenge in tackling the playlist recom-
mendation problem. Intuitively, R models a listener’s
enjoyment while listening to the generated playlist.
The goal of the music recommendation system is to

select songs in order to maximize the cumulative re-
ward across an entire episode. More exactly, a reward
function Ru(s, a) needs to capture the enjoyment of lis-
tener u hearing song a after listening to song sequence
s = (a1, a2, . . . , ai). In other words, the reward function
needs to model not only the utility of playing a particu-
lar song to the listener, but also reflect the significance
of the sequential decision making aspect of the playlist
generation problem.

The DJ-MC Architecture

In this section, we summarize DJ-MC, a reinforcement
learning approach to a playlist-oriented, personalized
music recommendation system [12].

The DJ-MC architecture expresses the reward func-
tion as a linear combination of both song and transition
utility. To simplify learning, DJ-MC decouples the re-
ward derived from the choice of songs from transitions
as follows:

R(Seqt, a, Seq
′) = φs(u) · θs(a) + φt(u) · θt(Seq, a) (1)

Here, the state is the song sequence Seq, and a is
the song played at state Seq = {a1, . . . , an} leading the
system to a future state Seq′ = {a1, . . . , an, a}.
θs(a) and θt(Seq, a) are finite length feature vectors

representing song a and the transition from an → a,
respectively. φs(u) and φt(u) are vectors which repre-
sent a particular listener’s preferences for song a and
the transition from ak → a, respectively.

This song and transition representation is con-
structed as follows. Each song is analyzed for its acous-
tic properties, and properties such as amplitude, pitch,
timbre, and tempo are used to construct a real-valued
song descriptor of length 34. A binned representa-
tion of size 10 per feature is then constructed from
each real-value feature by indicating the relative po-
sition of a song across the entire song set M. Across
all 34 features, this binary representation leads to the
340-dimensional representation θs. As described by
Liebman et al., the transition representation θt can be
modeled in a similar way as a 3400-dimensional binary
vector. Correspondingly, a listener’s preferences over
songs and transitions are modeled as a 340-dimensional
weight vector φs and a 3400-dimensional weight vec-
tor φt, respectively. The high-level DJ-MC architecture
pseudocode is presented in Algorithm 1.

The values of φs and φt for a particular user are ini-
tially unknown, and are updated as DJ-MC learns the
user’s preference from experience. Should φs and φt be
fully known, and consequently the reward function R be
known, every element of the playlist MDP in which DJ-
MC operates becomes well-defined, and the MDP can
be solved as a pure planning problem. Given a well-
defined MDP reward function, DJ-MC needs to plan in
order to select the next song in the playlist. Since the
problem space is too large to be able to plan optimally,
DJ-MC instead uses a heuristic approach, running mul-
tiple Monte Carlo simulations from the current state,
where actions within each rollout are selected randomly.



Algorithm 1 DJ-MC Architecture

1: Input: M - song corpus, K - planned playlist du-
ration, ks - number of steps for song preference ini-
tialization, kt - the number of steps for transition
preference initialization
Initialization:

2: Initialize individual song weights to obtain φs
3: Initialize song transition weights to obtain φt

Planning and Model Update:
4: for K steps do
5: Run Monte-Carlo search to select the next song
6: Update φs, φt
7: end for

Subsequently, the first action from the trajectory ob-
taining the highest cumulative reward is selected. This
is a relatively unsophisticated approach, as planning
was not the main focus in the original DJ-MC formula-
tion. A main contribution of this paper is a significant
improvement in the DJ-MC planner, which we motivate
next.

