MACTA: A Multi-agent Reinforcement Learning Approach for Cache Timing Attacks and Detection

Jiaxun Cui, Xiaomeng Yang*, Mulong Luo*, Geunbae Lee*, Peter Stone, Hsien-Hsin S. Lee, Benjamin Lee, G. Edward Suh, Wenjie Xiong^, Yuandong Tian^

Cache Timing Attack Challenge

- Cache timing attacks forms when attacker and victim share the same cache.
- Attackers can infer the secret victim access of cache by observing its own cache access latencies.

Example Attack

Attacker accesses AO, ..., A3 and occupies the whole cache

(2) Victim access:

Victim accesses one of the secret address In this example: victim accesses V1

(3) Attacker Probe:

Attacker accesses AO, Cache Hit (Fast access) Attacker accesses A1, Cache Miss (Slow access) Victim's secret address must be V1!

Environment

MACTA

MACTA optimizes Attacker policy and Detector policy jointly

- 1. Transformer observation encoder
- 2. Maintain a policy **pool** for each agent and increase the pool size with policy checkpoints during training
- 3. Approximate Best Responses to a uniform mixture of opponents using (Dual-Clip) Proximal Policy Optimization (PPO)

Generalizability

- MACTA detector generalizes to unseen attackers, with low False Alarm rate
- MACTA attacker mimics benign programs

MACTA Detector 2 Detector 3 Detector ' Attacker ' Attacker 2 Attacker 3

Q learns policy against P using PPO

Detection Rate / False Alarm Rate

Opponents Detectors	Prime+Probe ↑	AutoCAT ↑	IBR-PPO Attacker ↑	MACTA Attacker ↑	Benign ↓
CC-Hunter (thold=0.45)	37.7 ± 0.6	13.7 ± 1.3	12.1 ± 0.4	16.4 ± 2.3	27.6 ± 0.9
Cyclone (One-Class SVM)	0.0 ± 0.0	55.8 ± 4.3	33.6 ± 12.8	9.0 ± 5.3	19.3 ± 0.9
Cyclone (SVM)	(99.5 ± 0.1)	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.1	1.4 ± 0.2
IBR-PPO Detector	0.9 ± 0.7	7.3 ± 20.5	6.4 ± 15.6	8.4 ± 21.9	0.4 ± 0.5
MACTA Detector	97.8 ± 0.9	99.9 ± 0.2	99.6 ± 0.4	31.2 ± 18.5	1.1 ± 0.2

Trajectories

Robustness

 MACTA detector reduces information leakage against adaptive attackers