Upper Confidence Bound in Trees (UCT)

In this section, we discuss how DJ-MC planning can be
improved using the more sophisticated UCT algorithm.
There are several approaches to solving an MDP opti-
mally, assuming the transition function P and reward
function R are known. For example, Value Iteration [3]
solves discrete MDPs directly with dynamic program-
ming. However, in many domains, including the playlist
generation problem described in the previous sections,
the state-action space is sufficiently large such that op-
timally solving the MDP is infeasible. In these situa-
tions, it is necessary to use approximate solvers that
restrict search to more relevant regions of the state ac-
tion space. One family of such approaches is Monte
Carlo Tree Search (MCTS). In this paper, we focus on
one variant of this approach called Upper Confidence
Bound in Trees (UCT) [10].

In UCT, planning is performed by simulating a num-
ber of state-action trajectories from the current MDP
state, i.e. Monte Carlo rollouts. In the playlist genera-
tion domain, the current MDP state reflects the songs
that have already been played by the system. For
each state-action pair encountered within this trajec-
tory, UCT stores the number of visits for that pair as
well as the long term expected reward of choosing that
action at that state in a tree structure. Each node rep-
resents a state, with edges representing actions leading
from one state to another.

Given information collected in prior simulations,
UCT uses the UCB1 algorithm [2] for action selec-
tion, allowing the algorithm to spend more time in ar-
eas of the state-action space that seem more promis-
ing. The UCB1 decision criterion is defined as a =

arg maxa

(
Q(s, a) + cp

√
ln(ns)/na

)
, where ns is the

number of visits to the state, na is the number of times

action a was selected in previous simulations at this
state, Q(s, a) is the current expected long term reward
for taking action a at this state, and cp is tuned empir-
ically to better balance exploration versus exploitation.

This paper applies a parametrized UCT variant
called MaxMCTS(λ). MaxMCTS(λ) employs a more
complex Q-value backpropagation strategy than that
used in the original UCT algorithm. This variant
was previously used for multi-robot coordination prob-
lems [8], and is studied extensively along with other
variants by [9]. In MaxMCTS(λ), Q-values are es-
timated using an eligibility trace mechanism used in
Peng’s Q(λ) reinforcement learning algorithm. This es-
timation process is summarized in Algorithm 2.

Algorithm 2 Eligibility trace backpropagation

1: Input: trajectory - Stack of 〈state, action, reward〉,
populated during planning simulation.

2: q ← 0 # Backpropagated value
3: for 〈s, a, r〉 = trajectory.pop() do
4: q ← q + r, ns ← ns + 1, na ← na + 1
5: Q(s, a)← Q(s, a) + (q −Q(s, a))/na
6: q ← (1− λ) maxa′|na′ 6=0[Q(s, a′)] + λq
7: end for

In Algorithm 2, q is a value backpropagated up the
tree, and used to update Q-value estimates in Line 5.
The key update rule for this backpropagation strategy
is the update rule on line 6, which uses parameter λ to
interpolate between the current backpropagated value
and the maximum Q-value estimate at that state. In-
tuitively, when λ values are close to 0, even when ex-
ploratory actions are taken further down in the tree, the
value of the action with the highest expected reward is
propagated higher up in the tree. This technique mini-
mizes the risk of exploratory actions taken further down
the tree, but increases the likelihood of finding subop-
timal policies. The value of λ must be selected em-
pirically, and intermediate values between 0 and 1 can
often provide significantly better performance in some
domains.

UCT for Playlist Generation

As pointed out above, while the original DJ-MC ar-
chitecture puts a great deal of emphasis on effec-
tively learning user preferences from limited informa-
tion, when it comes to leveraging the learned model to
select the next song, a relatively naive planning heuris-
tic was employed. However, especially given the com-
plex nature of generating playlists using a large song
database, it stands to reason that a stronger heuristic,
better suited for balancing the exploration-exploitation
tradeoff with limited information, is a more appropriate
choice. On the other hand, more sophisticated methods
hold the risk of requiring more experience to be effec-
tive, which may be a problem if only a limited number
of simulations is possible.



Two main adaptations need to be made to make
UCT-based approaches applicable in the playlist rec-
ommendation setting. First, as mentioned above, the
more sophisticated parameterized backup strategy of
MaxMCTS(λ) has to be used, since given the diffi-
culty of the search problem pure Monte Carlo backups
aren’t likely to find good enough trajectories. Second,
to make DJ-MC with MaxMCTS(λ) applicable to huge
song corpora, we introduce hierarchy into the song se-
lection step. One of the key determining factors in the
efficiency of MCTS methods is the branching factor in-
duced by the domain at each node. The branching fac-
tor is determined by the number of available actions at
each node of the UCT tree. Since by default the set
of actions available at each state of the music playlist
MDP is the entire set of songs M , the default branch-
ing factor for this domain is prohibitively high for even
moderately sized music databases. To mitigate this is-
sue, we use the structure of the song space to cluster
songs into subsets. Each subset represents an abstract
song type. Then, we alternate between choosing song
types and choosing specific songs at each step of the
trajectory, dramatically reducing the branching factor
(the lowest branching factor in expectation is achieved

when the number of clusters is
√
M).

Algorithm 3 MaxMCTS(λ) for music applications
starting at playlist s

1: input: current playlist s, song corpusM
2: ClusterM to obtain song types C and mapping to

concrete songs SM(C)
3: rootNode ← initNode(s) # Root node represents

the current playlist state
4: for sim ∈ {1, . . . ,numSimulations} do
5: node ← rootNode
6: trajectory ← new Stack
7: while notTerminal(node) do
8: if node.parent ∈M then a ∈ Song Types # If

last song in the trajectory is instantiated, plan over
abstract songs.

9: else a ∈ SM(node.parent)
10: if node.ns = 0 then a← default song selection
11: else a← selectNextActionWithUCB1 (node)
12: 〈ns, reward〉 ← simulate(node, a)
13: nextNode← getOrInitNode(node, a,ns #

Next node represents the playlist after selecting a
new song.

14: trajectory.push(node, a, reward)
15: node ← nextNode
16: end while
17: BACKPROPAGATE(trajectory) using Algo-

rithm 2
18: end for

The pseudocode for MaxMCTS(λ) adapted to the
playlist generation domain is presented in Algorithm
3. Line 2 preprocesses the song set by clustering the
song corpus to obtain abstract song types and a map-

ping from each song type to a set of concrete songs that
comprise that type. Clustering is done via the canoni-
cal K-Means algorithm [15]. Then line 3 initializes the
root of the search tree to be the current playlist state.
The main loop in lines 4-18 generates one MCTS sim-
ulation. Lines 7-12 descend down the tree using either
the UCB1 criterion for action selection or a default song
exploration policy if not all actions have been tried at
least once. Lines 9-10 decide whether we’re currently
selecting a song type or a concrete song of the song type
specified. Line 13 runs a simulation from the new song
selected to obtain an estimated user reward this song
choice will accrue. Once the rollout is complete line 17
backpropagates the overall reward up the search tree,
using Algorithm 2.

Planning for Personalization
In this section we empirically evaluate the benefit
of adapting MaxMCTS(λ) to the DJ-MC framework,
which aims to maximize playlist personalization. We
compare the performance of the proposed algorithm,
DJ-MC + MaxMCTS, with that of “vanilla” DJ-MC,
measuring user reward over 30-song sequences. We also
compare it to the benchmarks DJ-MC was originally
compared against: a greedy heuristic which selects the
favorite song not played yet irrespective of sequence,
thus mimicking a more traditional music recommenda-
tion algorithm, and a random baseline. the results are
presented in Figure 1.

Results indicated that using MaxMCTS(λ) with
λ = 0.5 statistically significantly outperforms the
standard DJ-MC, and that with all chosen λ values
MaxMCTS(λ) did as well as or better than the standard
planning technique used in DJ-MC.

Planning for Diversity
DJ-MC is an interesting and robust framework for
learning playlist preferences and generating playlists
efficiently on the fly. However, it is not the only

Figure 1: Average reward for 30-song sequences, comparing standard

DJ-MC to DJ-MC with MaxMCTS(λ) planning using varying values

of λ, a greedy system which attempts to maximize song enjoyment

regardless of sequence, and a random sequence generator. Results

are obtained over 30 repetitions with a corpus size of 5000 and 70

song types (leading to an average branching factor of 70). Songs are

randomly taken from the Million Song Dataset [4]. Best performing

algorithm marked red. Monte-Carlo approaches ran 5000 simulations.



playlist recommendation framework where planning is
useful. Indeed, any playlist recommendation frame-
work which takes transitions into account should bene-
fit from the usage of advanced planning techniques such
as MaxMCTS(λ). To illustrate this point, we study the
application of MaxMCTS(λ) with various λ values in a
different playlist recommendation setting, with different
transition mechanics and a different reward function -
diversity (or novelty) based playlist generation.

The idea of algorithmic novelty search in playlist gen-
eration has been proposed before [22, 11, 13, 21] and it
seems intuitive - even once we gain some knowledge user
preferences, they wouldn’t want to listen to very sim-
ilar songs one after another in sequence, leading to a
potentially tedious experience.

To this end, we propose a novel diversity genera-
tion framework. Given a song database M and some
similarity metric D between songs, we are tasked with
finding a sequence of songs the listener enjoys, but pe-
nalize for the amount of similarity between each song
chosen and the songs which preceded it. Similar to
the temporal discounting approach adopted by [12],
we can assume the penalty for similarity across songs
in the sequence decays as songs progress. Formally,
in the novelty detection setting, we assume the same
general playlist problem MDP as in DJ-MC, but pro-
pose an alternative approach for modeling R. Instead
of the decomposition proposed in Eq. 1, we propose
an alternative formulation, as presented in Eq. 2.
Assuming a utility function for individual songs Rs
and a similarity measure between songs D, the reward
function representing a listener u for a song sequence
Seq = {s0, . . . , st} is modeled as:

Runovelty(Seq) =

t∑
i=0

(Rs(si) +

i∑
j=0

1

i− j
D(si, sj) (2)

Given this setting, and assuming the user’s individ-
ual song preferences are known, the planning problem -
generating a good sequence of songs - is purely a com-
binatorial search problem. However, it is intractable
for even moderately sized song sets. Indeed, it can be
shown to be NP -hard via a reduction from the weighted
max-clique problem [18]. However, using MaxMCTS(λ)
with the same two-stage song type abstraction sug-
gested in Section lends itself directly to this setting
as well.

As in the DJ-MC extension case, we wish to em-
pirically test MaxMCTS(λ) in the novelty maximiza-
tion setting described above. We choose an experi-
mental setting similar to that employed in the previ-
ous section, but in order to isolate the planning aspect,
we assume the individual song preferences are roughly
known - the listener provides a list of 100 liked songs
and preferences are inferred from these songs based
on the similarity function D which is also assumed to
be known. For the purpose of this section, D is as-
sumed to be the Euclidean distance between the 34-
dimensional song representation vectors used by DJ-

MC (this is similar in spirit to [13]), i.e. for two songs

s1, s2, D(s1, s2) =
√∑34

i=1 (s1i − s2i)2.

The results in the diversity-based playlist recommen-
dation domain are provided in Figure 2.

As evident from the results, in this setting,
MaxMCTS(λ) with λ = 0 significantly outperforms
the other approaches. We note that the relative im-
provement here is higher than that observed for the
DJ-MC setting, but unlike that case, this result is sen-
sitive to an apt choice of λ. It can nonetheless be seen
as a positive result, especially given that [9] suggest
a straightforward approach for roughly tuning λ. This
outcome yet again illustrates how RL applied to playlist
recommendation can improve performance compared to
our baselines. Looking comparatively at the two differ-
ent playlist generation settings, the novelty detection
setting induces a considerably sparser search problem.
This provides a relative advantage to planning methods
which tend to retain relatively good observed trajecto-
ries, which is effectively what MaxMCTS(λ = 0) does.

Related Work

Generally speaking, there has been substantial research
on modeling song similarity towards music playlists [1].
Some previous work attempted to model playlists di-
rectly. [16] treated the playlist prediction problem as a
supervised binary classification task, with pairs of songs
in sequence as positive examples. [17] trained a bi-
gram model for transitions. [5] took a similar Markov
approach, treating playlists as Markov chains in some
latent space, and utilized this to learn a metric repre-
sentation for each song. [23] adapted a Latent Dirichlet
Allocation model to capture music taste from listening
activities across users and songs. Recent work by [22]
also borrows from the reinforcement learning literature,
and considers the problem of song recommendations as
a bandit problem, balancing exploration and exploita-
tion to identify novel. Novelty and diversity in them-

Figure 2: Average reward for 20-song long sequences, comparing a

naive Monte-Carlo search approach to MaxMCTS(λ)planning using

varying values of λ, a greedy system which attempts to maximize song

enjoyment regardless of sequence, and a random sequence generator.

Results are obtained over 30 repetitions with a corpus size of 1000 and

30 song types (leading to an average branching factor of 30). Songs

are randomly taken from the Million Song Dataset. Best performing

algorithm marked red. Monte-Carlo approaches ran 5000 simulations.



selves have also been a studied objective of playlists.
[14] considered novelty in song trajectories via spec-
tral song similarity. [11] used context-aware cues to
better tailor a mobile music streaming service to user
needs. More recently, [21] used a combination of Latent
Dirichlet Allocation with graph search to produce more
diversified playlists. All these papers, however, focused
primarily on learning models for listener preferences.
They did not address the complexity of generating good
playlists, which can be decoupled from the learning as-
pect. In this paper, building on the approach suggested
by [12], we treat the music playlist generation task as
an AI planning problem, and show that using better
planning leads to better playlists.

Summary & Conclusion
In this paper we study the application of reinforce-
ment learning and Monte Carlo Tree Search (MCTS)
to playlist recommendation. Even provided with use-
ful learning algorithms, leveraging learned knowledge
effectively is nontrivial in large song spaces or when
the application is expected to work in real time. To
this end we introduce MaxMCTS(λ) to effectively de-
cide on which song to play next on the fly. We show
that in two separate playlist generation settings using
MaxMCTS(λ) holds potential of significantly improv-
ing the quality of generated playlists. We also show
how maximizing diversity can be directly integrated
into the sequential decision-making process. We believe
this work is the first step in connecting the learning
aspect of music playlist recommendation with better
playlist planning techniques, resulting in better, more
expressive music recommendation and user experience
in real-world systems.

Acknowledgments

This work has taken place in the Learning Agents Research Group

(LARG) at UT Austin. LARG research is supported in part by

NSF (CNS-1330072, CNS-1305287, IIS-1637736, IIS-1651089), ONR

(21C184-01), and AFOSR (FA9550-14-1-0087). Peter Stone serves on

the Board of Directors of, Cogitai, Inc. The terms of this arrange-

ment have been reviewed and approved by the University of Texas at

Austin in accordance with its policy on objectivity in research.

References
[1] N. Aizenberg, Y. Koren, and O. Somekh. Build your own music

recommender by modeling internet radio streams. In Proceed-

ings of the 21st international conference on World Wide Web,

pages 1–10. ACM, 2012.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of

the multiarmed bandit problem. Machine learning, 47(2-3):235–

256, 2002.

[3] R. Bellman. Dynamic programming, 1957.

[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The

million song dataset. In ISMIR 2011: Proceedings of the 12th

International Society for Music Information Retrieval Con-

ference, October 24-28, 2011, Miami, Florida, pages 591–596.

University of Miami, 2011.

[5] S. Chen, J. L. Moore, D. Turnbull, and T. Joachims. Playlist

prediction via metric embedding. In Proceedings of the 18th

ACM SIGKDD international conference on Knowledge discov-

ery and data mining, pages 714–722. ACM, 2012.

[6] S. Gelly and Y. Wang. Exploration exploitation in Go: UCT for

Monte-Carlo Go. In Conference on Neural Information Pro-

cessing Systems (NIPS), 2006.

[7] B. Kahnx, R. Ratner, and D. Kahneman. Patterns of hedonic

consumption over time. Marketing Letters, 8(1):85–96, 1997.

[8] P. Khandelwal, S. Barrett, and P. Stone. Leading the way: An ef-

ficient multi-robot guidance system. In Proceedings of the 2015

International Conference on Autonomous Agents and Multi-

agent Systems, pages 1625–1633. International Foundation for

Autonomous Agents and Multiagent Systems, 2015.

[9] P. Khandelwal, E. Liebman, S. Niekum, and P. Stone. On the

analysis of complex backup strategies in monte carlo tree search.

In Proceedings of the 33nd International Conference on Ma-

chine Learning, ICML 2016, New York City, NY, USA, June

19-24, 2016, pages 1319–1328, 2016.

[10] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo plan-

ning. In European Conference on Machine Learning (ECML),

2006.

[11] A. Lehtiniemi. Evaluating supermusic: streaming context-aware

mobile music service. In Proceedings of the 2008 International

Conference on Advances in Computer Entertainment Technol-

ogy, pages 314–321. ACM, 2008.

[12] E. Liebman, M. Saar-Tsechansky, and P. Stone. Dj-mc: A

reinforcement-learning agent for music playlist recommendation.

In Proceedings of the 2015 International Conference on Au-

tonomous Agents and Multiagent Systems, pages 591–599. In-

ternational Foundation for Autonomous Agents and Multiagent

Systems, 2015.

[13] B. Logan. Content-based playlist generation: Exploratory ex-

periments. In ISMIR, 2002.

[14] B. Logan and A. Salomon. A music similarity function based on

signal analysis. In null, page 190. IEEE, 2001.

[15] J. MacQueen et al. Some methods for classification and anal-

ysis of multivariate observations. In Proceedings of the fifth

Berkeley symposium on mathematical statistics and probabil-

ity, volume 1, pages 281–297. Oakland, CA, USA., 1967.

[16] F. Maillet, D. Eck, G. Desjardins, P. Lamere, et al. Steerable

playlist generation by learning song similarity from radio station

playlists. In ISMIR, pages 345–350, 2009.

[17] B. McFee and G. R. Lanckriet. The natural language of playlists.

In ISMIR, pages 537–542, 2011.

[18] P. M. Pardalos and J. Xue. The maximum clique problem. Jour-

nal of global Optimization, 4(3):301–328, 1994.

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-

neershelvam, M. Lanctot, et al. Mastering the game of go with

deep neural networks and tree search. Nature, 529(7587):484–

489, 2016.

[20] R. S. Sutton and A. G. Barto. Introduction to Reinforcement

Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[21] M. Taramigkou, E. Bothos, K. Christidis, D. Apostolou, and

G. Mentzas. Escape the bubble: Guided exploration of music

preferences for serendipity and novelty. In Proceedings of the

7th ACM conference on Recommender systems, pages 335–338.

ACM, 2013.

[22] X. Wang, Y. Wang, D. Hsu, and Y. Wang. Exploration in in-

teractive personalized music recommendation: A reinforcement

learning approach. arXiv preprint arXiv:1311.6355, 2013.

[23] E. Zheleva, J. Guiver, E. Mendes Rodrigues, and N. Milić-

Frayling. Statistical models of music-listening sessions in social

media. In Proceedings of the 19th international conference on

World wide web, pages 1019–1028. ACM, 2010.




